假设检验的基本思想与步骤
4 假设检验和t检验

t
2.671
17905113912 /11101971 9462 / 9 ( 1 1)
11 9 2
11 9
=n1+n22=11+9-2=18
(3)确定P值,作出推断结论
以=18,查 t 界值表得 0.01<P<0.02。按=0.05 水
准,拒绝 H0,接受 H1,差异有统计学意义。可以认为 两种饲料对小鼠的体重影响不同。
(2)计算检验统计量
本例n=12,d=53,d2=555,
d d 53 4.42 n 12
sd
d2 (
d)2 / n
555 (53)2 /12 5.40
n 1
12 1
t d 4.42 2.83 sd / n 5.40 / 12
12 1 11
(3)确定P值,作出推断结论
(1)建立检验假设,确定检验水准
H0:1=2 即两组小鼠的体重总体均数相同 H1:1 2 即两组小鼠的体重总体均数不相同 =0.05
(2)计算检验统计量
126.45 105.11
t
2.671
(111)17.762 (9 1)17.802 ( 1 1)
11 9 2
11 9
126.45 105.11
型)选择相应的检验统计量。 如 t 检验、z检验、 F检验和 2 检验等。
本例采用t检验方法 t X X X 0 , n 1
SX S n S n
本例t值为1.54
3. 确定P值,做出推断结论
是指查根表据得所到计检算验的用检的验临统界计值量,确然定后H将0成算立得的可 能性的大统小计,量即与确拒定绝在域检的验临假界设值条作件比下较由,抽确样定误P差引 起差值别。的如概对率双。侧 t 检验 | t | ,则 tα/2(ν) P α ,按检
数据分析知识:数据分析中的假设检验流程

数据分析知识:数据分析中的假设检验流程在数据分析领域里,假设检验是一种用来判断样本统计量是否代表整体总体的方法。
其基本思想是首先确定一个假设,然后使用统计方法对这个假设进行检验,从而得出结论。
假设检验流程主要包括以下五个步骤:第一步:确定零假设和备择假设。
在进行假设检验时,需要先明确零假设和备择假设。
零假设是指认为不存在差异或者认为差异是由随机因素造成的假设,通常使用"H0"表示;备择假设则是指认为存在差异或者认为差异不是由随机因素造成的假设,通常使用"Ha"表示。
需要注意的是,备择假设并不一定是"完全相反"的假设,而是对零假设的补充或者修正。
第二步:确定显著性水平。
显著性水平指的是能够接受零假设的程度,通常使用"α"表示。
常见的显著性水平有0.05和0.01两种。
当显著性水平为0.05时,意味着我们只接受在5%的概率范围内出现假阳性(Type I Error)的结论;同理,当显著性水平为0.01时,只接受在1%的概率范围内出现假阳性的结论。
第三步:计算检验统计量。
检验统计量是用来度量样本数据与零假设之间偏差的统计量,通常使用"t"或"z"符号表示。
具体计算公式根据检验类型的不同而异。
常见的检验类型有单样本t检验、独立样本t检验、配对样本t检验、方差分析等。
第四步:计算P值。
P值,也称为"显著性水平",指的是当零假设为真的情况下,获得当前检验统计量或更极端的结果的概率。
通常情况下,P值越小,代表得到类似结果的概率越小,说明样本结果更具有显著性。
如果P值小于显著性水平α,则拒绝零假设;反之,则无法拒绝零假设。
第五步:解释结果。
在判断零假设和备择假设之间的关系时,需要将P值与显著性水平进行比较,如果P值小于显著性水平,则获得拒绝零假设的结论,否则获得接受零假设的结论。
总结假设检验的基本思想

总结假设检验的基本思想假设检验是统计学的重要方法之一,其基本思想是通过对样本数据进行统计分析,从而对总体参数进行推断。
其步骤包括建立原假设和备选假设、选择合适的统计量、确定显著性水平、计算检验统计量的值、进行假设检验并做出推断。
假设检验的基本思想可以总结为以下几点:1. 建立原假设和备选假设:在进行假设检验之前,需要首先建立原假设和备选假设。
原假设(H0)是对总体参数的一个假设,而备选假设(H1)则是对原假设的否定或对立假设。
