移位相加8位乘法器的设计

合集下载

EDA实验--8位二进制乘法电路

EDA实验--8位二进制乘法电路

EDA数字系统设计实验——8位二进制乘法电路学院:电子工程学院学号:0210****姓名:***8位二进制乘法电路1.选题目的:通过八位二进制乘法器设计实验,进一步熟悉VHDL语言的电路设计,及数字电路的基本知识,为以后进一步在数字电路学习上奠定基础。

2.设计要求8位二进制乘法采用移位相加的方法。

即用乘数的各位数码,从低位开始依次与被乘数相乘,每相乘一次得到的积称为部分积,将第一次(由乘数最低位与被乘数相乘)得到的部分积右移一位并与第二次得到的部分积相加,将加得的和右移一位再与第三次得到的部分积相加,再将相加的结果右移一位与第四次得到的部分积相加。

直到所有的部分积都被加过一次。

例如:被乘数(M7M6M5M4M3M2M1M0)和乘数(N7N6N5N4N3N2N1N0)分别为11010101和10010011,其计算过程如下:1 1 0 1 0 1 0 1× 1 0 0 1 0 0 1 11 1 0 1 0 1 0 1 N0与被乘数相乘的部分积,部分积右移一位1 1 0 1 0 1 0 1 N1与被乘数相乘的部分积+ 1 1 0 1 0 1 0 11 0 0 1 1 1 1 1 1 11 0 0 1 1 1 1 1 1 1 两个部分积之和,部分积之和右移一位+ 0 0 0 0 0 0 0 0 N2与被乘数相乘的部分积0 1 0 0 1 1 1 1 1 1 10 1 0 0 1 1 1 1 1 1 1 与前面部分积之和相加,部分积之和右移一+ 0 0 0 0 0 0 0 0 N4与被乘数相乘的部分积· · ·· · · N7与被乘数相乘的部分积+ 1 1 0 1 0 1 0 11 1 1 1 0 1 0 0 1 0 0 1 1 1 1 与前面部分积之和相加0 1 1 1 1 0 1 0 0 1 0 0 1 1 1 右移一位得到最后的积为了实现硬件乘法器,根据上面的乘法的计算过程可以得出3点:一是只对两个二进制数进行相加操作,并用寄存器不断累加部分积;而是将累加的部分积左移(复制的被乘数不移动);三是乘数的对应位若为0时,对累加的部分积不产生影响(不操作)。

8位乘法器的设计

8位乘法器的设计

本科生毕业论文(设计)8位乘法器的设计姓名:指导教师:院系:信息工程学院专业:计算机科学与技术提交日期: 2010/4/30目录中文摘要 (2)外文摘要 (3)1.绪论 (4)1.1概述 (4)1.2 VHDL和MAX+PIUS简介 (5)1.3 实验平台 (6)2.乘法器初步设计 (7)2.1 设计思想 (7)2.2乘法器原理 (7)2.3乘法器设计流程 (8)3. 乘法器具体设计 (9)3.1右移寄存器的设计 (9)3.2 加法器模块的设计 (10)3.2.1 4位加法器的设计 (10)3.2.2 8位加法器的设计 (11)3.3 乘1模块设计 (13)3.4锁存器模块设计 (14)4. 乘法器仿真 (17)4.1 8位加法器仿真 (17)4.2 乘1模块仿真 (17)4.3 锁存器模块仿真 (18)4.4 8位乘法器仿真 (18)结束语 (19)参考文献 (20)致谢 (21)8位乘法器的设计摘要:在微处理器芯片中,乘法器是进行数字信号处理的核心,同时也是微处理器中进行数据处理的关键部件,它已经是现代计算机必不可少的一部分。

