实验7 移位相加硬件乘法器设计
EDA技术与Verilog_HDL(潘松)第6章习题答案

6-1 在Verilog设计中,给时序电路清零(复位)有两种不同方法,它们是什么,如何实现?答:同步清零、异步清零,在过程语句敏感信号表中的逻辑表述posedge CLK用于指明正向跳变,或negedge用于指明负向跳变实现6-2 哪一种复位方法必须将复位信号放在敏感信号表中?给出这两种电路的Verilog 描述。
答:异步复位必须将复位信号放在敏感信号表中。
同步清零:always @(posedge CLK) //CLK上升沿启动Q<=D; //当CLK有升沿时D被锁入Q异步清零:always @(posedge CLK or negedge RST) begin //块开始if(!RST)Q<=0; //如果RST=0条件成立,Q被清0else if(EN) Q<=D;//在CLK上升沿处,EN=1,则执行赋值语句end//块结束6-3 用不同循环语句分别设计一个逻辑电路模块,用以统计一8位二进制数中含1的数量。
module Statistics8(sum,A); output[3:0]sum;input[7:0] A;reg[3:0] sum;integer i;always @(A)beginsum=0;for(i=0;i<=8;i=i+1) //for 语句if(A[i]) sum=sum+1;else sum=sum;endendmodule module Statistics8(sum,A); parameter S=4;output[3:0]sum;input[7:0] A;reg[3:0] sum;reg[2*S:1]TA;integer i;always @(A)beginTA=A; sum=0;repeat(2*S)beginif(TA[1])sum=sum+1;TA=TA>>1;endendendmodulerepeat循环语句for循环语句module Statistics8(sum,A);parameter S=8;output[3:0]sum;input[7:0] A;reg[S:1] AT;reg[3:0] sum;reg[S:0] CT;always @(A) beginAT={{S{1'b0}},A}; sum=0; CT=S;while(CT>0) beginif(AT[1])sum=sum+1;else sum=sum;begin CT= CT-1; AT=AT>>1; end end endendmodule6-3 用不同循环语句分别设计一个逻辑电路模块,用以统计一8位二进制数中含1的数量。
移位相加8位硬件乘法器电路电子课程设计

移位相加8位硬件乘法器电路电子课程设计电子课程设计---移位相加8位硬件乘法器电路设计学院:电子信息工程学院班级: 通信071501姓名:许瀛指导老师:高文华2009年12月目录一.设计任务与要求 (2)二.总体框图 (3)三.选择器件 (4)四.功能模块 (5)五.总体设计电路图………………………………………………………………15六.心得体会 (17)移位相加8位硬件乘法起一、设计任务与要求设计一个乘法器的控制模块,接受实验系统上的连续脉冲,当给定启动/清零信号后,能自动发出CLK信号驱动乘法运算,当8个脉冲后自动停止。
设计一个纯组合电路的8X8等于16位的乘法器(选择不同的流水线方式),具体说明并比较这几种乘法器的逻辑资源占用情况和运行速度情况。
二、总体框图控制16位锁存器/分段8位右移1位乘8位加7段数码1、模块功能A、运算控制模块:控制电路的起始和终止。
B、8位右移寄存器:在时钟脉冲的作用下,高位寄存器的数码送给低位寄存器,作为低位寄存器的次态输出;每输入一个时钟脉冲,寄存器的数据就顺序向右移动一位。
C、1位乘法器:D、8位加法器:E、16位锁存器/右移寄存器:此设计是由八位加法器构成的以时序逻辑方式设计的八位乘法器,它的核心器件是八位加法器,所以关键是设计好八位加法器。
方案:由两个四位加法器组合八位加法器,其中四位加法器是四位二进制并行加法器,它的原理简单,资源利用率和进位速度方面都比较好。
综合各方面的考虑,决定采用方案二。
2、设计思路:纯组合逻辑构成的乘法器虽然工作速度比较快,但过于占用硬件资源,难以实现宽位乘法器,由八位加法器构成的以时序逻辑方式设计的八位乘法器,具有一定的实用价值,而且由FPGA 构成实验系统后,可以很容易的用ASIC大型集成芯片来完成,性价比高,可操作性强。
其乘法原理是:乘法通过逐项移位相加原理来实现,从被乘数的最低位开始,若为1,则乘数左移后与上一次的和相加;若为0,左移后以全零相加,直至被乘数的最高位。
