九年级数学下册 第一章 直角三角形的边角关系 1.6 利用三角函数测高习题讲评课件 北师大版

合集下载

九年级数学下册第一章直角三角形的边角关系本章小结与复习教案(新版)北师大版

九年级数学下册第一章直角三角形的边角关系本章小结与复习教案(新版)北师大版

第一章直角三角形的边角关系一、本章知识要点:1、锐角三角函数的概念;2、解直角三角形。

二、本章教材分析:(一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。

如何解决这一关键问题,教材采取了以下的教学步骤:1.从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。

显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。

2.教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2,接着以等腰直角三角形为例,说明当一个锐角确定为45°时,其对边与斜边之比就确定为,同时也说明了锐角的度数变化了,由30°变为45°后,其对边与斜边的比值也随之变化了,由到。

这样就突出了直角三角形中边与角之间的相互关系。

3.从特殊角的例子得到的结论是否也适用于一般角度的情况呢?教材中应用了相似三角形的性质证明了:当直角三角形的一个锐角取任意一个固定值时,那么这个角的对边与斜边之比的值仍是一个固定的值,从而得出了正弦函数和余弦函数的定义,同理也可得出正切、余切函数的定义。

4.在最开始给出三角函数符号时,应该把正确的读法和写法加强练习,使学生熟练掌握。

同时要强调三角函数的实质是比值。

防止学生产生sinX=60°,sinX=等错误,要讲清sinA不是sin*A而是一个整体。

如果学生产生类似的错误,应引导学生重新复习三角函数定义。

5.在总结规律的基础上,要求学生对特殊角的函数值要记准、记牢,再通过有关的练习加以巩固。

《利用三角函数测高》练习题

《利用三角函数测高》练习题

在 Rt△AFB 中, ∵ AB=2.7, ∴AF=2.7×cos 70°≈2.7×0.34=0.918, ∴AE= AF+ BC≈0.918 +0.15=1.068≈1.1(m).答:端点 A 到地面 CD 的距离约是 1.1 m
8.如图,王强同学在甲楼楼顶 A 处测得对面乙楼楼顶 D 处的仰角为 30 °,在甲楼楼底 B 处测得乙楼楼顶 D 处的仰角为 45°,已知甲楼高 26 米, 则乙楼的高度为 ( 3≈1.7)( A.61.0 米
(x+0.2)=30,∴ x≈11.0,即 AE=11.0,∴ MN≈11.0+1.7=12.7≈13,即旗 杆 MN 的高度约为 13 米.
12.(导学号: 37554016 )如图,在两建筑物之间有一旗杆 ,高 15 米 ,从 A 点经过 旗杆顶点恰好看到矮建筑物的墙角 C 点 ,且俯角 α 为 60°,又从 A 点测得 D 点的俯角 β 为 30°,若旗杆底部点 G 为 BC 的中点,则矮建筑物的高 CD 为(
B
ห้องสมุดไป่ตู้
)
5.如图,两建筑物的水平距离为a,在A点测得C点的俯角为β,测 得 D 点 的 俯 角 为 α , 则 较 低 建 筑 物 的 高 度 为 a(tan β-tan α) _____________________ .
6 .下面是活动报告的一部分 ,请完成表格并根据表中数据计 算旗杆AB的高.
如图,过点 A 作 AE⊥ MN,垂足为点 E, 过点 C 作 CF⊥ MN ,垂足为点 F. 设 ME= x,Rt △ AME 中 ,∠ MAE =45°,∴ AE= ME= x,Rt △ MCF 中 , MF= x+(1.7-1.5),CF = MF = 3(x+0.2).∵BD= AE+CF,∴ x+ 3 tan 30°