通常情况下,原假设是关于总体参数等于某个特定值或满足某个特定条件的假设,而备选假设则是关于总体参数不等于特定值或不满足特定条件的假设。
2. 选择合适的统计量:假设检验需要选择一个合适的统计量来对样本数据进行分析。
统计量是从样本数据中计算得到的一个数值,可以用来推断总体参数。
选择合适的统计量需要考虑其与总体参数的关系,以及其满足的分布假设等。
3. 确定显著性水平:显著性水平是进行假设检验时所允许的错误发生的概率。
通常情况下,显著性水平被设定为0.05或0.01,表示允许发生5%或1%的错误。
显著性水平的选择需要根据具体情况进行权衡,过高的显著性水平可能导致过多的错误推断,而过低的显著性水平可能会导致错误推断的概率过大。
4. 计算检验统计量的值:根据样本数据和选择的统计量,可以计算得到检验统计量的值。
检验统计量是对样本数据进行统计分析后得到的一个数值,用于评估原假设的可信程度。
5. 进行假设检验并做出推断:根据计算得到的检验统计量的值和显著性水平,可以进行假设检验并做出推断。
如果检验统计量的值落在拒绝域内(即小于或大于显著性水平对应的临界值),则可以拒绝原假设,接受备选假设;如果检验统计量的值落在接受域内(即大于或小于显著性水平对应的临界值),则不能拒绝原假设。
综上所述,假设检验的基本思想是通过对样本数据进行统计分析,从而对总体参数进行推断。
通过建立原假设和备选假设,选择合适的统计量,确定显著性水平,计算检验统计量的值,并进行假设检验,可以对总体参数进行推断,并做出相应的结论。
总结假设检验的基本思想

总结假设检验的基本思想假设检验是统计学中一种常用的推断方法,用于对两个或多个互相竞争的假设进行比较,以确定观察数据是否支持某个假设。
它的基本思想是将待检验的问题转化为假设的形式,并根据样本数据进行统计推断,从而对原假设的真实性进行判断。
假设检验的基本思想可以总结为以下几个步骤:第一步:提出问题和建立假设。
在进行假设检验之前,首先需要明确一个问题,并对该问题提出两个或多个互相竞争的假设。
通常情况下,我们会将其中一个假设作为原假设(null hypothesis, H0),另一个作为备择假设(alternative hypothesis, Ha)。
原假设通常是我们希望通过数据证明的假设,而备择假设则是与原假设相对立的假设。
第二步:选择合适的检验统计量。
为了对假设进行检验,我们需要选择适当的检验统计量,它是样本数据的函数,用于对假设进行判断。
检验统计量的选择应该具备敏感性,即能够对不同假设下的数据波动进行有效的区分。
常见的检验统计量包括t统计量、z统计量、卡方统计量等。
第三步:确定显著性水平。
显著性水平(significance level)是我们对原假设进行拒绝的阈值。
通常情况下,我们选择显著性水平为0.05或0.01,代表了我们对得出假阳性结果的容忍度。
一旦检验统计量的观察值小于或大于临界值,我们将拒绝原假设。
第四步:计算检验统计量的观察值。
使用样本数据计算得到检验统计量的观察值,并将其与临界值进行比较。
一般情况下,观察值越远离临界值,我们越倾向于拒绝原假设。
第五步:做出决策。
根据第四步的比较结果,我们可以选择接受原假设,也可以选择拒绝原假设。
如果观察值小于或大于临界值,且差异达到显著性水平,则我们可以拒绝原假设。
相反,如果观察值位于临界值附近,则我们应该接受原假设。
第六步:给出结论。
根据第五步的决策,我们可以给出关于原假设真实性的结论。
如果拒绝了原假设,我们可以认为备择假设更为合理;如果接受了原假设,我们则认为原假设具有足够的证据支持。
假设检验的基本思想与步骤

假设检验的基本思想与步骤假设检验是统计学中重要的方法之一,用于验证关于总体特征的假设。
通过收集样本数据,利用统计分析方法对假设进行检验,从而对总体的真实特征进行推断。
本文将介绍假设检验的基本思想与步骤。
一、基本思想假设检验的基本思想是通过收集样本数据来判断总体的特征是否与我们所假设的一致。