四位硬件乘法器

四位硬件乘法器一、实验目的:1、学习移位相加时序式乘法器的设计方法2、学习层次化设计方法3、学习原理图调用VHDL模块方法4、熟悉EDA仿真分析方法二、实验原理:乘法器的原理是,乘法通过逐项移位相加原理来实现,从被乘数的最地位开始,若为1,则乘数左移后与上一次的和相加;若为0,左移后以全零相加,直至被乘数的最高位。
ARICTL是乘法运算控制电路,它的START信号的上升沿与高电平有两个功能,即16位寄存器清0和被乘数A向移位寄存器SREG加载;它的低电平则作为乘法使能信号CLK位乘法时钟信号,被乘数加载于4位右移寄存器SREG 后,在时钟同步下由低位至高位逐位移出,当其为1时,与门ANDARITH打开,4位乘数B在同一节拍进入4位加法器,与上一节拍锁存在16位锁存器REG的高4位进行相加,其和在下一时钟节拍的上升沿被锁进此锁存器;而当被乘数的移出位为0时,与门全0输出。
如此往复,直至4个时钟脉冲后,乘法运算过程中止,此时REG的输出值即最后乘积。
三、实验设备:计算机一台操作系统:WINDOWS XP软件:ispDesignEXPERT System四、实验步骤:1、4位右移寄存器SREGLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY SREG ISPORT(EN:IN STD_LOGIC;CLK: IN STD_LOGIC;LOAD:IN STD_LOGIC;DIN: IN STD_LOGIC_VECTOR(3 DOWNTO 0);QB: OUT STD_LOGIC);END SREG;ARCHITECTURE ART1 OF SREG ISSIGNAL REG:STD_LOGIC_VECTOR(3 DOWNTO 0); BEGINPROCESS(CLK,LOAD)BEGINIF CLK'EVENT AND CLK='1'THENIF LOAD='1'THEN REG<=DIN;ELSEREG(2 DOWNTO 0)<=REG(3 DOWNTO 1);END IF;END IF;END PROCESS;QB<=REG(0);END ART1;2、4位加法器ADDERLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY ADDER ISPORT(CIN:IN STD_LOGIC_VECTOR;B,A:IN STD_LOGIC_VECTOR(3 DOWNTO 0);S: OUT STD_LOGIC_VECTOR(4 DOWNTO 0);COUNT:OUT STD_LOGIC_VECTOR);END ADDER;ARCHITECTURE ART2 OF ADDER ISBEGINS<='0'&A+B;END ART2;3、选通与门模块ANDARITHLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY ANDARITH ISPORT(ABIN:IN STD_LOGIC;DIN: IN STD_LOGIC_VECTOR(3 DOWNTO 0);DOUT:OUT STD_LOGIC_VECTOR(3 DOWNTO 0)); END ANDARITH;ARCHITECTURE ART3 OF ANDARITH ISBEGINPROCESS(ABIN,DIN)BEGINFOR I IN 0 TO 3 LOOPDOUT(I)<=DIN(I) AND ABIN;END LOOP;END PROCESS;END ART3;4、锁存器REGLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY REG ISPORT(CLK,CLR,EN:IN STD_LOGIC;D: IN STD_LOGIC_VECTOR(4 DOWNTO 0);Q: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); END REG;ARCHITECTURE ART4 OF REG ISSIGNAL R8S:STD_LOGIC_VECTOR(7 DOWNTO 0);BEGINPROCESS(CLK,CLR)BEGINIF CLR='1'THEN R8S<=(OTHERS=>'0');ELSIF CLK'EVENT AND CLK='1'THENR8S(2 DOWNTO 0)<=R8S(3 DOWNTO 1);R8S(7 