九年级数学北师大版初三下册--第一单元1.6《利用三角函数测高(第一课时)》习题课件

九年级数学北师大版初三下册--第一单元1.6《利用三角函数测高(第一课时)》习题课件

答:这架无人机的长度AB为5 m.
9. 【中考•内江】如图,某人为了测量小山顶上的塔ED的 高,他在山下的点A处测得塔尖点D的仰角为45°,再 沿AC方向前进60 m到达山脚点B,测得塔尖点D的仰角 为60°,塔底点E的仰角为30°,求塔ED的高度(结果 保留根号).
解:由题知,∠DBC=60°,∠EBC=30°, ∴∠DBE=∠DBC-∠EBC=60°-30°=30°. 又∵∠BCD=90°, ∴∠BDC=90°-∠DBC=90°-60°=30°. ∴∠DBE=∠BDE. ∴BE=DE. 设EC=x,则DE=BE=2EC=2x, DC=EC+DE=x+2x=3x, ∴BC= BE2-EC2=(2x)2-x2 3x.
第一章 直角三角形的边角关系
1.6 利用三角函数测高
第1课时 视角在测量中的应用
1 利用锐角三角函数解决测距问题 2 利用锐角三角函数解决不能到达底部的物高问题 3 利用锐角三角函数解决同一位置的视角问题 4 利用锐角三角函数测量有视线障碍的物高
8.【中考•株洲】如图,一架水平飞行的无人机AB的尾端点A测
结果精确到0.1 m,参考数据: 2 ≈1.41, 3 ≈1.73).
解:如图,过点C作CM⊥AB于点M,则四边形MEDC是矩形, ∴ME=DC=3,CM=ED. 在Rt△AEF中,∠AFE=60°, 设EF=x,则AF=2x,AE= 3 x. 在Rt△FCD中,CD=3,∠CFD=30°, ∴DF=3 3. 在Rt△AMC中,∠ACM=45°, ∴MA=MC.∵ED=MC,∴AM=ED.
得正前方的桥的左端点P的俯角为α,其中tan α=2 3 ,无 人机的飞行高度AH为500 3 m,桥的长度为1 255 m.
(1)求点H到桥左端点P的距离; (2)若无人机前端点B测得正前方的桥的右端点Q的俯角为

九年级下册数学(北师大)课件:1.6 利用三角函数测高

九年级下册数学(北师大)课件:1.6 利用三角函数测高

AP=33+30=63(米),在Rt△DMH中,tan30°=
MH DM
,即
x-30 63

33,解得:x=30+21 3,即建筑物GH的高为(30+21 3)米
(1)若修建的斜坡BE的坡比为 3 ∶1,求休闲平台DE的长是多少 米?
(2)一座建筑物GH距离A点33米远(即AG=33米),小亮在D点测 得建筑物顶部H的仰角(即∠HDM)为30°,点B,C,A,G,H在同 一平面内,点C,A,G在同一条直线上,且HG⊥CG,问建筑物GH 高为多少米?
解:∵FM∥CG,∠BDF=∠BAC=45°,∵斜坡AB长为60 2
米,则山高CD等于( A )
A.30(1+ 3)米 B.30( 3-1)米 C.30米 D.(30 3+1)米 6.如图,太阳光与地面成60°角,一棵倾斜的树AB与地面成 30°角,这时测得大树在地面的影长约为10 m,则大树AB的长大约
为___1_7_.3__m.(精确到0.1 m)
7.(2014·青岛)如图,小明想测山高和索道的长度,他在B处仰 望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80 m 至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.
求AD的长.
解:过A作AH⊥CB于H,设AH=x,CH= 3 x,DH=x,∵ CH-DH=CD,∴ 3x-x=10,∴x=5( 3+1),∴AD= 2x=5 6 +5 2
9.为了对一棵倾斜的古杉树AB进行保护,需测量其长度,如 图,在地面上选取一点C,测得∠ACB=45°,AC=24 m,∠BAC =66.5°,求这棵古杉树AB的长度.(结果取整数,参考数据: 2 ≈1.41,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)

