新人教版初中九年级数学下册《三角函数》教案
人教版九年级数学下册28.1《三角函数》说课稿

本节课所面向的学生为九年级学生,他们正处于青春期,年龄大约在14-15岁之间。这个阶段的学生具有以下特点:
1.年龄特征:生理和心理发展迅速,抽象思维能力逐渐增强,但仍然需要具体形象的支撑。
2.认知水平:已经具备了一定的逻辑推理和数学思维能力,能够理解较为复杂的数学概念和关系。
3.学习兴趣:对新鲜事物充满好奇,喜欢探索和挑战,但兴趣可能容易转移,需要教师引导和激发。
这些媒体资源在教学中的作用是提供直观的视觉支持,帮助学生构建概念,以及提供实际操作的机会,增强学生的实践体验。
(三)互动方式
我计划以下方式设计师生互动和生生互动的环节:
1.提问和回答:在讲解过程中,我会提出问题,鼓励学生积极思考并回答,以检验他们的理解程度。
2.小组讨论:将学生分成小组,针对特定问题进行讨论,然后汇报讨论结果,促进学生之间的交流和合作。
1.三角函数的定义:正弦函数、余弦函数和正切函数的定义。
2.三角函数的性质:周期性、奇偶性、单调性等。
3.三角函数的应用:在几何、物理、工程等领域中的应用。
(二)教学目标
1.知识与技能目标:
(1)使学生掌握三角函数的定义,能熟练运用正弦、余弦和正切函数的性质。
(2)培养学生运用三角函数解决实际问题的能力。
4.学习习惯:经过多年的学习,学生已经形成了较为稳定的学习习惯,但个别学生可能存在学习方法不当、学习效率不高的问题。
(二)学习障碍
在学习本节课之前,学生可能已经具备以下前置知识或技能:
1.平面几何的基础知识,如角的度量、三角形的性质等。
2.初等代数的知识,如函数的概念、图像等。
3.对直角三角形的了解,包括直角三角形的边角关系。
2.设计有趣的数学游戏或竞赛,如三角函数猜谜、应用题解答竞赛,激发学生的竞争意识和参与热情。
28.1锐角三角函数特殊角的锐角三角函数值(教案)2023-2024学年人教版数学九年级下册

3.通过实际例题,培养学生运用锐角三角函数解决实际问题的能力。
本节课将结合教材内容,通过讲解、示范、练习等环节,帮助学生掌握特殊角的锐角三角函数值,并为后续学习三角函数的性质和应用打下坚实基础。
二、核心素养目标
3.增强学生的数学运算与数据分析能力:通过解决实际例题,让学生运用锐角三角函数进行计算和分析,提高数学运算与数据分析能力,为解决复杂问题奠定基础。
本节课将紧密围绕新教材的要求,关注学生核心素养的培养,帮助学生将所学知识内化为自身的数学素养,为未来的学习和生活打下坚实基础。
后的内容###”二、核心素养目标”作为标题标识,再开篇直接输出。
2.逻辑推理:通过特殊角的锐角三角函数值的推导,提高学生的逻辑推理能力。
3.数学运算与数据分析:培养学生运用特殊角的锐角三角函数值进行精确计算和解决实际问题的能力。
三、教学过程
1.导入新课
通过回顾上一节课的内容,引导学生进入锐角三角函数的学习。
2.基本概念与性质
复习锐角三角函数的定义,强调正弦、余弦、正切的概念。
四、教学评价
1.课堂问答:检查学生对特殊角的锐角三角函数值的掌握程度。
2.练习题完成情况:评估学生对知识点的理解和运用能力。
3.课后作业:布置相关作业,巩固所学知识。
五、教学资源
1.教材:人教版数学九年级下册。
2.课件:包含本节课教学内容的PPT。
3.练习题:针对本节课知识点的练习题。
五、教学反思
在上完这节关于特殊角的锐角三角函数值的内容后,我进行了深入的思考。首先,我发现学生们对于锐角三角函数的定义有了较好的理解,但记忆特殊角的函数值还存在一定难度。在教学中,我尝试通过一些记忆方法,如编口诀、画图等,帮助学生记忆。从学生的反馈来看,这些方法还是有一定效果的,但还需在后续教学中继续巩固。
九年级数学三角函数的优秀教案范本

九年级数学三角函数的优秀教案范本教案一:三角函数的定义与性质一、教学目标:1. 理解三角函数的定义和基本性质;2. 掌握正弦函数、余弦函数和正切函数在单位圆上的几何意义;3. 能够根据已知三角函数值求解角度的问题;4. 能够应用三角函数解决实际问题。
二、教学重难点:1. 三角函数的定义和基本性质的理解;2. 正弦函数、余弦函数和正切函数在单位圆上的几何意义的把握;3. 应用三角函数解决实际问题的能力培养。
三、教学步骤:导入:首先,通过一个有趣的问题引起学生的兴趣,例如:小明站在一棵树下看到树上的松果与地面成60度的角,问离小明站的地方到树上松果的高度是多少?步骤一:引入三角函数的定义和基本性质1. 介绍三角函数的定义,并与直角三角形的概念进行联系;2. 引导学生通过观察图形,总结正弦函数、余弦函数和正切函数在单位圆上的几何意义;3. 通过实例让学生掌握三角函数的周期性、增减性等基本性质。
步骤二:解决已知三角函数值求解角度的问题1. 给出一个已知正弦值的问题,引导学生使用反正弦函数求解未知角度;2. 以此类推,给出已知余弦值和正切值的问题,引导学生运用反余弦函数和反正切函数求解。
步骤三:应用三角函数解决实际问题1. 通过实例让学生了解三角函数在实际问题中的应用,例如测量高楼的高度、计算太阳的仰角等;2. 引导学生分析问题,建立三角函数与实际问题之间的关系,并用三角函数解决相关问题。
四、教学辅助手段:1. 单位圆模型的展示;2. 计算器以及相关应用软件。
五、教学延伸:1. 导出三角函数的图像及周期性,与学生探讨三角函数的周期性如何影响其应用;2. 引导学生使用数学软件绘制三角函数的图像,进一步理解函数的性质。