DOWNTO 3)<=D;END IF;END PROCESS;Q<=R8S;Q1<=R8S(7 DOWNTO 4);Q2<=R8S(3 DOWNTO 0);END ART4;5、运算控制器ARICTLLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY ARICTL ISPORT(CLK: IN STD_LOGIC;START: IN STD_LOGIC;CLKOUT: OUT STD_LOGIC;RSTALL: OUT STD_LOGIC;ARIEND: OUT STD_LOGIC);END ENTITY ARICTL;ARCHITECTURE ART5 OF ARICTL ISSIGNAL CNT:STD_LOGIC_VECTOR(3 DOWNTO 0); BEGINRSTALL<=START;PROCESS(CLK,START) ISBEGINIF START='1'THEN CNT<="0000";ELSIF CLK'EVENT AND CLK='1'THENIF CNT<4 THENCNT<=CNT+1;END IF;END IF;END PROCESS;PROCESS(CLK,CNT,START) ISBEGINIF START='0'THENIF CNT<4 THENCLKOUT<=CLK;ARIEND<='0';ELSE CLKOUT<='0';ARIEND<='1';END IF;ELSE CLKOUT<=CLK;ARIEND<='0';END IF;END PROCESS;END ARCHITECTURE ART5;6、顶层原理图。
数字电路实验 乘法器

部分积移位相加乘法器算法
结论:
1、该算法共有四个重复运算周期
2、每个周期共有三步运算 a、求得Ni与M的乘积
b、将Ni与M的乘积与前一个周期右移的部分积之和相加
c、将第二步的结果右移一位得到新的部分积之和一个周期右移后的部分积之和相加。 触发器:加法器相加过程中会出现超过4bit的进位位,需将进位 位 通过触发器先寄存,然后通过移位寄存器的右输入端送入移 位寄存器。
控制器:接收时钟信号和乘法器开始运行的启动命令信号,向A, B两个移位寄存器发出清零、移位、保持(停止移位)等各种命 令信号。
1×4bit乘法器:实现Ni与M的乘积。
设备与器材
(1)电路与数字实验箱 (2)直流稳压电源 (3)万用表 (4)主要器材 YB3262型 DF1701S MF78 74LS194 74LS00 74LS283 74LS08 74LS160 74LS74 1台 1台 1只 2片 1片 1片 1片 1片 1片
移位相加8位硬件乘法器电路计

电子技术课程设计----移位相加8位硬件乘法器电路计学院: 华科学院专业: 通信工程班级:通信052201H姓名: 张茹学号:200522080122指导教师:柴婷婷2007年12月30日一,设计任务与要求--------------------(3)1,内容2,要求二,总体框图---------------------------(3)1,电路的总体框图2,框图的说明3,设计思路4,方案设计三,选择器件与功能模块-----------------(5)1,选择器件各功能模块及功能说明四,功能模块----------------------------(8)1,ADDER8B的模块2,ANDARITH的模块3,ARICTL的模块4,REG16B的模块5,SREG8B的模块五,总体设计电路图----------------------(14)1,总体原理图2,仿真波形图3,管脚分配图4,硬件验证情况六,心得体会--------------------------------------(18)移位相加8位硬件乘法器一.设计任务与要求1.内容: 由8位加法器构成的以时序逻辑方式设计的8位乘法器乘法通过逐向移位加原理来实现,从被乘数的最低位开始,若为1,则乘数左移与上一次和相加;若为0,左移后以全零相加,直至被乘数的最高位。
2.要求: (1) 重点掌握VHDL设计电路模块(2)在掌握8位加法器设计的基础上,进一步掌握8×8位乘法器的设计;(3)进一步学习开发系统,掌握MAX+PLUS II的设计流程。
二.总体框图(电路的总体框图)1,说明:此电路由五部分组成2,它们分别是控制器,锁存器,寄存器,乘法器,加法器。
1控制器是一个乘法器的控制模块,用来接受实验系统上的连续脉冲。
2锁存器起锁存的作用,它可以锁存8位乘数。
3移位寄存器起移位的作用,便于被乘数可以逐位移出。
4乘法器功能类似一个特殊的与非门。