九年级数学北师大版下册习题课件第一章1.6 利用三角函数测高

九年级数学北师大版下册习题课件第一章1.6 利用三角函数测高

1.(5分)在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为27°(tan 27°≈0.
2为._(_5_分_解_)_如__图:__,__过小_ 明m点.在楼A顶作上的A点EA处⊥测C得D楼前交一棵C树DC的D的延顶端长C的线俯角于为6点0°,E又,知水则平距A离EB=D=B10Cm,=楼高78AB=m24,m,则树高CD 8C.D∴之(15间分C的)E(距聊=离城A中AC考为E)3如·5 图tma,,n后小站莹∠在在CM数点A学处E综测合=得实7居践8民活t楼动anC中D,的5利8顶用°端所D≈的学7仰的8角数×为学14知5.°识6,对0=居某民小1楼区2A居4B民.的8楼(顶mA端B)B的,的高仰度D角进E为行=5测5°量A,,E已先·知测t居a得民n居楼民C楼DA的B高与
51解1.):,(5过此分点时)在A旗“解作杆测A:在E量⊥水∵旗C平杆D在地交的面C高DR上度的t的”△ 延影的长子C数线的E学于长D课点度题E中为,学2则,习4Am中∠E,,=则C某B旗CE学=杆习D7的8小=m高组,度5测∴8约得°C为太E(=,阳A光tEa线·)tna与n ∠水∠C平AC面EE=的D7夹8t角=an为5CD82°7DE°≈7(t8,a×n 21∴7. °D≈0E. =tanC5D8°
解:过点 A 作 AH⊥CD 于点 H,设 CH=x m,在 Rt△ACH 中,∵∠CAH=
30°,∴BD=AH=tanC3H0° = 3 x (m),∴在 Rt△ECD 中,tan ∠CED=ECDD

x+10 3x-6

3
,解得 x=5+3
3 ,∴CD=(15+3
3 )(m),∴CF=CD-DF
解答题(共60分) 7.(14分)如图,AB是某景区内高10 m的观景台,CD是与AB底部相平的 一座雕像(含底座),在观景台顶A处测得雕像顶C点的仰角为30°,从观景台 底部B处向雕像方向水平前进6 m到达点E,在E处测得雕像顶C点的仰角为 60°,已知雕像底座DF高8 m,求雕像CF的高.(结果保留根号)

九年级数学下册第一章直角三角形的边角关系1.6利用三角函数测高初中九年级下册数学

九年级数学下册第一章直角三角形的边角关系1.6利用三角函数测高初中九年级下册数学
个测量塔顶端(dǐngduān)到地面高度HG的方案.具体要求如
下: ①测量数据尽可能少; ②在所给图形上,画出你设计的测量的平面图,并将应
测数据标记在图形上(如果测A、D间距离,用m表示; 如果测D、C间距离,用n表示;如果测角,用α、β、
γ等表示.测倾器高度不计)
(2)根据你测量的数据,计算塔顶到地面的高度HG(用 字母I表示)
2.已知测倾器的高CE=DF=1m,通过(tōngguò)计算求得, 该大厦的高为_8_3____m (精确到1m).
解:在Rt△AEG中,
EG= A G =1.732AG
ta n 3 0 °
在Rt△AFG中,FG= A G
EG-FG=C D
ta n 4 5 °
1.732AG-AG=60
AG=60÷0.732≈81.96
1.在测点A处安置(ānzhì)测倾器,测得M的仰角∠MCE=α. 2.在测点A与物体(wùtǐ)之间的B处安置测倾(A,B与N在一
条直线上),测得M的仰角∠MDE=β.
3.量出测倾器的高度AC=BD=a,以及测点A,B之间 的距离AB=b.
根据测量数据, 你能求出物体 M MN的高度吗?说 说你的理由.
水平线
哈哈:同角 的余角相等
1
2
4
3
12/11/2021
第七页,共二十五页。
活动(huódòng测) 量底部可以到达的物体的高度 二所: 谓“底部可以到达”,就是(jiùshì)在地面上可以无障
碍地直接测得测点与被测物体底部之间的距离.
如图,要测量物体MN的高度(gāodù),需测量哪些数据?
可按下列步骤进行:
第十九页,共二十五页。
方案 一 (fāng àn)

九年级数学下册:第一章直角三角形的边角关系复习教案(北师大版)

九年级数学下册:第一章直角三角形的边角关系复习教案(北师大版)