本文主要是在于如何运用标准硬件描述语言(VHDL)完成八位乘法器,以及如何做二进制位相乘的运算过程。

该乘法器是由八位加法器构成的以时序方式设计八位乘法器,通过逐项移位相加来实现乘法功能,并以MAX+Plus II 软件工具进行模拟,仿真并予以显示。

关键字:乘法器;标准硬件描述语言(VHDL);移位相加;MAX+Plu s II8-bit multiplier designAbstract:In the microprocessor chip, the multiplier is a digital signal processing core microprocessor is also a key component of data processing, it is already an essential part of the modern computer. This article is on how to use standard hardware description language (VHDL) to complete eight multipliers, as well as how to make the process of a binary bit multiplication operation. The multiplier is composed of eight adder to timing approach in designing eight multiplier, achieved by adding the multiplication-by-shift function, and in MAX + Plus II software tools for simulation, emulation and be displayed.Keywords: multiplier; standard hardware description language (VHDL); shift sum; MAX + Plus II1.绪论1.1概述本课题的设计来源是基于标准硬件描述语言(Very High Speed Integrated Circuit Hardware Description Language,VHDL)及MAX + Plus II(Multiple Array Matrix Programmable Logic User System)软件开发工具的进行模拟仿真的8位乘法器,用于实现8位移位相加乘法器的乘法运算功能。

移位相加8位硬件乘法器电路电子课程设计

移位相加8位硬件乘法器电路电子课程设计

移位相加8位硬件乘法器电路电子课程设计电子课程设计---移位相加8位硬件乘法器电路设计学院:电子信息工程学院班级: 通信071501姓名:许瀛指导老师:高文华2009年12月目录一.设计任务与要求 (2)二.总体框图 (3)三.选择器件 (4)四.功能模块 (5)五.总体设计电路图………………………………………………………………15六.心得体会 (17)移位相加8位硬件乘法起一、设计任务与要求设计一个乘法器的控制模块,接受实验系统上的连续脉冲,当给定启动/清零信号后,能自动发出CLK信号驱动乘法运算,当8个脉冲后自动停止。

设计一个纯组合电路的8X8等于16位的乘法器(选择不同的流水线方式),具体说明并比较这几种乘法器的逻辑资源占用情况和运行速度情况。

二、总体框图控制16位锁存器/分段8位右移1位乘8位加7段数码1、模块功能A、运算控制模块:控制电路的起始和终止。

B、8位右移寄存器:在时钟脉冲的作用下,高位寄存器的数码送给低位寄存器,作为低位寄存器的次态输出;每输入一个时钟脉冲,寄存器的数据就顺序向右移动一位。

C、1位乘法器:D、8位加法器:E、16位锁存器/右移寄存器:此设计是由八位加法器构成的以时序逻辑方式设计的八位乘法器,它的核心器件是八位加法器,所以关键是设计好八位加法器。

方案:由两个四位加法器组合八位加法器,其中四位加法器是四位二进制并行加法器,它的原理简单,资源利用率和进位速度方面都比较好。

综合各方面的考虑,决定采用方案二。

2、设计思路:纯组合逻辑构成的乘法器虽然工作速度比较快,但过于占用硬件资源,难以实现宽位乘法器,由八位加法器构成的以时序逻辑方式设计的八位乘法器,具有一定的实用价值,而且由FPGA 构成实验系统后,可以很容易的用ASIC大型集成芯片来完成,性价比高,可操作性强。

其乘法原理是:乘法通过逐项移位相加原理来实现,从被乘数的最低位开始,若为1,则乘数左移后与上一次的和相加;若为0,左移后以全零相加,直至被乘数的最高位。

基于FPGA的8位移位相加型硬件乘法器的设计

基于FPGA的8位移位相加型硬件乘法器的设计

基于FPGA的8位移位相加型硬件乘法器的设计作者:张建妮来源:《智能计算机与应用》2014年第04期摘要:乘法器是数字信号处理中非常重要的模块。

本文首先介绍了硬件乘法器的原理,在此基础上提出了硬件乘法器的设计方法,最后再利用EDA技术,在FPGA开发平台上,通过VHDL编程和图形输入对其进行了实现,具有实用性强、性价比高、可操作性强等优点。

关键词:硬件乘法器;加法器; VHDL中图分类号:TP2 文献标识码:A文章编号:2095-2163(2014)04-0087-04Abstract:Multiplier is very important in digital signal processing module. In this paper, the principle of the hardware multiplier is introduced at first. Based on it, a design method is put forward.Finally , using EDA technology,the hardware -multiplier is implemented through VHDL programming combining with the input mode of schematic diagram on the FPGA development platform. The design has strong practicability ,high cost-effective, strong operability, etc.Key words:Hardware-Multiplier; Adder; VHDL0引言在数字信号处理中,经常会遇到卷积、数字滤波、FFT等运算,而在这些运算中则存在大量类似ΣA(k)B(n-k)的算法过程。