乘除法运算器的设计EDA乘除法器实验报告

实验报告实验二:乘除法运算器的设计实验二加减法运算器的设计一、实验目的1、掌握移位加算法设计乘法运算单元的基本思想2、掌握阵列算法乘法运算单元的设计方法3、掌握基于状态机的乘法运算单元的设计方法4、掌握基于宏模块的乘除法运算器的设计方法二、实验任务1、完成一个基于阵列的4位无符号乘法运算器的设计;2、完成一个基于移位加原理,用状态机实现的4位无符号乘法运算器的设计;3、用宏模块的方法实现一个4位无符号乘法器;4、完成一个BOOTH算法的带符号数乘法运算器的设计(选作)。
5、完成一个除法运算器的设计(选作)。
三、实验仪器及设备:一、PC机二、QuartusⅡ9.0 三、DE2-70 四、显示器四、实验步骤1 编写VERILOG代码2功能仿真进行分析与综合,排除语法上的错误建立波形仿真文件,输入激励生成功能仿真网表进行功能仿真,观察输出结果3选择器件DE2_115开发板的使用者请选择CYCLONE IV 4CE115 4绑定管脚5 下载验证DE2_115开发板的下载:使用USB-Blaster进行下载五、设计过程详细描述1、程序源码2、仿真测试文件3、功能仿真图4、功能描述输入dataa,datab,将两者相乘result输出。
五、实验心得通过本次计算机组成原理的课程设计,我们了解了乘法法器的基本工作原理和一些基本概念,如:移位相加为乘法。
同时,在查找源代码错误的过程中,我们体会到了编写代码要有严谨的态度,否则会让一些细节方面的错误影响整个功能的实现,因为细节方面的问题是很难察觉的。
六、实验结论乘除法是通过不停的移位将两数相加所得出正确的乘积的,只需将高位的左一即可。
七、实验思考题比较不同算法实现的乘法器,其运算速度和资源消耗情况。
移位相加有周期间隔,速度较慢,而并行进位相加无时间间隔,可以立马得到答案。
乘法器实验报告

乘法器实验报告乘法器实验报告引言:乘法器是计算机中常用的一种算术逻辑单元,用于实现多位数的乘法运算。
在计算机的运算过程中,乘法运算是十分常见的,因此乘法器的设计和性能对计算机的整体性能具有重要影响。
本实验旨在通过设计和实现一个乘法器电路,探究其工作原理和性能。
一、乘法器的原理乘法器是一种复杂的电路,其主要功能是将两个输入数相乘,并输出乘积。
乘法器的实现方式有很多种,其中常用的有布斯乘法器和Wallace树乘法器等。
布斯乘法器是一种逐位相乘并累加的方法,而Wallace树乘法器则采用了并行计算的思想,能够提高计算速度。
二、乘法器的设计与实现本实验中,我们采用了布斯乘法器的设计方法。
首先,我们需要将输入的两个乘数进行分解,将每个乘数分解为若干个位数和权重的乘积。
然后,通过逐位相乘并累加的方法,得到最终的乘积。
乘法器的设计需要考虑到位数的扩展和进位的处理,以确保计算的准确性和稳定性。
三、乘法器的性能评估在设计乘法器的过程中,我们需要考虑到其性能指标,如计算速度和资源占用等。
计算速度是指乘法器完成一次乘法运算所需的时间,而资源占用则是指乘法器所需要的硬件资源数量。
在实验中,我们通过测试乘法器在不同位数和输入数据下的计算速度和资源占用情况,来评估其性能。
四、乘法器的应用领域乘法器在计算机科学和工程领域有着广泛的应用。
在计算机芯片设计中,乘法器是必不可少的组件之一。
乘法器的性能和效率直接影响到计算机的整体性能。
此外,在信号处理、图像处理和通信系统中,乘法器也扮演着重要的角色。
因此,对乘法器的研究和优化具有重要的意义。
结论:通过本次实验,我们了解了乘法器的原理、设计和性能评估方法。
乘法器作为一种常见的算术逻辑单元,对计算机的性能具有重要影响。
在今后的学习和研究中,我们将进一步探索乘法器的优化和应用,以提高计算机的整体性能。
注:本实验报告仅为虚拟写作,实际内容仅供参考,不涉及实际实验操作。
运算器移位运算实验报告

运算器移位运算实验报告大家好,今天我们来聊聊运算器移位运算。
移位运算,听起来是不是有点高深,其实它就是把二进制数里的位数往左或者往右移动。
就好比你把手里的糖果往一边推,推得越远,糖果就越少,推的方向不同,糖果的分布也会变。
想象一下,如果你有一个二进制数“1011”,往左移一位,就变成“0110”,简单吧?这就像把一块蛋糕切成两半,左右两边都有不同的口感。
移位运算有两种主要方式,分别是逻辑移位和算术移位。
逻辑移位就像是清理桌面,把不需要的东西往边上推,留出更多空间。
比如说,把“0001”逻辑右移一位,结果是“0000”,因为我们把那个“1”给推掉了。
而算术移位就更像是做数学题,保持符号位不变。
