ENVI下植被覆盖度的遥感估算
植被覆盖度计算

ENVI下植被覆盖度的遥感估算(植被覆盖度是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比。
容易与植被覆盖度混淆的概念是植被盖度,植被盖度是指植被冠层或叶面在地面的垂直投影面积占植被区总面积的比例。
两个概念主要区别就是分母不一样。
植被覆盖度常用于植被变化、生态环境研究、水土保持、气候等方面。
植被覆盖度的测量可分为地面测量和遥感估算两种方法。
地面测量常用于田间尺度,遥感估算常用于区域尺度。
估算模型目前已经发展了很多利用遥感测量植被覆盖度的方法,较为实用的方法是利用植被指数近似估算植被覆盖度,常用的植被指数为NDVI。
下面是李苗苗等在像元二分模型的基础上研究的模型:VFC = (NDVI - NDVIsoil)/ ( NDVIveg - NDVIsoil) (1)其中, NDVIsoil 为完全是裸土或无植被覆盖区域的NDVI值,NDVIveg 则代表完全被植被所覆盖的像元的NDVI值,即纯植被像元的NDVI值。
两个值的计算公式为:NDVIsoil=(VFCmax*NDVImin- VFCmin*NDVImax)/( VFCmax- VFCmin) (2)NDVIveg=((1-VFCmin)*NDVImax- (1-VFCmax)*NDVImin)/( VFCmax- VFCmin) (3)利用这个模型计算植被覆盖度的关键是计算NDVIsoil和NDVIveg。
这里有两种假设:1)当区域内可以近似取VFCmax=100%,VFCmin=0%。
公式(1)可变为:VFC = (NDVI - NDVImin)/ ( NDVImax - NDVImin) (4)NDVImax 和NDVImin分别为区域内最大和最小的NDVI值。
由于不可避免存在噪声,NDVImax 和NDVImin一般取一定置信度范围内的最大值与最小值,置信度的取值主要根据图像实际情况来定。
2)当区域内不能近似取VFCmax=100%,VFCmin=0%当有实测数据的情况下,取实测数据中的植被覆盖度的最大值和最小值作为VFCmax和VFCmin,这两个实测数据对应图像的NDVI作为NDVImax 和NDVImin。
如何使用遥感技术进行植被覆盖度估算

如何使用遥感技术进行植被覆盖度估算遥感技术,作为一种获取地表信息的手段,近年来在环境保护和资源管理中发挥着越来越重要的作用。
其中,植被覆盖度的估算是遥感技术的一个重要应用领域。
本文将探讨如何使用遥感技术进行植被覆盖度估算,并介绍一些常用的遥感指标和算法。
一、遥感技术在植被覆盖度估算中的应用植被覆盖度是指地表上植被的覆盖程度,是反映生态环境和土地利用状况的重要指标之一。
传统的植被覆盖度估算方法通常需要大量人力物力,耗时耗力。
而遥感技术通过获取大量的卫星图像数据,能够实现对广大区域的植被覆盖度进行遥感遥测,节省了大量的时间和成本。
遥感技术通过获取可见光、红外线、热红外等多个波段的卫星图像数据,可以从不同的角度观察地表植被的状态和变化,进而推测出植被的覆盖度。
在植被覆盖度估算中,遥感技术主要通过计算一系列遥感指标来实现,下面将介绍一些常用的遥感指标。
二、常用的遥感指标1. 植被指数(Vegetation Index,VI)植被指数是根据可见光和红外波段之间的光谱特征计算得到的一种指标。
常见的植被指数有归一化植被指数(Normalized Difference Vegetation Index,NDVI)、差值植被指数(Difference Vegetation Index,DVI)等。
这些指标通过计算不同波段的反射率之差来反映植被的覆盖度,其中NDVI是最常用的植被指数之一。
2. 植被水分指数(Vegetation Water Index,VWI)植被水分指数主要用来反映植物水分状况,是根据红外波段和短波红外波段之间的光谱特征计算得到的。
该指数可以帮助我们了解植物的水分利用效率和生长状况,从而判断植被覆盖度的变化。
3. 土壤调节植被指数(Soil Adjusted Vegetation Index,SAVI)土壤调节植被指数是一种改进的植被指数,主要通过减少反射率受土壤影响的干扰,更准确地估算植被覆盖度。
