假设检验的基本思想与步骤

合集下载

4 假设检验和t检验

4 假设检验和t检验

t
2.671
17905113912 /11101971 9462 / 9 ( 1 1)
11 9 2
11 9
=n1+n22=11+9-2=18
(3)确定P值,作出推断结论
以=18,查 t 界值表得 0.01<P<0.02。按=0.05 水
准,拒绝 H0,接受 H1,差异有统计学意义。可以认为 两种饲料对小鼠的体重影响不同。
(2)计算检验统计量
本例n=12,d=53,d2=555,
d d 53 4.42 n 12
sd
d2 (
d)2 / n
555 (53)2 /12 5.40
n 1
12 1
t d 4.42 2.83 sd / n 5.40 / 12
12 1 11
(3)确定P值,作出推断结论
(1)建立检验假设,确定检验水准
H0:1=2 即两组小鼠的体重总体均数相同 H1:1 2 即两组小鼠的体重总体均数不相同 =0.05
(2)计算检验统计量
126.45 105.11
t
2.671
(111)17.762 (9 1)17.802 ( 1 1)
11 9 2
11 9
126.45 105.11
型)选择相应的检验统计量。 如 t 检验、z检验、 F检验和 2 检验等。
本例采用t检验方法 t X X X 0 , n 1
SX S n S n
本例t值为1.54
3. 确定P值,做出推断结论
是指查根表据得所到计检算验的用检的验临统界计值量,确然定后H将0成算立得的可 能性的大统小计,量即与确拒定绝在域检的验临假界设值条作件比下较由,抽确样定误P差引 起差值别。的如概对率双。侧 t 检验 | t | ,则 tα/2(ν) P α ,按检

第6章 假设检验 《统计学概论》PPT课件

第6章 假设检验 《统计学概论》PPT课件

显著性水平和拒绝域(双侧检验 )
抽样分布
拒绝H0
/2
1 -
置信水平 拒绝H0
/2
临界值
0
临界值
样本统计量
显著性水平和拒绝域(双侧检验 )
抽样分布
拒绝H0
/2
1 -
置信水平 拒绝H0
/2
临界值
0
临界值
样本统计量
显著性水平和拒绝域( 左侧检验 )
抽样分布
拒绝H0
置信水平
1 -
临界值
0
样本统计量
显著性水平和拒绝域(左侧检验 )
0.025
P值
检验统计量:
0.025
0
Z x X 0 =1050 1000 =2.5 n 100 25
P值 =2 P{Z≥2.5} =2×0.0062=0.0124
检验统计量 的观察值
结论:P值< =0.05,
所以应该拒绝H0
5-42
假设检验的两种判断方法的比较
样本
检验统计 量观察值
给定显著 性水平
z X 0 / n
z 检验
常用 统计量
t X 0
S/ n
F
2
(n 1)S 2
(n1 1)S122
12
(n2 1)S22
S12 S22
2 2
t 检验
χ 2检验
F检验
第三步:确定显著水平α的值,查相应的分 布表得其临界值以及拒绝域。
第四步:进行显著性判别。
假设检验结论的表述
假设检验结论的表述
平)
检验的显著性水平是事先设定的拒绝原假设时所犯错误的概率 的最大允许值。
P值是根据观察样本实际计算的拒绝原假设时所犯错误的概率值。

统计假设检验的基本思想和概念

统计假设检验的基本思想和概念

统计假设检验的基本思想和概念本章主要介绍统计假设检验的基本思想和概念以及参数的假设检验方法。

8.1假设检验的基本思想和概念(一)统计假设的概念为了引入统计假设的概念,先请看例8-1。

例8-1味精厂用一台包装机自动包装味精,已知袋装味精的重量,机器正常时,其均值=0.5(0.5,0.015的单位都是公斤)。

某日开工后随机抽取9袋袋装味精,其净重(公斤)为:0.497,0.506,0.518,0.524,0.498,0.511,0.520,0.515,0.512问这台包装机是否正常?【答疑编号:10080101针对该题提问】此例随机抽样取得的9袋味精的重量都不正好是0.5公斤,这种实际重量和标准重量不完全一致的现象,在实际中是经常出现的。

造成这种差异不外乎有两种原因:一是偶然因素的影响,二是条件因素的影响。

由于偶然因素而发生的(例如电网电压的波动、金属部件的不时伸缩、衡量仪器的误差而引起的)差异称为随机误差;由于条件因素(生产设备的缺陷、机械部件的过度损耗)而产生的差异称为条件误差。

若只存在随机误差,我们就没有理由怀疑标准重量不是0.5公斤;如果我们有十足的理由断定标准重量已不是0.5公斤,那么造成这种现象的主要原因是条件误差,即包装机工作不正常,那么,怎样判断包装机工作是否正常呢?我们通过解例8-1 来找出解假设检验问题的思想方法。