教案二:三角函数的图像和性质一、教学目标:1. 掌握正弦函数、余弦函数和正切函数的图像特点;2. 理解函数图像与函数性质之间的关系;3. 能够根据函数图像确定函数的周期、增减性、最值等性质;4. 能够综合应用三角函数解决复杂问题。
九年级数学下册《三角函数的计算》教案、教学设计

4.设计具有挑战性的实际问题,让学生在解决过程中,灵活运用所学知识,提高学生分析问题和解决问题的能力。
5.通过对三角函数的深入学习,引导学生掌握从特殊到一般、从具体到抽象的数学学习方法。
(三)情感态度与价值观
-选择一道具有挑战性的题目,要求学生尝试从不同角度和思路解决问题,培养学生的创新思维能力。
4.总结反思题:
-让学生撰写一份学习心得,内容包括对本节课三角函数计算的理解、学习过程中的困惑与收获,以及对未来学习的规划。
-教师批改学习心得,了解学生的学习状况,为下一节课的教学提供参考。
5.预习作业:
-布置下一节课的预习任务,让学生提前了解下节课将要学习的内容,为课堂学习做好准备。
在作业布置过程中,教师需注意以下几点:
1.作业难度要适中,既要巩固基础,又要有所挑战,以激发学生的学习兴趣。
2.关注学生个体差异,布置分层作业,使每个学生都能在作业中得到提高。
3.鼓励学生在作业中积极思考,独立解决问题,培养自主学习能力。
4.教师应及时批改作业,给予学生反馈,指导学生改进学习方法,提高学习效果。
2.分步骤讲解,突破重点:首先,以直角三角形为例,详细讲解正弦、余弦、正切函数的定义及其计算方法。其次,介绍计算器在三角函数计算中的应用,并进行实际操作演示。最后,通过示例,让学生学会在不同角度制下进行三角函数值的计算。
3.合作探究,解决难点:组织学生进行小组讨论,探讨三角函数图像的绘制方法和解读技巧。在此基础上,引导学生运用所学知识解决实际问题,如设计一个测量物体高度的实验方案。
(四)课堂练习
1.教学活动:教师布置具有代表性的练习题,让学生独立完成。
新人教版初中九年级数学下册《三角函数》教案

三角函数锐角三角函数教学目标1、初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
2、逐步培养学生观察、比较、分析,概括的思维能力。
3、提高学生对几何图形美的认识。
教学重点: 正弦,余弦,正切概念教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切 教学过程: 一.探究活动1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数定义。
siaA=斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠ 3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。
4.学生练习P21练习1,2,3 二.探究活动二1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60° 归纳结果2. 求下列各式的值(1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)004530cos sia +ta60°-tan30°三.拓展提高P82例4.(略) 1. 如图在⊿ABC 中,∠A=30°,tanB=23,AC=23,求AB 四.小结五.作业课本p85-86 2,3,6,7,8,10正弦三角函数一、教学目标1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
新人教版九年级数学下册三角函数教案

解直角三角形应用(一)教学目标1、知识目标:使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.2、能力训练点:通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.3、情感目标:渗透数形结合的数学思想,培养学生良好的学习习惯.二、教学重点、难点和疑点1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边.三、教学过程(一)知识回顾1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系 sinA=c a cosA=c b tanA ba (2)三边之间关系a 2 +b 2 =c 2 (勾股定理)(3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用.(二) 探究活动1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).3.例题评析例 1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 2 a=6,解这个三角形.例2在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 20 B =350,解这个三角形(精确到0.1).解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例3在Rt △ABC 中,a=104.0,b=20.49,解这个三角形.(三) 巩固练习在△ABC中,∠C为直角,AC=6,BAC的平分线AD=43,解此直角三角形。
新人教版九年级数学下册三角函数教案28.1.2