第1章直角三角形的边角关系课题回顾与思考教具目标(一)教学知识点1.经历回顾与思考,建立本章的知识框架图.2.利用计算器,发现同角的正弦、余弦、正切之间的关系。

3.进一步体会直角三角形边角关系在现实生活中的广泛应用.(二)能力训练要求1.体会数形之间的联系,逐步学会利用数形结合的思想分析问题和解决问题.2.进一步体会三角函数在现实生活中的广泛应用,增强应用数学的意识.(三)情感与价值观要求1.在独立思考问题的基础上,积极参与对数学问题的讨论,敢于发表自己的观点.并尊重与理解他人的见解,在交流中获益.2.认识到数学是解决现实问题的重要工具,提高学习数学的自信心.教学重点1.建立本章的知识结构框架图.2.应用三角函数解决现实生活中的问题,进一步理解三角函数的意义.教学难点应用三角函数解决问题教学方法探索——发现法教具准备多媒体演示、计算器教学过程Ⅰ.回顾、思考下列问题,建立本章的知识框架图[师]直角三角形的边角关系,是现实世界中应用广泛的关系之一.通过本章的学习,我们知道了锐角三角函数在解决现实问题中有着重要的作用.如在测量、建筑、工程技术和物理学中,人们常常遇到距离、高度、角度的计算问题,—般来说,这些实际问题的数量关系往往归结为直角三角形中边和角的关系.利用锐角三角函数解决实际问题是本章的重要内容,很多实际问题穿插于各节内容之中.[问题门举例说明,三角函数在现实生活中的应用.[生]例如:甲、乙两楼相距30 m,甲楼高40 m,自甲楼楼顶看乙楼楼顶.仰角为30°,乙楼有多高?(结果精确到1 m)解:根据题意可知:3乙楼的高度为30tn30°=40+30×3=40+103≈57(m),即乙楼的高度约为57 m.[生]例如,为了测量一条河流的宽度,一测量员在河岸边相距180 m的P和Q两点分别测定对岸一棵树T的位置,T在P的正南方向,在Q南偏西50°的方向,求河宽(结果精确到1 m).解:根据题意,∠TPQ=90°,∠PQT=90°-50°=40°,PQ=180 m.则:PT就是所求的河宽.在Rt△TPQ中,PT=180×tan40°=180×0.839≈151 m,即河宽为151 m.[师]三角函数在现实生活中的应用很广泛,下面我们来看一个例子.多媒体演示如图.MN表示某引水工程的一段设计路线从M到N的走向为南偏东30°,在M的南偏东60°的方向上有一点A,以A为圆心,500 m为半径的圆形区域为居民区,取MN上的另一点B,测得BA 的方向为南偏东75°,已知MB=400 m,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?[师生共析]解:根据题意可知∠CMB=30°,∠CMA=60°,∠EBA=75°,MB=400 m,输水路线是否会穿过居民区,关键看A 到MN 的最短距离大于400 m 还是等于400 m ,于是过A 作AD ⊥MN .垂足为D .∵BE//MC .∴∠EBD =∠CMB =30°.∴∠ABN=45°.∠AMD =∠CMA-∠CMB =60°-30°=30°.在Rt △ADB 中,∠ABD =45°,∴tan45°=BD AD ,BD =︒45tan AD =AD , 在Rt △AMD 中.∠AMD=30°,tan30° =MD AD ,MD =︒30tan AD =3AD , ∵MD=MD-BD ,即 3AD-AD =400, AD-200(3+1)m>400m .所以输水路线不会穿过居民区.[师]我们再来看[问题2]任意给定一个角,用计算器探索这个角的正弦、余弦、正切之间的关系.例如∠α=25°,sin α、cos α、tan α的值是多少?它们有何关系呢?[生]sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663. 而︒︒25cos 25sin ≈0.4663. 我们可以发现ααcos sin =tan α. [师]这个关系是否对任意锐角都成立呢?我们不妨从三角函数的定义出发来推证一下.[师生共析]如 图,在Rt △ABC 中. ∠C =90°,∵sinA =ABBC cosA =AB AC tanA =ACBC , ∴ACBC AC AB AB BC AB AC AB BC A A =⋅=÷=cos sin =tanA, tanA=A A cos sin . 这就是说,对于任意锐角A ,∠A 的正弦与余弦的商等于∠A 的正切.[师]下面请同学们继续用计算器探索sin α,cos α之间的关系.[生]sin 225°≈0.1787,cos 225°≈0.8213,可以发现:sin 225°+cos 225°≈0.1787+0.8213=1.[师]我们可以猜想任意锐角都有关系:sin 2α+cos 2α=1,你能证明吗?[师生共析]如上图.sinA= AB BC ,cosA=ABAC sin 2A+cos 2A =2222222AB AC BC AB AC AB BC +=+, 根据勾股定理,得BC 2+AC 2=AB 2,∴sin 2A+cos 2A =1,这就是说,对于任意锐角A ,∠A 的正弦与余弦的平方和等于1.[师]我们来看一个例题,看是否可以应用上面的tanA 、sinA 、cosA 之间的关系.已知cosA=53,求sinA .tanA . [生]解:根据sin 2A+cos 2A =1.得sinA =.54)53(1cos 122=-=-A tanA=345354cos sin ==A A . [生]我还有另外一种解法,用三角函数的定义来解.解:∵cosA =.53=∠斜边的邻边A 设∠A 的邻边=3k .斜边=5k .则∠A 的对边=.4)3()5(22k k k =-∴sinA=.5454==∠k k A 斜边的邻边 tanA=.3434==∠∠k k A A 的邻边的对边 [师]问题3:你能应用三角函数解决哪些问题?