解已知袋装味精重,假设现在包装机工作正常,即提出如下假设:,这是两个对立的假设,我们的任务就是要依据样本对这样的假设之一作出是否拒绝的判断。

由于样本均值是的一个很好的估计,故当为真时,应很小。

当过分大时,我们就应当怀疑不正确而拒绝。

怎样给出的具体界限值呢?当为真时,由于,对于给定的很小的数0<α<1,例如取α=0.05,考虑,其中是标准正态分布上侧分位数,而事件(8.1.1)是一个小概率事件,小概率事件在一次试验中几乎不可能发生。

我们查附表1得,又n=9,=0.015,由样本算得,又由(8.1.1)得:小概率事件居然发生了,这与实际推断原理相矛盾,于是拒绝,而认为这台包装机工作不正常。

简述统计假设检验的基本步骤

简述统计假设检验的基本步骤

统计假设检验的一般步骤(1)根据实际问题的要求,充分考虑和利用已知的背景知识,提出原假设H及备择假设1H;(2)给定显著性水平α以及样本容量n;(3)确定检验统计量U,并在原假设H成立的前提下导出U的概率分布,要求U的分布不依赖于任何未知参数;(4)确定拒绝域,即依据直观分析先确定拒绝域的形式,然后根据给定的显著性水平α和U的分布,由P{拒绝H|0H为真}=α确定拒绝域的临界值,从而确定拒绝域;(5)作一次具体的抽样,根据得到的样本观察值和所得的拒绝域,对假设H作出拒绝或接受的判断.扩展:假设检验的基本思想假设检验的基本思想实质上是带有某种概率性质的反证法. 为了检验一个假设H是否正确, 首先假定该假设0H正确, 然后根据样本对假设H作出接受或拒绝的决策. 如果样本观察值导致了不合理0的现象的发生, 就应拒绝假设H, 否则应接受假设0H.假设检验中所谓“不合理”,并非逻辑中的绝对矛盾,而是基于人们在实践中广泛采用的原则, 即小概率事件在一次试验中是几乎不发生的. 但概率小到什么程度才能算作“小概率事件”, 显然, “小概率事件”的概率越小,否定原假设H就越有说服力. 常记这个概率值为)1α,称为检验的显著性水平. 对不同的问题, 检验的显著性0(<<α水平α不一定相同, 但一般应取为较小的值, 如0.1,0.05或0.01等.假设检验的两类错误当假设H正确时, 小概率事件也有可能发生, 此时我们会拒绝假设H, 因而犯了“弃真”的错误, 称此为第一类错误. 犯第一类错误0的概率恰好就是“小概率事件”发生的概率α, 即P{拒绝H|0H为真}=α.反之, 若假设H不正确, 但一次抽样检验结果, 未发生不合理结果,这时我们会接受H, 因而犯了“取伪”的错误,称此为第二类错误. 记β为犯第二类错误的概率, 即P {接受0H |0H 不真}=β.理论上, 自然希望犯这两类错误的概率都很小。

当样本容量n 固定时, α,β不能同时都小, 即α变小时, β就变大;而β变小时,α就变大.。

假设检验

假设检验

假设检验是用来判断样本与样本,样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。

其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。

生物现象的个体差异是客观存在,以致抽样误差不可避免,所以我们不能仅凭个别样本的值来下结论。

当遇到两个或几个样本均数(或率)、样本均数(率)与已知总体均数(率)有大有小时,应当考虑到造成这种差别的原因有两种可能:一是这两个或几个样本均数(或率)来自同一总体,其差别仅仅由于抽样误差即偶然性所造成;二是这两个或几个样本均数(或率)来自不同的总体,即其差别不仅由抽样误差造成,而主要是由实验因素不同所引起的。

假设检验的目的就在于排除抽样误差的影响,区分差别在统计上是否成立,并了解事件发生的概率。

在质量管理工作中经常遇到两者进行比较的情况,如采购原材料的验证,我们抽样所得到的数据在目标值两边波动,有时波动很大,这时你如何进行判定这些原料是否达到了我们规定的要求呢?再例如,你先后做了两批实验,得到两组数据,你想知道在这两试实验中合格率有无显著变化,那怎么做呢?这时你可以使用假设检验这种统计方法,来比较你的数据,它可以告诉你两者是否相等,同时也可以告诉你,在你做出这样的结论时,你所承担的风险。

假设检验的思想是,先假设两者相等,即:μ=μ0,然后用统计的方法来计算验证你的假设是否正确。

假设检验的基本思想1.小概率原理如果对总体的某种假设是真实的,那么不利于或不能支持这一假设的事件A(小概率事件)在一次试验中几乎不可能发生的;要是在一次试验中A竟然发生了,就有理由怀疑该假设的真实性,拒绝这一假设。