因此,乘法器是数字信号处理中必不可少的一个模块。

中山学院EDA综合实验报告-8位硬件乘法器设计

中山学院EDA综合实验报告-8位硬件乘法器设计
三、实验结论与心得
在实验老师的指导下,我圆满完成了实验任务,有了不少收获,其中了解到了移位相加原理构成乘法器与用组合逻辑电路直接设计的同样功能的电路优势,并且在加深了如何通过VerilogHDL生成原理图器件并进行相应仿真,最后学习了应用移位相加原理设计8位乘法器。
3、ADDER8BT的仿真图及分析
如图所示,红色剪头表示8+11=19,绿色剪头表示8+9=17,紫色剪头表示8+9+1=18,这说明S=A+B+CIN。
4、完整乘法器的仿真图及分析
如图所示,红色剪头表示外部按键START按下(给SREG8BT的LOAD高电平)时给ARIEND一个高电平输出,绿色剪头处的Q为31104,而31104<<1结果为0xF300,此处最高位为0xF3,即相乘的结果为0xF3,这里表示B的数值0xF3乘以A的数值0xC8第4位再加上前3位的结果,因为前3位相乘后的结果为0,因此这里相乘的结果为0xF3,紫色剪头也是同理。
如图所示,在第一个2,此时输出Q=1536,其二进制表示为0000 0110 0000 0000,由VerilogHDL代码可知R16S[6:0]<=R16S[7:1]即R16S[6:0] = 0,R16S[15:7] = 12,此结果与Q输出结果一致绿色剪头与紫色剪头也是同理。
学生实验报告
系别
电子信息学院
课程名称
《EDA综合实验》
班级
实验名称
8位硬件乘法器设计
姓名
实验时间
学号
指导教师
成绩
批改时间
报告内容
一、实验目的和任务
1、学习应用移位相加原理设计8位乘法器。
2、了解移位相加原理构成乘法器与用组合逻辑电路直接设计的同样功能的

基于FPGA的8位移位相加型硬件乘法器的设计

基于FPGA的8位移位相加型硬件乘法器的设计

作速度 比较快 ,但 当乘 法器 位数 比较 多时 ,硬件 资源 耗费 也 但在实际执行过程 中,一是每个部分积 的宽度和移 位相加 的
较大 ,同时会 产 生传输 延 时 和进位 延 时。而基 于 PLD外 接 有效宽度都为 Ⅳ位 ,从资源 的利 用率角 度考 虑 ,仅需 Ⅳ位宽
ROM九九表 的乘 法 器却 无法 构 成 单片 系统 ,实用 性 编弱 。 为此 ,本 文将 介绍一 种基 于 FPGA8位移 位相 加 型硬 件乘 法 器 的设计方法 ,藉此乘法器 的实用性 获得 了较大提升 。同时
运算 ,而在这些运算 中则存 在大量类似 ∑A(k)B(n—k)的算 法过程 。因此 ,乘 法器是数字信号处理 中必不可少 的一个模
应 的乘 积位 。这些局 部乘 积左 移一位 与上 次 的和相 加。即 从 乘数 的最低位开始 ,若其 为 I,则 被乘数左移一位并与上一 次 的 和 相 加 ;若 为 0,左 移 后 以 全 零 相 加 ,如 此 循 环 至 乘 数 的 最 高 位 。
关键 词 :硬件乘法器 ;加法器 ;VHDL
中图分类号 : TP2
文献标 识码 : A
文章编号 :2095—2163(2014)04~0087—04
The Design of Hardware-—M ultiplier with 8 bit based on FPGA
ZHANG Jianni
development platform.The design has strong practicability ,high cost—efective,strong operability,ete.
Key words:Hardware— Multiplier;Adder;VHDL

ASIC系统设计实验报告八位乘法器

ASIC系统设计实验报告八位乘法器

八位乘法器的设计汪明 2080130204 信号与信息处理 乘法是算术运算中经常用到的一个运算单元,所以在算法实现中会经常用到乘法。

由于乘法器具有一定的复杂性,考虑到面积等因素,很多传统的处理器中都不包含乘法器单元,乘法则是通过算法换算成加法和移位在处理器中进行实现,针对这些处理器编写程序的时候应尽量少的应用乘法运算。