[生]锐角三角函数反映了直角三角形的边角关系.凡是属于直角三角形的问题或可以转化为直角三角形的问题,都可以用三角函数来解决.[师]我们知道在直角三角形中,除直角外,有两个锐角.两条直角边以及斜边共5个元素,它们之间的关系很丰富.如图:在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c .(1)边的关系:a 2+b 2=c 2(勾股定理):(2)角的关系:∠A+∠B =90; (3)sinA=c a ,cosA=c b ,tanA=b a ;sinB=c b ,cosB=c a ,tanB=ab . 利用三角形的全等和直角三角形全等,以及作图,我们知道:当一直角边和斜边确定时,直角三角形唯一确定,即直角三角形的一直角边和斜边已知,则直角三角形中其他元素都可以求出.同学们不妨试一试.[生]例如Rt △ABC 中,∠C =90°.a =4,c=8求b ,∠A 及∠B解:∵a =4,c =8,根据勾股定理可得 b=3422=-a c .∵sinA=c a =2184=, ∴∠A =30°.又∵∠A+∠B =90°,∴∠B =60°.[师]很好,是不是只要知道直角三角形除直角外的两个元素,其余元素就都可以求出呢?[生甲]可以.[生乙]不可以.例如Rt △ABC 中,∠c =90°,∠A =25°.∠B=65°.这样的直角三角形有无数多个,是不唯一确定的,所以其余的元素无法确定.[生丙]我认为已知直角三角形中除直角外的两个元素.其中至少有一个边,就可以求出其余元素.[师]很好,我们来做一个练习.多媒体演示:在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A ,∠B 、∠C 的对边.(1)已知a =3,b =3,求C ,∠A ,∠B .(2)已知b =5,c =10,求a ,∠A ,∠B .(3)已知∠A=45°,c =8,求a ,b ,∠B .[生]解:(1)根据勾股定理c .=23332222=+=+b a .又∵tanA ∴∠A=b a =33=1, ∴∠A=45°. 又∵∠A+∠B =90,∴∠B =45°.(2)根据勾股定理,得a=355102222=-=-b c ,又∵sinB =21105==c b ∴∠B=30°. 又∵∠A+∠B=90°∴∠A=60°.(3)∵sinA=ca ∴=csinA=8×sin45°=42, 又∵cosA =c b ∴b=c ·cosA =8×cos45°=42, 又∵∠A+∠B =90°,∴∠B=45°.[师]实践证明,在直角三角形中,已知除直角外的两个元素(至少有一个是边),利用直角三角形中特殊的边的关系、角的关系、边角关系,就可求出其余所有元素.因此,在现实生活中,如测量、建筑、工程技术和物理学中,常遇到的距离、高度、角度都可以转化到直角三角形中,这些实际问题的数量关系往往就归结为直角三角形中边和角的关系问题.接下来,我们看问题4:如何测量一座楼的高度?你能想出几种办法?[生]有四种方法:第一种:用太阳光下的影子来测量.因为在同一时刻,物体的高度与它的影子的比值是一个定值.测量出物体的高度和它的影子的长度,再测出高楼在同一时刻的影子的长度.利用物体的高度:物体影子的长度=高楼的高度,高楼影子的长度.便可求出高楼的高.第二种:在地面上放一面镜子,利用三角形相似,也可以测量出楼的高度.第三种:用标杆的方法.第四种:利用直角三角形的边角关系求楼的高度.[师]下面就请同学们对本章的内容小结,建立本章内容框架图.[师生共析]本章内容框架如下:Ⅱ.随堂练习1.计算(1)︒-︒︒-︒45cos 60sin 45sin 30cos (2)sin 230°+2sin60°+tan45°-tan60°+cos 230°;(3)原式=.60tan 60tan 60tan 212︒-︒+︒-解:(1)原式=22232223--=1; (2)原式=(21)2+2×23+1-3+(23)2; =4331341+-++ =1+1=2(3)原式=︒-︒-60tan )60tan 1(2=|1-tan60°|-tan60°=tan60°-1-tan60°=-1.2.如图,大楼高30 m ,远处有一塔BC ,某人在楼底A 处测得塔顶的仰角为60°,爬到楼顶D 测得塔顶的仰角为30°,求塔高BC 及楼与塔之间的距离AC(结果19确到0.0l m).解:没AC=x ,BC =y ,在Rt △ABC 中,tan60°=xy ,① 在Rt △BDE 中.tan30°=x y 30-,② 由①得y =3x ,代入②得33=xx 303 . x=153≈25.98(m).将x =153代入y=3x=3×153 =45(m).所以塔高BC 为45 m ,大楼与塔之间的距离为25.98 m .Ⅲ.课时小结本节课针对回顾与思考中的四个问题作了研讨,并以此为基础,建立本章的知识框植架结构图.进一步体验三角函数在现实生活中的广泛应用.Ⅳ.课后作业复习题A 组1,2,5,6,8B 组2.3,4,5,6Ⅴ.活动与探究如图.AC 表示一幢楼,它的各楼层都可到达;BD 表示一个建筑物,但不能到达.已知AC 与BD 地平高度相同,AC 周围没有开阔地带,仅有的测量工具为皮尺(可测量长度)和测角器(可测量仰角、俯角和两视线间的夹角).(1)请你设计一个测量建筑物BD 高度的方案,要求写出测量步骤和必要的测量数据(用字母表示),并画出测量示意图:(2)写出计算BD 高度的表达式.[过程]利用测量工具和直角三角形的边角关系来解决.这里的答案不唯一,下面只写出一种方法供参考.[结果]测量步骤(如图):①用测角器在A 处测得D 的俯角α;②用测角器在A 处测得B 的仰角β ③用皮尺测得AC=am .(2)CD=αtan a ,BE=αtan a ·tan β, BD=a+αβtan tan a . 板书设计回顾与思考本章内容结构框架图:。