在进行假设检验时,我们首先提出原假设(H0)和备择假设(H1)。
原假设通常表示我们对总体特征的假设,备择假设则是与原假设相对立的假设,用于检验原假设的推翻。
在收集样本数据后,通过对样本数据的统计分析,我们可以判断原假设是否应该被拒绝。
二、步骤假设检验的步骤可以分为六个主要的部分,下面将详细介绍每一步的具体内容。
1. 确定假设在进行假设检验前,我们首先需要确定原假设和备择假设。
原假设通常是我们所期望的总体特征,而备择假设则是与原假设相对立的假设。
例如,当我们想要检验某个产品的平均销售额是否达到预期水平时,原假设可以是销售额等于预期值,备择假设则可以是销售额不等于预期值。
2. 选择显著性水平显著性水平是决定是否拒绝原假设的标准。
在进行假设检验前,我们需要选择一个显著性水平(通常用α表示),该水平表示我们允许出现的错误类型I的概率。
常见的显著性水平选择包括0.05和0.01。
3. 计算检验统计量在进行假设检验时,我们需要计算一个检验统计量来对假设进行评估。
检验统计量的具体计算方法取决于所使用的统计分析方法和数据类型。
例如,在比较两个总体均值时,可以使用t检验,计算t值作为检验统计量。
4. 确定拒绝域拒绝域是根据显著性水平和检验统计量确定的。
拒绝域是指当检验统计量落在该区域内时,我们拒绝原假设。
拒绝域的确定需要根据所选用的检验方法和显著性水平进行计算。
5. 计算p值p值是根据样本数据计算得出的,在假设检验中用来判断原假设是否应该被拒绝。
p值表示当原假设为真时,观察到与样本数据一样极端情况的概率。
若p值小于显著性水平α,则拒绝原假设。
假设检验基本思想和步骤

H1 : u u0
* 检验假设是针对总体而非样本; * H0 和 H1 是相互联系、对立的假设,两者缺一不可 * H0 为无效假设,其假定通常是:某两个(或多个)总
体参数相等,或某两个总体参数之差等于0
* H1 的内容反映了检验的单双侧。若 H1 假设为
1=2
H1:该市高碘区与非高碘区儿童智力均数不等,即
12
=0.05
(2) 计算统计量
今 X1 =73.07, S1=10.75,n1=100 X2 =80.30,S2=11.83,n2=105
u X1 X 2 73.07 80.30 4.58
S12 S22
10.752 11.832
所有检验统计量都是在假设 H0 成立的条件下计 算出来的,它是用于决定是否拒绝 H0 的统计量,其统 计分布在统计推断中至关重要。
3、确定 P 值和作出推断结论
根据算出的检验统计量如 t、u 值,查相应的界
值表,即可得到概率 P。
P 是指从 H0 规定的总体作随机抽样,抽得等于 及大于现有样本获得的检验统计量值的概率。
1 称为检验效能(power of a test)。其意义是 当两总体确有差异,按规定检验水准 能发现该差 异的能力。如1 = 0.90,意味着若两总体确有差
别,则理论上在100次检验中,平均有90次能够得出 有统计学意义的结论。
拒绝H0,只可能犯 I 型错误,不可能犯 I I型错 误;不拒绝H0,只可能犯 II 型错误,不可能犯 I 型 错误。
n1 n2 2
n1 n2
30 28 2
30 28
=n1+n2–2=30+28–2=56
4第四章 假设检验、t检验和Z检验

编号
1 2 3
干预前
12 9 10
干预后
15 12 16
差值(d)
3 3 6
d2
9 9 36
4
5 6
6
5 8
10
12 9
4
7 1
16
49 1
7
8 9 10
13
11 10 9
19
18 15 11
67 5 2Fra bibliotek3649 25 4
第三节 配对设计t检验
1.建立检验假设,确定检验水准 H 0 : d 0
两独立样本t检验
1.建立假设,确定检验水准
H 0 : 1 2 H 1 : 1 2
2.选定检验方法,计算检验统计量
t 3012 .5 2611 .3 (30 1) 280.1 (32 1) 302.5 1 1 ( ) 30 32 2 30 32
第二节 单样本t检验和Z检验