植被覆盖度估算方法

植被覆盖度估算方法植被覆盖度估算方法植被覆盖度估算是为了评估一个区域或地点的植被覆盖程度,常用于生态环境研究、林业资源管理、土地利用规划等领域。
本文将介绍几种常用的植被覆盖度估算方法。
1. 监测图像分类法•监测图像分类法是利用遥感图像进行植被覆盖度估算的常见方法。
•首先,从卫星或无人机获取高分辨率的遥感图像。
•然后,利用图像分类算法(如最大似然法、支持向量机等)将图像分成不同的类别,包括植被和非植被。
•最后,计算植被覆盖度的比例,可以通过像元数、面积比例等指标进行量化。
2. 样地调查法•样地调查法是一种在野外进行的实地调查方法,适用于小范围的植被覆盖度估算。
•首先,在研究区域内选择一定数量的样地,通常为正方形或长方形的固定面积。
•然后,对每个样地内的植被进行详细调查,记录不同植被类型的面积、高度、覆盖度等信息。
•最后,根据样地的统计数据计算整个研究区域的植被覆盖度,可以通过平均值或加权平均值等方式计算。
3. 植被指数法•植被指数法是利用遥感图像中的植被指数进行植被覆盖度估算的方法。
•植被指数是通过计算遥感图像中不同波段(如红、近红外)的比值或差值获得的。
•通过植被指数,可以较为准确地反映植被的生长状况和覆盖度。
•常用的植被指数包括归一化植被指数(NDVI)、差值植被指数(DVI)、综合植被指数(EVI)等。
4. 模型模拟法•模型模拟法是利用数学或计算机模型模拟植被覆盖度的方法。
•常用的模型包括植被生长模型、碳循环模型等。
•通过收集气象数据、土壤数据等相关资料,输入到模型中进行模拟,得到植被覆盖度的估算结果。
•模型模拟法可以考虑多个因素的影响,并提供一种数值化、可重复性的估算方法。
5. 光谱混合法•光谱混合法是利用遥感图像中的光谱信息进行植被覆盖度估算的方法。
•遥感图像中的每个像元通常包含多种地物的光谱信息,通过光谱混合分析,可以将不同地物的贡献进行分离。
•通过对植被和非植被的光谱特性进行分析,可以计算植被覆盖度的比例。
植被覆盖度计算

植被覆盖度计算Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】ENVI下植被覆盖度的遥感估算(植被覆盖度是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比。
容易与植被覆盖度混淆的概念是植被盖度,植被盖度是指植被冠层或叶面在地面的垂直投影面积占植被区总面积的比例。
两个概念主要区别就是分母不一样。
植被覆盖度常用于植被变化、生态环境研究、水土保持、气候等方面。
植被覆盖度的测量可分为地面测量和遥感估算两种方法。
地面测量常用于田间尺度,遥感估算常用于区域尺度。
估算模型目前已经发展了很多利用遥感测量植被覆盖度的方法,较为实用的方法是利用植被指数近似估算植被覆盖度,常用的植被指数为NDVI。
下面是李苗苗等在像元二分模型的基础上研究的模型:VFC=(NDVI-NDVIsoil)/(NDVIveg-NDVIsoil)(1)其中,NDVIsoil为完全是裸土或无植被覆盖区域的NDVI值,NDVIveg则代表完全被植被所覆盖的像元的NDVI值,即纯植被像元的NDVI值。
两个值的计算公式为:NDVIsoil=(VFCmax*NDVImin-VFCmin*NDVImax)/(VFCmax-VFCmin)(2)NDVIveg=((1-VFCmin)*NDVImax-(1-VFCmax)*NDVImin)/(VFCmax-VFCmin)(3)利用这个模型计算植被覆盖度的关键是计算NDVIsoil和NDVIveg。
这里有两种假设:1)当区域内可以近似取VFCmax=100%,VFCmin=0%。
公式(1)可变为:VFC=(NDVI-NDVImin)/(NDVImax-NDVImin)(4)NDVImax和NDVImin分别为区域内最大和最小的NDVI值。
由于不可避免存在噪声,NDVImax和NDVImin一般取一定置信度范围内的最大值与最小值,置信度的取值主要根据图像实际情况来定。
植被覆盖度计算

ENVI下植被覆盖度得遥感估算(植被覆盖度就是指植被(包括叶、茎、枝)在地面得垂直投影面积占统计区总面积得百分比。