随着DSP 技术的逐步发展,目前大多数高性能的处理器中都包含了乘法器运算单元,但仍有很多小型的控制型处理器不包含这一单元,所以设计面积小、速度快、性能稳定的乘法器模块仍然很有意义。

本实验的目的是选用一种设计方案设计一个八位乘法器,利用XINLINX ISE 软件进行VHDL 程序的编写,然后对程序进行仿真验证,并对所设计的乘法器进行评价。

1 原理分析与方案选择乘法器的设计有多种方案,有模拟乘法器、数字乘法器两种类型,前者主要是利用模拟器件对模拟信号进行乘法的设计,复杂度较高,后者则是通过数字器件来实现数字信号的乘法。

本实验利用FPGA 设计数字乘法器件,根据数字信号的乘法运算准则,又有串行和并行两种设计方法,串行设计时被乘数从低位到高位串行输入,乘法结果从低位到高位串行输出,其常用的结构(四位乘法器)如下图(1)所示;并行乘法器的输入/输出采用并行的方式,通常情况下计算性能比串行的好。

图1 四位串行乘法器结构本文采用并行输入/输出方式来进行乘法器的设计。

下面以4位二进制数的乘法为例,对二进制乘法运算的过程(图2示)进行说明。

由图2可知,如果对中间部分一行一行的处理,则乘法部分由一个个的2输入与门与二输入全加器组成,将这些结构联合在一起组成如图3所示的结构。

)0()1()2()3()4()5()6()7(0313233302122232011121310010203001230123pro pro pro pro pro pro pro pro b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a a a a a b b b b ----------------------------------------+••••+••••+••••••••⨯K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K 图2 四位二进制乘法过程图3 四位二进制乘法结构图从图3可以看出,上述结构中顶层、底层、中间层分别采用不同的结构,而且中间层的三个层结构完全相同。

移位相加8位硬件乘法器电路计

移位相加8位硬件乘法器电路计

电子技术课程设计----移位相加8位硬件乘法器电路计学院: 华科学院专业: 通信工程班级:通信052201H姓名: 张茹学号:200522080122指导教师:柴婷婷2007年12月30日一,设计任务与要求--------------------(3)1,内容2,要求二,总体框图---------------------------(3)1,电路的总体框图2,框图的说明3,设计思路4,方案设计三,选择器件与功能模块-----------------(5)1,选择器件各功能模块及功能说明四,功能模块----------------------------(8)1,ADDER8B的模块2,ANDARITH的模块3,ARICTL的模块4,REG16B的模块5,SREG8B的模块五,总体设计电路图----------------------(14)1,总体原理图2,仿真波形图3,管脚分配图4,硬件验证情况六,心得体会--------------------------------------(18)移位相加8位硬件乘法器一.设计任务与要求1.内容: 由8位加法器构成的以时序逻辑方式设计的8位乘法器乘法通过逐向移位加原理来实现,从被乘数的最低位开始,若为1,则乘数左移与上一次和相加;若为0,左移后以全零相加,直至被乘数的最高位。

2.要求: (1) 重点掌握VHDL设计电路模块(2)在掌握8位加法器设计的基础上,进一步掌握8×8位乘法器的设计;(3)进一步学习开发系统,掌握MAX+PLUS II的设计流程。

二.总体框图(电路的总体框图)1,说明:此电路由五部分组成2,它们分别是控制器,锁存器,寄存器,乘法器,加法器。

1控制器是一个乘法器的控制模块,用来接受实验系统上的连续脉冲。

2锁存器起锁存的作用,它可以锁存8位乘数。

3移位寄存器起移位的作用,便于被乘数可以逐位移出。

4乘法器功能类似一个特殊的与非门。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EDA技术课程大作业设计题目:移位相加8位乘法器的设计院系:电子信息与电气工程学院学生姓名:学号:200902070017专业班级:09电子信息工程专升本2010年12月3日移位相加8位乘法器的设计1.设计背景和设计方案1.1设计背景EDA技术(即Electronic Design Automation技术)就是依赖强大的计算机,在EDA工具软件平台上,对以硬件描述语言HDL(Hardware Ddscription Langurage)为系统逻辑描述手段完成的设计文件,自动地完成逻辑编译、化简、分割、综合、布局布线以及逻辑优化和仿真测试,直至实现既定的电子线路系统功能。