2.假设的形式H0——原假设,H1——备择假设双尾检验:H0:μ = μ0,单尾检验:,H1:μ < μ0,H1:μ > μ0假设检验就是根据样本观察结果对原假设(H0)进行检验,接受H0,就否定H1;拒绝H0,就接受H1。

第七章假设检验与t检验(终板)

第七章假设检验与t检验(终板)
1、假设检验中α值是检验水准,是拒绝 或不拒绝H0的概率标准。α的大小是人为 选定的,一般取0.05。
2、P值是指从H0所规定的总体中作随机 抽样,获得等于及大于 (或等于及小于)现有 样本统计量的概率。通过 P值与α 值的比 较来确定拒绝或不拒绝H0。
四、假设检验的应用注意事项
(1)研究设计要科学严密 (2)考虑假设检验方法的前提条件 (3)正确理解P值的含义 (4)假设检验的结论不能绝对化 (5)统计学意义与实际意义相互结合
的疗效时,如能根据专业知识认为新药 疗效不会比旧药差,只关心新药是否比 旧药好(疗效至少相同,绝对排除出现 相反的可能性),可用单侧检验。
双侧检验:在比较甲乙两种药物的疗效时, 事先不能确定哪种药的疗效较好,只关心两药 的疗效有无差别,要用双侧检验。双侧检验若 有差别,单侧检验肯定有差别;反之,单侧检 验若有差别,双侧检验不一定有差别。 单侧检验更容易得到有统计学意义的结论。
140 150 138 120 140 145 135 115 135 130 120 133 147 125 114 165 —
差值d (4)
27 25 12 -10 -10 0 0 10 7 -5 20 3 37 10 -6 10
d 130
d2 (5)
725 625 144 100 100 0 0 100 49 25 400 9 1369 100 36 100
2、选定检验方法和计算检验统计量
根据研究设计方案、资料类型、样本含量 大小及分析目的选用适当的检验方法,并根据 样本资料计算相应的检验统计量;不同的检验 方法要用不同的公式计算现有样本的检验统计 量(t ,u,F值)。检验统计量是在H0成立的前 提下计算出来。
3、确定P值,作出统计推断 P值是指由所规定的总体作随机抽样, 获得

医学统计学-假设检验

差别有统计学意义,可以认为病毒性肝炎患者的转 铁蛋白含量较低。
3.4 两组资料比较的u检验
➢当随机抽样的样本例数足够大时,t检验统计 量的自由度逐渐增大,t分布逐渐逼近于标准 正态分布,可以利用近似正态分布的原理进 行u检验。
u XA XB sX A X B
XA XB sA2 nA sB2 nB
1 假设检验的基本思想
➢提出一个假设 ➢如果假设成立,得到现有样本的可能性
➢可能性很小(小概率事件),在一次试验中本不 该得到,居然得到了,说明我们的假设有问题, 拒绝之。
➢有可能得到手头的结果,故根据现有的样本无法 拒绝事先的假设(没理由)
例1
样本:随机抽查25名男炊事员的血清总胆固 醇 , 求 得 其 均 数 为 5.1mmol/L , 标 准 差为0.88mmol/L。
假设检验的基本思想:女士和奶
➢ 女士说她可以辨认出加奶和水的顺序 ➢ 事先假设:她在耍我们,每次她都在瞎猜 ➢ 现在给她对十杯牛奶做出判断 ➢ 如果她是瞎猜的,却全部正确,几率为0.510≈0.001 ➢ 0.001是小概率,认为不会发生(即10次全猜对是
不可能的) ➢ 现在试验的结果是十杯全部说对了 ➢ 故断定假设不成立

F
s12 (大) s22 (小)
~ F( ,1 , 2 )
方差齐性检验
男性组
12=?
➢除抽样误差外,该单位食堂炊事员与健康男性存 在本质上的差异:偷东西吃?。(必然的、大于 随机误差)
➢两种情况只有一个是正确的,且二者必居其 一,需要我们作出推断。
假设检验的一般步骤
➢步骤1:建立假设 ➢在假设的前提下有规律可寻
➢零假设(null hypothesis),记为H0,表示目前的 差异是由于抽样误差引起的。

假设检验2

t 检验(independent samples t test)或成组 t
检验。
两样本均数比较的t检验

假定两样本所代表的总体分别服从正态分
布 N (1,12 ) 、N (2 , 22 ),若两总体方差相等
(12 = 22 ),可估计出两者的合并方差 Sc2
x1 x2 2 2 x2 x1 2 2 n 1 S n 1 S n n 1 2 2 1 2 Sc2 1 n1 n2 2 n1 n2 2