1.建立检验假设,确定检验水准
H 0 : 0 H1 : 0
0.05
2.选定检验方法,计算检验统计量Z值
Z x 0 s/ n 142.6 130 31.25 / 210 5.843
3.确定P值,作出推断结论
P<0.01。按α=0.05水准,拒绝H0,接受H1,差异有高
度统计学意义。
第三节 配对设计t检验
配对t检验的基本思路是:首先求出各对 子的差值的均数,若两种处理结果无差 别或某种处理前后不起作用,理论上差 值的总体均数应该为0。
d d d 0 d t Sd sd / n sd / n v n 1
第三节 配对设计t检验
表4-3 10名抑郁症患者干预前后心理指标LSIB测试结果
8.1 假设检验的基本思想与步骤

如在工件直径的假设检验问题中,设α1 < α2 < α3, 对不同的分位数
电子科技大学
假设检验基本思想
(x)
显著性水 平α3下拒
绝H0
- u1 - u2- u3
u3 u2 u1
显著性水平α2下接受H0
α1 < α2 < α3
电子科技大学
假设检验基本思想
注2 在确定H0的拒绝域时应遵循有利准则: 将检验统计量对H0有利的取值区域确定为接受 域,对H1成立有利的区域作为拒绝域. 如在工件直径假设检验问题中
1.提出原假设:根据实际问题提出原假设
H0和备选假设H1;
电子科技大学
假设检验基本思想
2. 建立检验统计量:寻找参数的一个良好 估计量,据此建立一个不带任何未知参数的统
计量U作为检验统计量,并在H0成立的条件下,
确定U的分布(或近似分布);
2
3.确定H0的否定域:根据实际问题选定显
著性水平α,依据检验统计量的分布与H0的内
给定α,H1的否定域为:
x
-
0
-
0
n
uα
例中
x
-
2
-0.022
-
0
n
u0.05
-0.0165
拒绝H0,即认为新工艺使工件直径偏小.
大样本假设检验例
电子科技大学
假设检验基本思想
四、两类错误 1)假设检验的主要依据是“小概率事件原 理”,而小概率事件并非绝对不发生. 2)假设检验方法是依据样本去推断总体,样 本只是总体的一个局部,不能完全反映整体 特性.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§8.1 假设检验的基本思想与步骤
第1页
第8章 假设检验
假设检验是对总体的未知参数或总体服从的分布等,首先 提出某种假设,例如假设未知参数为某一常数或总体服从某 已知分布等,然后由样本提供的信息,对所做假设的“真实性” 做出否定还是不否定,即拒绝还是接受的判定。 假设检验问题分为如下两大类: 参数假设检验:对总体中某个数字特征或分布中的参数提 出假设检验。 非参数假设检验:对总体的分布、总体间的独立性以及是 否同分布等方面的检验。 本章主要介绍假设检验的基本概念、思想方法,讨论正态 总体参数的检验、频率检验、分布拟合检验(非参数假设检验) 等。
2
第 8) 章 一个例子 §8.1 假设检验的基本思想与步骤 ( 一
第3页
例1 某工厂生产10欧姆的电阻.根据以往生产的电阻 实际情况,可以认为其电阻值X~N( , 2), 标准差 σ=0.1.现在随机抽取10个电阻,测得它们的电阻值为: 9.9, 10.1, 10.2, 9.7, 9.9, 9.9, 10, 10.5, 10.1, 10.2. 试问:从这些样本,我们能否认为该厂生产的电阻的平 均值为10欧姆? 问题怎么建立: 确定总体:记X为该厂生产的电阻的测量值.根据假 设,X~N( , 2),这里=0.1. 明确任务:通过样本推断X的均值μ是否等于10欧姆. Hypothesis:上面的任务就是要通过样本去检验“X的 均值μ=10”这样一个假设是否成立.(在数理统计中把 “X的均值μ=10”这样一个待检验的假设记作 “H0:μ=10”称为 “原假设”或 “零假设”) 3
4
第8章
§8.1 假设检验的基本思想与步骤
第5页
合理的思路是找出一个界限c, 当 X 10 c 时,我们就接受原假设H0 , 而当 X 10 c 时,我们就拒绝原假设H0 .