它在硬件实现方面融合了大规模集成电路制造技术、IC版图设计、ASIC 测试和封装、FPGA(Gield Peogrammable Gate Array)/CPLD(Complex Programmable Logic Device)编程下载和自动测试等技术;在计算机辅助工程方面融合了计算机辅助设计(CAD),计算机辅助制造(CAM),计算机辅助测试(CAT),计算机辅助工程(CAE)技术以及多种计算机语言的设计概念;而在现代电子学方面则容纳了更多的内容,如电子线路设计理论、数字信号处理技术、数字系统建模和优化技术及长线技术理论等。

本文介绍设计一个两个5位数相乘的乘法器。

用发光二极管显示输入数值,用7段显示器显示十进制结果。

乘数和被乘数分两次输入。

在输入乘数和被乘数时,要求显示十进制输入数据。

输入显示和计算结果显示,采用分时显示方式进行,可参见计算器的显示功能1.2设计方案此设计是由八位加法器构成的以时序逻辑方式设计的八位乘法器,它的核心器件是八位加法器,所以关键是设计好八位加法器。

方案一:八位直接宽位加法器,它的速度较快,但十分耗费硬件资源,对于工业化设计是不合理的。

方案二:由两个四位加法器组合八位加法器,其中四位加法器是四位二进制并行加法器,它的原理简单,资源利用率和进位速度方面都比较好。

综合各方面的考虑,决定采用方案二。

该乘法器是由8位加法器构成的以时序方式设计的8位乘法器。

其乘法原理是乘法通过逐项移位相加原理来实现,从被乘数的最低位开始,若为1,则乘数左移后与上一次的和相加;若为0,左移后以全零相加,直至被乘数的最高位。

从图(一)的原理图及乘法操作时序图图(二)上可以清楚地看出此乘法器的工作原理。

图(一)中,START信号的上跳沿及其高电平有两个功能,即16位寄存器清零和被乘数A[7..0]向移位寄存器SREG8B加载;它的低电平则作为乘法使能信号。

CLK为乘法时钟信号。

当被乘数被加载于8位右移寄存器SREG8B后,随着每一时钟节拍,最低位在前,由低位至高位逐位移出。

当为1时,1位乘法器ANDARITH打开,8位乘数B[7..0]在同一节拍进入8位加法器,与上一次锁存在16位锁存器REG16B中的高8位进行相加,其和在下一时钟节拍的上升沿被锁进此锁存器。

而当被乘数的移出位为0时,与门全零输出。

如此往复,直至8个时钟脉冲后,最后乘积完整出现在REG16B端口。

在这里,1位乘法器ANDARITH的功能类似于1个特殊的与门,即当ABIN为‘1’时,DOUT直接输出DIN,而当ABIN为‘0’时,DOUT输出全“00000000”。