正弦与余弦素质教育目标1、知识教学点:使学生初步了解正弦、余弦概念;能够较正确地用sinA 、cosA 表示直角三角形中两边的比;2、能力训练点:逐步培养学生观察、比较、分析、概括的思维能力.3、德育渗透点:渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点. 教学重点、难点1.教学重点:使学生了解正弦、余弦概念.2.教学难点:用含有几个字母的符号组sinA 、cosA 表示正弦、余弦的概念. 教学步骤(一)明确目标1.引导学生回忆“直角三角形锐角固定时,它的对边与斜边的比值、邻边与斜边的比值也是固定的.”2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值——正切和余弦.(二)重点、难点的学习与目标完成过程在上节课研究的基础上,引入正弦、余弦,“把对边与斜边、邻边与斜边的比值称做正弦、余弦”.如图6-3:请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力.教师板书:在△ABC 中,∠C 为直角,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA .若把∠A 的对边BC 记作a ,邻边AC 记作b ,斜边AB 记作c ,则 给出正弦、余弦概念如图在Rt △ABC 中,把∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA引导学生思考:当∠A 为锐角时,sinA 、cosA 的值会在什么范围内?得结论0<sinA <1,0<cosA <1(∠A 为锐角).这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.3.锐角三角函数,cot ,tan ,cos ,sin a b A b a A c b A c a A ====把锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数.锐角三角函数概念的给出,使学生茅塞顿开,初步理解本节题目.问1:锐角三角函数能否为负数?例1 求出图6-4所示的Rt △ABC 中的sinA 、sinB 和cosA 、cosB 的值.学生练习1中1、2、3.问2、sinA和cosA的平方和为几?如何证明?问3、当A+B=90°,sinA=sin(90°-B)=cosB, cosA=cos(90°-B)= sinB可以比较sin37°和cos37°的大小。
九年级数学三角函数教案

九年级数学三角函数教案一、课题三角函数二、教学要求1、三角函数的概念及象限角、弧度制等概念;2、三角公式,包括诱导公式,同角三角函数关系式和差倍半公式等;3、三角函数的图象及性质。
三、学习指导1、角的概念的推广。
从运动的角度,在旋转方向及旋转圈数上引进负角及大于3600的角。
这样一来,在直角坐标系中,当角的终边确定时,其大小不一定(通常把角的始边放在x轴正半轴上,角的顶点与原点重合,下同)。
为了把握这些角之间的联系,引进终边相同的角的概念,凡是与终边α相同的角,都可以表示成k·3600 α的形式,特例,终边在x轴上的角集合{α|α=k·1800,k∈Z},终边在y轴上的角集合{α|α=k·1800 900,k∈Z},终边在坐标轴上的角的集合{α|α=k·900,k∈Z}。
在已知三角函数值的大小求角的大小时,通常先确定角的终边位置,然后再确定大小。
弧度制是角的度量的重要表示法,能正确地进行弧度与角度的换算,熟记特殊角的弧度制。
在弧度制下,扇形弧长公式l=|α|R,扇形面积公式,其中α为弧所对圆心角的弧度数。
2、利用直角坐标系,可以把直角三角形中的三角函数推广到任意角的三角数。
三角函数定义是本章重点,从它可以推出一些三角公式。
重视用数学定义解题。
设P(x,y)是角α终边上任一点(与原点不重合),记,则, , , 。
利用三角函数定义,可以得到(1)诱导公式:即与α之间函数值关系(k∈Z),其规律是"奇变偶不变,符号看象限";(2)同角三角函数关系式:平方关系,倒数关系,商数关系。
3、三角变换公式包括和、差、倍、半公式,诱导公式是和差公式的特例,对公式要熟练地正用、逆用、变用。
如倍角公式:cos2α=2cos2α-1=1-2sin2α,变形后得,可以作为降幂公式使用。
三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备。
4、三角函数的性质除了一般函数通性外,还出现了前面几种函数所没有的周期性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数锐角三角函数教学目标1、初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
2、逐步培养学生观察、比较、分析,概括的思维能力。
3、提高学生对几何图形美的认识。
教学重点: 正弦,余弦,正切概念教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切 教学过程: 一.探究活动1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数定义。
siaA=斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠ 3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。