容易与植被覆盖度混淆得概念就是植被盖度,植被盖度就是指植被冠层或叶面在地面得垂直投影面积占植被区总面积得比例。
两个概念主要区别就就是分母不一样。
植被覆盖度常用于植被变化、生态环境研究、水土保持、气候等方面。
植被覆盖度得测量可分为地面测量与遥感估算两种方法。
地面测量常用于田间尺度,遥感估算常用于区域尺度、估算模型目前已经发展了很多利用遥感测量植被覆盖度得方法,较为实用得方法就是利用植被指数近似估算植被覆盖度,常用得植被指数为NDVI、下面就是李苗苗等在像元二分模型得基础上研究得模型:VFC =(NDVI -NDVIsoil)/ (NDVIveg — NDVIsoil) (1)其中,NDVIsoil 为完全就是裸土或无植被覆盖区域得NDVI值,NDVIveg则代表完全被植被所覆盖得像元得NDVI值,即纯植被像元得NDVI值。
两个值得计算公式为:NDVIsoil=(VFCmax*NDVImin-VFCmin*NDVImax)/( VFCmax— VFCmin)(2)NDVIveg=((1-VFCmin)*NDVImax- (1-VFCmax)*NDVImin)/(VFCmax—VFCmin) (3)利用这个模型计算植被覆盖度得关键就是计算NDVIsoil与NDVIveg。
这里有两种假设:1)当区域内可以近似取VFCmax=100%,VFCmin=0%、公式(1)可变为:VFC= (NDVI — NDVImin)/( NDVImax — NDVImin) (4)NDVImax 与NDVImin分别为区域内最大与最小得NDVI值。
由于不可避免存在噪声,NDVImax 与NDVImin一般取一定置信度范围内得最大值与最小值,置信度得取值主要根据图像实际情况来定。
2)当区域内不能近似取VFCmax=100%,VFCmin=0%当有实测数据得情况下,取实测数据中得植被覆盖度得最大值与最小值作为VFCmax 与VFCmin,这两个实测数据对应图像得NDVI作为NDVImax 与NDVImin。
植被覆盖度遥感估算研究进展

植被覆盖度遥感估算研究进展一、本文概述植被覆盖度是描述地表植被状况的关键参数,对于生态环境评价、资源管理、气候变化研究等领域具有重要意义。
随着遥感技术的快速发展,利用遥感数据进行植被覆盖度估算已成为当前研究的热点。
本文旨在对植被覆盖度遥感估算的研究进展进行全面的梳理和评价,分析现有方法的优缺点,探讨未来的研究方向和应用前景。
本文首先介绍了植被覆盖度遥感估算的基本原理和方法,包括基于像元的分类方法、像元二分模型、植被指数法等。
然后,重点回顾了近年来国内外在该领域的研究进展,包括新型遥感技术的应用、估算模型的改进和优化、以及多源遥感数据的融合等方面。
本文还讨论了植被覆盖度遥感估算在实际应用中的挑战和限制,如数据质量、尺度效应、算法精度等问题。
本文展望了植被覆盖度遥感估算的未来发展趋势,提出了加强遥感数据质量控制、优化估算模型、推动多源遥感数据融合等建议。
通过本文的研究,可以为植被覆盖度遥感估算的进一步发展提供理论支持和实践指导,推动遥感技术在生态环境保护和资源管理等领域的应用。
二、遥感估算植被覆盖度的基本原理与方法遥感估算植被覆盖度的基本原理在于利用植被在特定光谱范围内的反射、吸收和散射特性,通过对遥感影像的处理和分析,提取植被信息,进而计算植被覆盖度。
这一过程中,植被的光谱响应特性和遥感影像的像元信息是两个关键因素。
方法上,遥感估算植被覆盖度主要包括单波段法、多波段法、像元二分模型法以及机器学习法等。
单波段法通常利用植被在红光波段的反射低谷和近红外波段的反射高峰特性进行估算,方法简单易行,但精度相对较低。
多波段法则通过组合使用多个波段的信息,以提高估算精度,常用的有归一化植被指数(NDVI)等。
像元二分模型法是一种基于像元内植被和非植被信息分解的方法,其假设每个像元的光谱信息由植被和裸土两部分组成,通过模型运算可以分离出植被部分的信息,从而得到植被覆盖度。
这种方法在理论和实践上都具有较高的可靠性,是目前遥感估算植被覆盖度的主流方法之一。
植被覆盖度计算

《数字地球概论》第五次作业姓名:陈桃学号:201212340703一、单击桌面ENVI快捷方式打开ENVI软件,File—openexternal file—eos--modis打开modis数据。