移位相加8位乘法器整体电路原理图图(一)2. 方案实施2.1 8位右移寄存器模块:LIBRARY IEEE; -- 8位右移寄存器USE IEEE.STD_LOGIC_1164.ALL;ENTITY SREG8B IS PORT ( CLK : IN STD_LOGIC; LOAD : IN STD_LOGIC;DIN : IN STD_LOGIC_VECTOR(7 DOWNTO 0);QB : OUT STD_LOGIC );END SREG8B;ARCHITECTURE behav OF SREG8B ISSIGNAL REG8 : STD_LOGIC_VECTOR(7 DOWNTO 0);BEGINPROCESS (CLK, LOAD)BEGINIF LOAD = '1' THEN REG8 <= DIN;ELSIF CLK'EVENT AND CLK = '1' THENREG8(6 DOWNTO 0) <= REG8(7 DOWNTO 1);END IF;END PROCESS;QB <= REG8(0); -- 输出最低位END behav;2.2 8位加法器模块LIBRARY IEEE; --8位加法器USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY ADDER8 ISPORT(B, A : IN STD_LOGIC_VECTOR(7 DOWNTO 0);S : OUT STD_LOGIC_VECTOR(8 DOWNTO 0) );END ADDER8;ARCHITECTURE behav OF ADDER8 ISBEGINS <= '0'&A + B ;END behav;2.3 1位乘法器模块LIBRARY IEEE; --1位乘法器USE IEEE.STD_LOGIC_1164.ALL;ENTITY ANDARITH IS -- 选通与门模块PORT ( ABIN : IN STD_LOGIC;DIN : IN STD_LOGIC_VECTOR(7 DOWNTO 0);DOUT : OUT STD_LOGIC_VECTOR(7 DOWNTO 0) );END ANDARITH;ARCHITECTURE behav OF ANDARITH ISBEGINPROCESS(ABIN, DIN)BEGINFOR I IN 0 TO 7 LOOP -- 循环,完成8位与1位运算 DOUT(I) <= DIN(I) AND ABIN;END LOOP;END PROCESS;END behav;2.4 16位锁存器模块LIBRARY IEEE; --16位锁存器/右移寄存器USE IEEE.STD_LOGIC_1164.ALL;ENTITY REG16B ISPORT ( CLK,CLR : IN STD_LOGIC;D : IN STD_LOGIC_VECTOR(8 DOWNTO 0);Q : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) );END REG16B;ARCHITECTURE behav OF REG16B ISSIGNAL R16S : STD_LOGIC_VECTOR(15 DOWNTO 0);BEGINPROCESS(CLK, CLR)BEGINIF CLR = '1' THEN R16S <= (OTHERS =>'0') ; -- 清零信号ELSIF CLK'EVENT AND CLK = '1' THEN --时钟到来时,锁存输入值,并右移低8 R16S(6 DOWNTO 0) <= R16S(7 DOWNTO 1); -- 右移低8位R16S(15 DOWNTO 7) <= D; -- 将输入锁到高8位END IF;END PROCESS;Q <= R16S;END behav;2.5 乘法运算控制器library ieee; --乘法运算控制器use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity arictl isport( clk,start:in std_logic;clkout,rstall,ariend:out std_logic);end;architecture one of arictl issignal cnt4b:std_logic_vector(3 downto 0);beginrstall<=start;process(clk,start)beginif start='1' then cnt4b<="0000";elsif clk'event and clk='1' thenif cnt4b<8 then --小于8则计数,等于8则表明乘法运算已经结束cnt4b<=cnt4b+1;end if;end if;end process;process(clk,cnt4b,start)beginif start='0' thenif cnt4b<8 thenclkout<=clk; ariend<='0';else clkout<='0'; ariend<='1';end if;else clkout<=clk; ariend<='0';end if;end process;end;2.6 8位乘法器顶层设计library ieee; --8位乘法器顶层设计use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity multi8x8 isport( clk:in std_logic;start:in std_logic;a,b:in std_logic_vector(7 downto 0);dout:out std_logic_vector(15 downto 0);end multi8x8 ;architecture struc of multi8x8 iscomponent arictlport( clk , start :in std_logic;clkout , rstall :out std_logic);end component;component andarithport( abin:in std_logic;din:in std_logic_vector(7 downto 0);dout:out std_logic_vector(7 downto 0)); end component;component adder8bport(cin :in std_logic;a,b:in std_logic_vector(7 downto 0);s:out std_logic_vector(7 downto 0);cout : out std_logic );end component;component reg16b isport( clk,clr:in std_logic;d:in std_logic_vector(8 downto 0);q:out std_logic_vector(15 downto 0));end component;component sreg8b isport( clk,load:in std_logic;din:in std_logic_vector(7 downto 0);qb:out std_logic);end component;signal gndint ,intclk,rstall,newstart,qb,:std_logic;signal andsd :std_logic_vector(7 downto 0);signal dtbin :std_logic_vector(8 downto 0);signal dtbout :std_logic_vector(15 downto 0);begindout<=dtbout; gndint<='0';process ( clk,start )beginif start='1' then newstart<='1' ;elsif clk='0' then newstart<='0' ;end if;end process;u1:arictl port map( clk=>clk,start=>newstart,clkout=>intclk,rstall=>restall);u2:sreg8b port map(clk=>intclk,load=>rstall,din=>b,qb=>qb);u3:andarith port map(abin=>qb,din=>a,dout=>andsd);u4:adder8b port map(cin=>gndint,a=>dtbout(15 downto 8),b=>andsd,s=>dtbin(7 downto 0),cout=>dtbin(8));u5:reg16b port map(clk=>intclk,clr=>rstall,d=>dtbin,q=>dtbout);end struc;8位移位相加乘法器运算逻辑波形图如下:图(二)3.结果和结论通过这次大作业对EDA技术有了更进一步的熟悉,VHDL 语言和C语言等其他语言还是有很大的区别。

相关文档
最新文档