比如把“1111”右移一位,结果变成“1111”,这边的“1”继续留在那儿,就像是有个坚强的队友,没让他离开。
移位运算的意义是什么呢?这可是大有来头!在计算机里,运算器用移位运算来做乘法和除法。
这种方式效率高得惊人。
想象一下,你要把10乘以2,普通方法得一笔一划地加,耗时又费力;可如果用移位运算,你只需把“10”左移一位,就直接变成了“100”,这可是速度与激情的完美结合。
简直是搬家时一挥而就,省时省力。
移位运算也有一些小技巧和注意事项。
比如说,左移一位相当于乘以2,而右移一位则相当于除以2。
这时候,很多小伙伴可能会想,哎,这不是太简单了吗?简单的背后往往有深意。
比如在处理负数时,算术右移就很有必要了,得考虑符号位,不然就像走路没看路,容易摔跤。
聪明的小伙伴们可别忘了这一点哦。
在实验过程中,我们用了一些工具来帮助我们实现这些操作。
比如说,运算器和一些编程软件,这些工具就像是我们实验室里的“小助手”。
每次移位运算之后,看到结果在屏幕上瞬间出现,心里那种满足感简直不要太好。
就像把新买的零食打开,一口下去,幸福感爆棚!我们还做了些小实验,看看不同的移位运算会有什么不同的结果。
有时我们故意用一些边界值,比如说全是“1”的数,结果每次操作都能引发“哇”的一声惊叹。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乘法器是基本运算之一,广泛用在数字信号处 理中,滤波器中乘法运算必不可少。 在我们用语言设计电路时,初学时在设计乘法 运算时通常很简单的用*操作,但是这种方法 谈不上设计乘法器,其最终的硬件实现要根据 综合器综合的结果,好的综合器可以综合出想 要的结果,但是实际上这种粗放的设计通常得 到的都是劣等的乘法运算,无法满足对乘法速 率的要求。 在滤波电路中要求数据串行进入接着进行大量 的乘法运算,当所设计的乘法器的速度小于数 据进入的速度的时候就会导致出错。
一位乘法器设计,A的每一位均需和B的每一位相 乘
• A的某一位用8位移位寄存器用7个时钟串行输出
always@(posedge clk or posedge load) begin if(load) reg8<=A; else reg8[6:0]<=reg8[7:1]; end assign qb=reg8[0];
• A的某一位和B中的每一位相乘,for循环语句
for(i=0;i<=7;i=i+4'b1) dout[i]<=B[i]&abin;
循环语句(for语句)
for语句的语法格式为
for (循环初始值设置表达式; 循环控制条件表达式;循 环控制变量增值表达式)
begin 循环体语句结构; end
“循环控制变量增值表达式”的值如果不随循环而改 变,或导致循环次数过大,对于综合来说都将导致 顶层设计的原理图和仿真波形;
移位相加乘法器_组合电路
移位相加乘法器_组合电路
三目运算符:r=s?t:u // ?: 是一个三目条件运算符, s,t,u是操作数,语句意思:当s为真时,将t赋值给r, 否则,将u赋值给r
移位相加乘法器_组合电路
移位相加乘法器-加法树式
移位相加乘法器-加法树式
移位相加乘法器-时序电路
根据乘法器的运算规律,得知:
移位相加乘法器-时序电路
移位相加乘法器-时序电路
基于时序电路的移位相加乘法器8位移位寄存器
基于时序电路的移位相加乘法器1位乘法器
基于时序电路的移位相加乘法器8位加法器
基于时序电路的移位相加乘法器16位移位寄存器
提高要求-控制器设计
移位相加乘法器-时序电路
实验报告
要求:
写出基于时序的8位硬件乘法器的设计原理; 在关键语句后面注释出其表达的含义; 每个模块的代码和仿真波形; 顶层设计的原理图和仿真波形; 硬件验证过程。
乘法器设计-乘号
乘法器设计-乘号
移位相加乘法器_组合电路
循环语句(for语句)
for语句的语法格式为
for (循环初始值设置表达式; 循环控制条件表达式;循 环控制变量增值表达式)
begin 循环体语句结构; end
“循环控制变量增值表达式”的值如果不随循环而改 变,或导致循环次数过大,对于综合来说都将导致 设计失败。
移位相加乘法器-时序电路
根据乘法器的运算规律,得知:
移位相加_16位移位寄存器
• 高位依次左移意味着低位对于高位依次右移 • A[i-1]*B的积与A[i]*B的积相比,右移一位。
reg16[6:0]<=reg16[7:1]; q[15:7]<=d[8:0] 移位相加_8位二进制加法器
A[i-1]*B+ A[i]*B (对 A[i-1]*B来说,右移1位相加A[i]*B ) d[8:0]<=q[15:8]+B[7:0]