选用双侧检验还是单侧检验需要根据分析目的及专业 知识进行确定 在没有充分理由进行单侧检验时,为了稳妥起见,建 议采用双侧检验


应该在假设检验的第一步建立检验假设时确定,不应
该在算得检验统计量后主观确定,否则可能得到相反 的结论
2. 选定检验方法,计算检验统计量
2 N ( , ), 已知观察变量血红蛋白值服从正态分布

两小样本均数比较时,要求两样本均来自正态
分布总体,且两样本总体方差相等

对两大样本(n1、n2 均大于50)的均数比较,可用Z 检验
配对设计均数的比较
亦称为配对 t 检验(paired samples t test)

配对设计资料主要有以下三种情况

配对的两个受试对象分别接受两种不同处理之 后的数据 同一样品用两种方法(或仪器)检验出的结果 同一受试对象两个部位的测定数据
n n 1 3 n 1 Xi X KURT n 1 n 2 n 3 i 1 S n 2 n 3
n 4 2
S KURT
24n n 1 n 3 n 2 n 3 n 5

假设检验

假设检验假设检验(Hypothesis Testing)是数理统计学中根据一定假设条件由样本推断总体的一种方法。

具体作法是:根据问题的需要对所研究的总体作某种假设,记作H0;选取合适的统计量,这个统计量的选取要使得在假设H0成立时,其分布为已知;由实测的样本,计算出统计量的值,并根据预先给定的显著性水平进行检验,作出拒绝或接受假设H0的判断。

常用的假设检验方法有u—检验法、t检验法、χ2检验法(卡方检验)、F—检验法,秩和检验等。

中文名假设检验外文名 hypothesis test提出者 K.Pearson 提出时间 20世纪初1、简介假设检验又称统计假设检验(注:显著性检验只是假设检验中最常用的一种方法),是一种基本的统计推断形式,也是数理统计学的一个重要的分支,用来判断样本与样本,样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。

其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。

[1]2、基本思想假设检验的基本思想是小概率反证法思想。

小概率思想是指小概率事件(P<0.01或P<0.05)在一次试验中基本上不会发生。

反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立,若可能性大,则还不能认为假设成立。

[2] 假设是否正确,要用从总体中抽出的样本进行检验,与此有关的理论和方法,构成假设检验的内容。

设A是关于总体分布的一项命题,所有使命题A成立的总体分布构成一个集合h0,称为原假设(常简称假设)。

使命题A不成立的所有总体分布构成另一个集合h1,称为备择假设。

如果h0可以通过有限个实参数来描述,则称为参数假设,否则称为非参数假设(见非参数统计)。

如果h0(或h1)只包含一个分布,则称原假设(或备择假设)为简单假设,否则为复合假设。

对一个假设h0进行检验,就是要制定一个规则,使得有了样本以后,根据这规则可以决定是接受它(承认命题A正确),还是拒绝它(否认命题A正确)。

假设检验的基本思想

假设检验的基本思想假设检验的基本思想⼀、总结⼀句话总结:> 假设检验的基本思想是【“⼩概率事件”原理】,其统计推断⽅法是带有某种概率性质的【反证法】。

> 【⼩概率思想】是指⼩概率事件在⼀次试验中基本上不会发⽣。

> 【反证法思想】是先提出检验假设,再⽤适当的统计⽅法,利⽤⼩概率原理,确定假设是否成⽴。

即为了检验⼀个假设H0是否正确,⾸先假定该假设H0正确,然后根据样本对假设H0做出接受或拒绝的决策。

【如果样本观察值导致了“⼩概率事件”发⽣,就应拒绝假设H0,否则应接受假设H0】。

> 对于不同的问题,检验的显著性⽔平α不⼀定相同,⼀般认为,事件发⽣的概率【⼩于0.1、0.05或0.01等】,即“⼩概率事件”。

1、假设检验(hypothesis testing)?> 假设检验(hypothesis testing),⼜称统计假设检验,是⽤来判断【样本与样本、样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断⽅法】。

> 【显著性检验】是假设检验中最常⽤的⼀种⽅法,也是⼀种最基本的统计推断形式,其【基本原理】是【先对总体的特征做出某种假设】,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受做出推断。

> 常⽤的【假设检验⽅法】有【Z检验、t检验、卡⽅检验、F检验等】⼆、假设检验的基本思想来看看百度百科的说法:假设检验(hypothesis testing)假设检验(hypothesis testing),⼜称统计假设检验,是⽤来判断样本与样本、样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断⽅法。

显著性检验是假设检验中最常⽤的⼀种⽅法,也是⼀种最基本的统计推断形式,其基本原理是先对总体的特征做出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受做出推断。

常⽤的假设检验⽅法有Z检验、t检验、卡⽅检验、F检验等基本思想假设检验的基本思想是“⼩概率事件”原理,其统计推断⽅法是带有某种概率性质的反证法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档