如图:二、点击菜单栏basic tools—band math打开band math对话框,如图:三、在band math中的enter an expression中输入需要计算的公式,在这里以下面五个公式为例进行逻辑运算,分别为:(1)找出所有负值像元并用值-999代替它们,可以使用如下的波段运算表达式:(b1 lt 0)*(-999)+(b1 ge 0)* b1在这里b1可以自己选择,这里选择ndvi然后可以保存图像到指定的文件夹或者保存为memory,点击ok:点击ok,开始执行运算,如图:在窗口中打开运算的结果与原始的图像做对比,并做统计,如图:可以分析看出找出了所有的ndvi为负值的像元并有-999代替。
(2)可以将一幅图像的黑色背景变成白色背景:(b1 eq 0)*255 + (b1 gt 0)*b1打开band math对话框在里面输入公式,如图:点击ok,b1选择红光波段;如图:点击memory,ok 点击ok开始计算,如图:结果输出在窗口中显示,并与原来的图像做对比,统计分析,如图:将一幅图像的黑色背景变成白色背景(3)将某一波段中灰度值大于等于100的像元赋予10,其他的赋予20。
那么表达式就写为:(b1 ge 100)*20+(b1 lt 100)*10点击basic tools—band math打开band math对话框输入公式,如图:点击ok这里B1选择近红外,如图:点击ok点击ok 开始运算结果比较,统计分析,如图:点击basic tools—statistic,进行统计直方图:将某一波段中灰度值大于等于100的像元赋予10,其他的赋予20(4)。
植被覆盖度的遥感估算方法研究

植被覆盖度的遥感估算方法研究植被覆盖度是指地表植被在地球表面的覆盖比例,是地球生态系统的重要参数之一。
植被覆盖度的变化会影响到气候、土壤和水文等自然环境要素,因此对于生态保护、农业生产和环境监测等领域具有重要意义。
遥感技术具有大范围、快速、重复和经济的优势,是进行植被覆盖度估算的重要手段。
本文将介绍植被覆盖度遥感估算的相关理论、方法和应用现状,并详细阐述具体的估算方法、实验设计及结果分析。
植被覆盖度的遥感估算涉及到遥感图像处理、地学统计和生态学等多方面的知识。
目前,许多学者已经提出了多种估算方法,如直接计数法、归一化植被指数法、混合像元分解法等。
这些方法在不同程度上取得了成功,但也存在一定的局限性。
随着遥感技术的发展,尤其是高光谱、高空间分辨率和多时相遥感数据的广泛应用,对于植被覆盖度的估算精度和细化程度的要求也在不断提高。
进行植被覆盖度遥感估算所需要的数据主要包括卫星遥感图像、数字高程模型、气象数据等。
其中,卫星遥感图像是获取植被覆盖度信息的主要来源,包括多光谱和热红外图像等。
数字高程模型可以用于提取地形特征和计算植被覆盖度之间的关系。
气象数据则可以提供植被生长的相关信息,如辐射、气温和湿度等。
数据预处理主要包括图像校正、图像融合和图像增强等步骤,旨在提高遥感图像的质量和可读性,为后续的植被覆盖度估算提供可靠的基础。
估算模型和算法是进行植被覆盖度遥感估算的核心,主要包括以下几种:(1)直接计数法:通过统计图像中绿色植被的像素数量,计算植被覆盖度。
这种方法简单直观,但难以区分不同类型的植被。
(2)归一化植被指数法:通过计算植被指数与地表反射率之间的关系,估算植被覆盖度。
常用的植被指数包括NDVI、SAVI和EVI等。
这种方法能够较为准确地反映植被覆盖度,但容易受到大气条件和地表光照条件的影响。
(3)混合像元分解法:将遥感图像中的像元分解为植被和非植被两个部分,通过统计各部分的面积计算植被覆盖度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ENVI下植被覆盖度的遥感估算
植被覆盖度是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比。
容易与植被覆盖度混淆的概念是植被盖度,植被盖度是指植被冠层或叶面在地面的垂直投影面积占植被区总面积的比例。
两个概念主要区别就是分母不一样。