4.学生练习P21练习1,2,3 二.探究活动二1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60° 归纳结果2. 求下列各式的值(1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)004530cos sia +ta60°-tan30°三.拓展提高P82例4.(略) 1. 如图在⊿ABC 中,∠A=30°,tanB=23,AC=23,求AB 四.小结五.作业课本p85-86 2,3,6,7,8,10正弦三角函数一、教学目标1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
二、教学重点、难点重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。
三、教学过程(一)复习引入操场里有一个旗杆,老师让小明去测量旗杆高度。
(演示学校操场上的国旗图片)小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。
你想知道小明怎样算出的吗?师:通过前面的学习我们知道,利用相似三角形的方法可以测算出旗杆的大致高度;341米10米实际上我们还可以象小明那样通过测量一些角的度数和一些线段的长度,来测算出旗杆的高度。
这就是我们本章即将探讨和学习的利用锐角三角函数来测算物体长度或高度的方法。
下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦(二)实践探索为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。
现测得斜坡与水平面所成角的度数是30o,为使出水口的高度为35m,那么需要准备多长的水管?分析:问题转化为,在Rt△ABC中,∠C=90o,∠A=30o,BC=35m,求AB根据“再直角三角形中,30o角所对的边等于斜边的一半”,即可得AB=2BC=70m.即需要准备70m长的水管结论:在一个直角三角形中,如果一个锐角等于30o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于如图,任意画一个Rt△ABC,使∠C=90o,∠A=45o,计算∠A的对边与斜边的比,能得到什么结论?分析:在Rt△ABC 中,∠C=90o,由于∠A=45o,所以Rt△ABC是等腰直角三角形,由勾股定理得,故结论:在一个直角三角形中,如果一个锐角等于45o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于一般地,当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?如图:Rt△ABC与Rt△A`B`C`,∠C=∠C` =90o,∠A=∠A`=α,那么与有什么关系分析:由于∠C=∠C` =90o,∠A=∠A`=α,所以Rt△ABC∽Rt△A`B`C`,,即结论:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比也是一个固定值。
认识正弦如图,在Rt△ABC中,∠A、∠B、∠C所对的边分别记为a、b、c。
师:在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦。
记作sinA 。
板书:sinA =A a A c ∠=∠的对边的斜边 (举例说明:若a=1,c=3,则sinA=31)注意:1、sinA 不是 sin 与A 的乘积,而是一个整体;2、正弦的三种表示方式:sinA 、sin56°、sin ∠DEF3、sinA 是线段之间的一个比值;sinA 没有单位。
提问:∠B 的正弦怎么表示?要求一个锐角的正弦值,我们需要知道直角三角形中的哪些边? (三)教学互动 例1如图,在中,,求sin 和sin 的值.解答按课本 (四)巩固再现1.﹙2006海南﹚三角形在正方形网格纸中的位置如图所示,则sin α的值是﹙ ﹚A .43 B .34 C .53 D .542.(2005厦门市)如图,在直角△ABC 中,∠C =90o,若AB =5,AC =4,则sinA =( )A .35B .45C .34αCB AABCD D .433.﹙2006黑龙江﹚ 在△ABC 中,∠C=90°,BC=2,sinA=23,则边AC 的长是( )A .13B .3C .43D . 5余弦和正切一、教学目标1、使学生知道当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实.2、逐步培养学生观察、比较、分析、概括的思维能力. 二、教学重点、难点 重点:理解余弦、正切的概念难点:熟练运用锐角三角函数的概念进行有关计算三、教学过程 (一)复习引入 1、口述正弦的定义2、(1)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,且AB =5,BC =3.则sin ∠BAC= ;sin ∠ADC= .(2)﹙2006成都﹚如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D 。
已知AC= 5 ,BC=2,那么sin ∠ACD =( ) AB .23CDAB(二)实践探索一般地,当∠A取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?如图:Rt△ABC与Rt△A`B`C`,∠C=∠C` =90o,∠B=∠B`=α,那么与有什么关系?分析:由于∠C=∠C` =90o,∠B=∠B`=α,所以Rt△ABC∽Rt△A`B`C`,,即结论:在直角三角形中,当锐角B的度数一定时,不管三角形的大小如何,∠B的邻边与斜边的比也是一个固定值。