北师大版九年级数学下册第一章直角三角形边角关系(同步+复习)精品串讲课件

北师大版九年级数学下册第一章直角三角形边角关系(同步+复习)精品串讲课件

cosA等于_____. 6.在△ABC中,∠ACB=90°,BC=6,AB=10 , CD⊥AB,则sin∠ACD 的值是_____ .
B
3 7.在△ABC中,∠C=90°,sinA= 4 则tanB=_____ . 4 8.在△ABC中,∠C=90°,tanA= 3 则cosA= ______.
tanA=
A的对边 A的邻边
B
斜边 ∠A的对边 A ┌ ∠A的邻边 C
一.正切的概念
1. 2. 复习:直角三角形边边关系;角角关系—— 正切的概念
① 直角三角形中,一个锐角的大小一旦确定,它所 对的边与邻边的比值是一个确定的值。 ② 文 直角三角形中,一个锐角的对边与邻边的比值叫 做这个角的正切(值)。——是一个比值。 ③ 符 Rt△ABC中,锐角A确定,其对边与邻边的比值 也确定,这个比值叫做∠A的正切,记作: c B a a ∠A的对边 tanA= ———— =— b C b A ∠A的邻边 ④ 正切是对锐角定义的,是一个确定的比值,没有 单位,且与所在的直角三角形大小无关; tanA 是一个完整的符号,如果角用一个字母表示,角 的符号可以省略不写,如果角用三个字母表示, 角的符号不可省略; tanA>0;变式使用: a=b a tanA或者:b= —— tanA
①Байду номын сангаас
α的对边 α的邻边 α的对边 α的斜边 α的邻边 α的斜边
角定值定 角变值变 角死值死
确定一个角的三个比值:一定角二定比三定值。 三值与角与比是对应的。 ② 都与三角形大小无关,只与角的大小对应的比值。 ③ 每个定义都是三个公式:一求比(角)二求两边。 ④ 0< sin α <1; 0< cos α <1; tan α任意大 ⑤ 平方: sin2 α= (sin α)2 ,而sin α2 则无意义。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档