植被覆盖度常用于植被变化、生态环境研究、水土保持、气候等方面。
植被覆盖度的测量可分为地面测量和遥感估算两种方法。
地面测量常用于田间尺度,遥感估算常用于区域尺度。
目前已经发展了很多利用遥感测量植被覆盖度的方法,较为实用的方法是利用植被指数近似估算植被覆盖度,常用的植被指数为NDVI。
估算模型
目前已经发展了很多利用遥感测量植被覆盖度的方法,较为实用的方法是利用植被指数近似估算植被覆盖度,常用的植被指数为NDVI。
下面是李苗苗等在
像元二分模型的基础上研究的模型:
VFC = (NDVI - NDVIsoil)/ ( NDVIveg - NDVIsoil) (1)
其中, NDVIsoil 为完全是裸土或无植被覆盖区域的NDVI值,NDVIveg 则代表完全被植被所覆盖的像元的NDVI值,即纯植被像元的NDVI值。
两个值的计算公式为:
NDVIsoil=(VFCmax*NDVImin- VFCmin*NDVImax)/( VFCmax- VFCmin) (2)
NDVIveg=((1-VFCmin)*NDVImax- (1-VFCmax)*NDVImin)/( VFCmax- VFCmin) (3)
利用这个模型计算植被覆盖度的关键是计算NDVIsoil和NDVIveg。
这里有两种假设:
1)当区域内可以近似取VFCmax=100%,VFCmin=0%。
公式(1)可变为:
VFC = (NDVI - NDVImin)/ ( NDVImax - NDVImin) (4)
NDVImax 和NDVImin分别为区域内最大和最小的NDVI值。
由于不可避免存在噪声,NDVImax 和NDVImin一般取一定置信度范围内的最大值与最小值,置信度的取值主要根据图像实际情况来定。
2)当区域内不能近似取VFCmax=100%,VFCmin=0%
当有实测数据的情况下,取实测数据中的植被覆盖度的最大值和最小值作为VFCmax和 VFCmin,这两个实测数据对应图像的NDVI作为NDVImax 和NDVImin。
当没有实测数据的情况下,取一定置信度范围内的NDVImax 和NDVImin。
VFCmax和 VFCmin根据经验估算。
实现流程
下面我们以“当区域内可以近似取VFCmax=100%,VFCmin=0%”情况下,整个影像中NDVIsoil和NDVIveg取固定值,介绍在ENVI中实现植被覆盖度的计算方法。
使用的数据是经过几何校正、大气校正的TM影像。
(1)选择Transform->NDVI,利用TM影像计算NDVI。
(2)选择Basic Tools->Statistics ->Compute Statistics,在文件选择对话框
中,利用研究区地区的矢量数据生成的ROI建立一个掩膜文件。
选择统计文件及掩膜文件
计算统计参数
(3)得到研究区的统计结果。
在统计结果中,最后一列表示对应NDVI值
的累积概率分布。
我们分别取累积概率为5%和90%的NDVI值作为NDVImin和NDVImax。
这里得到:
NDVImax=0.522991
NDVImin=0.031766
统计结果
(4)根据公式(4),我们可以将整个地区分为三个部分:当NDVI小于
0.031766,VFC取值为0;NDVI大于0.522991,VFC取值为1;介于
两者之间的像元使用公式(4)计算。
利用ENVI主菜单->Basic
Tools->Band Math,在公式输入栏中输入:
(b1 lt 0.031766)*0+(b1 gt 0.522991)*1+(b1 ge 0.031766 and b1 le 0.522991)* ((b1-0.031766)/ (0.522991-0.031766)
b1:选择NDVI图像
(5)得到一个单波段的植被覆盖度图像文件,像元值表示这个像元内的平
均植被覆盖度。
在Display显示。
(6)选择Tools->Color Mapping->Density Slice,单击Clear Range按钮清除
默认区间。
(7)选择Opions->Add New Ranges,根据上面的对照表依次添加10个区
间,分别为每个区间设置一定的颜色,单击Apply得到如下的植被覆
盖图。
植被覆盖度遥感估算结果
其他情况下的操作流程基本类似。