如图,在Rt△ABC中,∠C=90o,把锐角B的邻边与斜边的比叫做∠B的余弦,记作cosB即把∠A的对边与邻边的比叫做∠A的正切.记作tanA,即锐角A的正弦,余弦,正切都叫做∠A的锐角三角函数.(三)教学互动例2:如图,在中, ,BC=6, 求cos和tan的值.解: ,.又例3:(1)如图(1), 在中,,,,求的度数.(2)如图(2),已知圆锥的高AO等于圆锥的底面半径OB的倍,求.(四)巩固再现1.在中,∠C=90°,a,b,c分别是∠A、∠B、∠C的对边,则有()A.B.C.D.2. 在中,∠C=90°,如果那么的值为()A.B.C.D.3、如图:P是∠的边OA上一点,且P点的坐标为(3,4),则cos=_____________.4、P81 练习1、2、3四、布置作业P85 1利用计算器求三角函数值教学目标1、让学生熟识计算器一些功能键的使用2、会熟练运用计算器求锐角的三角函数值和由三角函数值来求角教学重点、难点重点:运用计算器处理三角函数中的值或角的问题难点:知道值求角的处理教学过程复习引入教师讲解:通过上面几节的学习我们知道,当锐角A是30°、45°或60•°等特殊角时,可以求得这些特殊角的正弦值、余弦值和正切值;如果锐角A•不是这些特殊角,怎样得到它的三角函数值呢?我们可以借助计算器来求锐角的三角函数值.探究新知(一)已知角度求函数值教师讲解:例如求sin18°,利用计算器的并输入角度值18,得到结果sin18°=0.309016994.又如求tan30°36′,•利用键,并输入角的度、分值,就可以得到答案0.591398351.利用计算器求锐角的三角函数值,或已知锐角三角函数值求相应的锐角时,不同的计算器操作步骤有所不同.因为30°36′=30.6°,所以也可以利用30.6,•同样得到答案0.591398351.(二)已知函数值,求锐角教师讲解:如果已知锐角三角函数值,也可以使用计算器求出相应的锐角.例如,已知sinA=0.5018;用计算器求锐角A可以按照下面方法操作:依次按键然后输入函数值0.5018,得到∠A=30.11915867°(如果锐角A精确到1°,则结果为30°).还可以利用A=30°07′08.97″(如果锐角A•精确到1′,则结果为30°8′,精确到1″的结果为30°7′9″).使用锐角三角函数表,也可以查得锐角的三角函数值,或根据锐角三角函数值求相应的锐角.教师提出:怎样验算求出的∠A=30°7′9″是否正确?让学生思考后回答,•然后教师总结:可以再用计算器求30°7′9″的正弦值,如果它等于0.5018,•则我们原先的计算结果就是正确的.随堂练习课本第84页练习第1、2题.课时总结已知角度求正弦值用90°的锐角用•对于余弦与正切也有相类似的求法.解直角三角形一、教育目标1、使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.2、通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.3、渗透数形结合的数学思想,培养学生良好的学习习惯.二、教学重点、难点1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.三、教学步骤(一)复习引入1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系如果用表示直角三角形的一个锐角,那上述式子就可以写成.(2)三边之间关系a 2 +b 2 =c 2 (勾股定理)(3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用.(二)教学过程1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).3.例题a b A b a A cb Ac a A ====cot ;tan ;cos ;sin b a B a b B c a B c b B ====cot ;tan ;cos ;sin α∠的对边的邻边;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠=∠∠=∠=∠=cot tan cos sin例 1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且,,解这个三角形.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.解 ∵tanA=ab∴ 60B ∠=∴ 9030A B ∠=-∠=∴C=2b=例 2在Rt △ABC 中, ∠B =35,b=20,解这个三角形.引导学生思考分析完成后,让学生独立完成在学生独立完成之后,选出最好方法,教师板书.35B ∠-∠=-=解:A=909055tan b B a = 2028.6tan tan 35b a B ∴==≈ n 2035.1sin sin 35b si B c b c b =∴==≈ 完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底注意:例1中的b 和例2中的c 都可以利用勾股定理或其它三角函数来计算,但计算出的值可能有些少差异,这都是正常的。