这里的问题是,我们如何确定常数c呢?
细致的分析: 根据定理6.2.1, X ~N ( , ) n X ~N (0,1) ∵ n=10 ,=0.1
其中c Z /2 (0.1/ 10)
6
第8章
§8.1 假设检验的基本思想与步骤
第7页
X 10 称为检验统计量. 0.1 / 10 X 10 Z / 2 (0.1 / 10 ) X 10 也即 Z / 2 称为该检验的拒绝域 0.1 / 10
用以上检验准则处理我们的问题.
那么如果小概率事件发生了,即:
第8章
§8.1 假设检验的基本思想与步骤
第9页
(II)道理 我们的原假设是 H0:μ=10 由上面分析,当H0成立时,有:
P X 10 Z /2 (0.1/ 10)
∵相当小.这就是说:如果H0这个假设是正确的话, 检验统计量落入拒绝域就是一个发生的概率很小的事件. 过去我们提到过,通常认为:小概率事件在一次试验 中基本上是不会发生的. (我们把它称做实际推断原理.)
1
第8章
§8.1 假设检验的基本思想与步骤
第2页Leabharlann §8.1 假设检验的基本思想与步骤
一、假设检验的基本思想 先看以下两个例子
1、引例 设一箱有红白两种颜色的球共100个,甲说这里有98个白球, 乙从箱中任取一个,发现是红球,问甲说的是否正确?
先作假设H 0:箱中确有98个白球.
如果假设H 0是正确,则从箱中任取一个球是红球的概率只有 0.02,是小概率事件.通常认为在一次随机试验中概率小的事 件是不易发生,因此,若乙从箱中任取一个,发现是白球, 则没有理由怀疑假设H 0的正确性,今乙从箱中任取一个,发 现是红球,即小概率事件竟然在一次试验中发生了,故有 理由拒绝假设H 0,即认为甲的说法不正确.
X 10 P Z /2 即P 0.1/ 10
X 10 Z
/2
(0.1/ 10)
取c Z /2 (0.1/ 10)
现在我们就得到检验准则如下:
当 X 10 c时 我们就拒绝原假设
H0:μ=10.
而当 X 10 c时 我们就接受原假设 H0:μ=10.
第8章
§8.1 假设检验的基本思想与步骤
第4页
原假设的对立面是“X的均值μ≠10”记作 “H1:μ≠10”称为“对立假设”或“备择假设”. 把它们合写在一起就是: H0:μ=10 H1:μ≠10 解决问题的思路分析: ¶ ∵样本均值是μ的一个良好估计.∴如果μ=10,即原 假设成立时,那么:
X 10 应该比较小.反之,如果它过于大,那么想必 是原假设不成立. X 10 的大小可以用来检验原假设是否成立.
X 10 计算得 X 10.05 1.581 0.1/ 10
0.05 查表得Z / 2 1.96
∴接受原假设 H0:μ=10.
7
第8章
§8.1 假设检验的基本思想与步骤
第8页
假设检验的基本思想
假设检验的基本思想实质上是带有某种概率性质 的反证法。为了检验一个假设H0是否正确,首先假设 该假设H0正确,然后根据抽取到的样本对假设H0作出 接受或拒绝的决策。如果样本观察值导致了不合理的 现象发生,就应拒绝假设H0 ,否则应接受假设H0 。 假设检验中所谓的“不合理”,并非逻辑中的绝 对矛盾,而是基于人们在实践中广泛采用的原则,即 小概率事件在一次实验中是几乎不发生的。但概率到 什么程度才能算作“小概率事件”,显然,“小概率 事件”的概率越小,否定原假设H0就越有说服力。常 记这个概率值为α(0<α<1),称为检验的显著性水平。 对不同的问题,检验的显著性水平α不一定相同,但一 般应取为较小的值,如0.1、0.05或0.01等 8
X 10 于是,当原假设 H0:μ=10 成立时,有: ~N (0,1) 0.1/ 10
0.1/ 10
2
5
第8章
§8.1 假设检验的基本思想与步骤
第6页
为确定常数c,现在我们考虑一个相当小的正数 例如 =0.05. X 10 ~N (0,1) 于是,当原假设 H0:μ=10 成立时,有: 0.1/ 10