8.1.1假设检验的基本思想

合集下载

假设检验的基本思想与步骤

假设检验的基本思想与步骤
第8章
§8.1 假设检验的基本思想与步骤
第1页
第8章 假设检验
假设检验是对总体的未知参数或总体服从的分布等,首先 提出某种假设,例如假设未知参数为某一常数或总体服从某 已知分布等,然后由样本提供的信息,对所做假设的“真实性” 做出否定还是不否定,即拒绝还是接受的判定。 假设检验问题分为如下两大类: 参数假设检验:对总体中某个数字特征或分布中的参数提 出假设检验。 非参数假设检验:对总体的分布、总体间的独立性以及是 否同分布等方面的检验。 本章主要介绍假设检验的基本概念、思想方法,讨论正态 总体参数的检验、频率检验、分布拟合检验(非参数假设检验) 等。
2
第 8) 章 一个例子 §8.1 假设检验的基本思想与步骤 ( 一
第3页
例1 某工厂生产10欧姆的电阻.根据以往生产的电阻 实际情况,可以认为其电阻值X~N( , 2), 标准差 σ=0.1.现在随机抽取10个电阻,测得它们的电阻值为: 9.9, 10.1, 10.2, 9.7, 9.9, 9.9, 10, 10.5, 10.1, 10.2. 试问:从这些样本,我们能否认为该厂生产的电阻的平 均值为10欧姆? 问题怎么建立: 确定总体:记X为该厂生产的电阻的测量值.根据假 设,X~N( , 2),这里=0.1. 明确任务:通过样本推断X的均值μ是否等于10欧姆. Hypothesis:上面的任务就是要通过样本去检验“X的 均值μ=10”这样一个假设是否成立.(在数理统计中把 “X的均值μ=10”这样一个待检验的假设记作 “H0:μ=10”称为 “原假设”或 “零假设”) 3
4
第8章
§8.1 假设检验的基本思想与步骤
第5页
合理的思路是找出一个界限c, 当 X 10 c 时,我们就接受原假设H0 , 而当 X 10 c 时,我们就拒绝原假设H0 .

假设检验的基本思想

假设检验的基本思想

例1 已知某炼铁厂的铁水含碳量X在某种工艺条 件下服从正态分布N(4.55,0.1082)。现改变了工艺条 件,又测了五炉铁水,其含碳量分别为: 4.28,4.40,4.42,4.35,4.37。 , , , , 。 根据以往的经验,总体的方差σ2= 0.1082一般不会改变。 试问工艺改变后,铁水含碳量的均值有无改变? 显然,这里需要解决的问题是,如何根据样本判 断现在冶炼的铁水的含碳量是服从≠4.55的正态分布 呢?还是与过去一样仍然服从 =4.55的正态分布呢? 若是前者,可以认为新工艺对铁水的含碳量有显著的 影响;若是后者,则认为新工艺对铁水的含碳量没有 显著影响。通常,选择其中之一作为假设后,再利用 样本检验假设的真伪。
以上两例都是科技领域中常见的假设检验问题。 我们把问题中涉及到的假设称为原假设或称待检 假设,一般用H0表示。而把与原假设对立的断言称为 备择假设,记为H1。 如例1,若原假设为H0:= 0=4.55,则备择假设 为H1:≠4.55。 若例2的原假设为H0:X服从正态分布,则备择 假设为H1:X不服从正态分布。
自然,我们希望一个假设检验所作的判断犯这 两类错误的概率都很小。事实上,在样本容量n固 定的情况下,这一点是办不到的。因为当α减小时, β就增大;反之,当β减小时,就α增大。 那么,如何处理这一问题呢? 事实上,在处理实际问题中,对原假设H0, 我们都是经过充分考虑的情况下建立的,或者认 为犯弃真错误会造成严重的后果。
二、 假设检验的基本思想
假设检验的一般提法是:在给定备择假设H1下, 利用样本对原假设H0作出判断,若拒绝原假设H0, 那就意味着接受备择假设H1,否则,就接受原假设 H0。 换句话说,假设检验就是要在原假设H0和备择假 设H1中作出拒绝哪一个和接受哪一个的判断。究竟 如何作出判断呢?对一个统计假设进行检验的依据 是所谓小概率原理,即 概率很小的事件在一次试验中是几乎不可能发生

概率论与数理统计 8.1(假设检验的思想方法和基本概念)

概率论与数理统计 8.1(假设检验的思想方法和基本概念)
于是可以选定一个适当的正数k,
x 0 当观察值 x 满足 k时, 拒绝假设H 0 , / n x 0 反之, 当观察值 x 满足 k时, 接受假设H 0 . / n
X 0 因为当H 0为真时 Z ~ N (0,1), / n
于是,当原假设 H0:μ =0.5 成立时,有:

带概率性质的反证法的逻辑是: 即如果假设H0是正确的话,出现一个概率很 小的事件,则以很大的把握否定假设H0.
8.1.1 假设检验的思想方法
下面分别推出这两种检验的拒绝域: (1) 右边检验: H0: 0 H1: > 0
对于给定的小概率 , 由图8-2易知
/ n
由于X~N(, 2) ,所以 Z X ~ N (0,1)
左侧检验
(显著性水平与拒绝域 )
抽样分布
拒绝域
置信水平

1- 接受域
临界值
H0值
样本统计量
观察到的样本统计量
8.1.1 假设检验的思想方法
再考察下面的例子. 【例8.2】一台包装机包装洗衣粉,额定标准重量为500g, 根据以往经验,包装机的实际装袋重量服从正态N(,2), 其中 = 15g通常不会变化
H0 : p 0.03
1 [(1 p)10 10 p(1 p)9 ]
d f ( p) 8 90 p(1 p) 0 dp
当 p 0.03 时,f ( p)单调增加
当 p 0.03 时,
f ( p) P{Y 2; p} 1 [(1 p)10 10 p(1 p)9 ] f (0.03) P{Y 2; 0.03} 0.035 0.05
当样本容量固定时 , 选定后, 数 k 就可以确 x 0 定, 然后按照统计量 Z 的观察值的绝对 / n 值大于等于 k 还是小于 k 来作决定.

假设检验的基本思想

假设检验的基本思想
现在,我们来解决例1提出的问题:
(1)假设H0:= 0=4.55,H1:≠4.55;
(2)选择检验用统计量 ;
(3)对于给定小正数,如=0.05,查标准正态分表得到临界值z/2 =z0.025 =1.96;
因为| z|=3.9>1.96,所以拒绝H0,接受H1,即认为新工艺改变了铁水的平均含碳量。
以上两例都是科技领域中常见的假设检验问题。 我们把问题中涉及到的假设称为原假设或称待检假设,一般用H0表示。而把与原假设对立的断言称为备择假设,记为H1。
如例1,若原假设为H0:= 0=4.55,则备择假设为H1:≠4.55。 若例2的原假设为H0:X服从正态分布,则备择假设为H1:X不服从正态分布。
例如,在100件产品中,有一件次品,随机地从中取出一个产品是次品的事件就是小概率事件。 因为此事件发生的概率=0.01很小,因此,从中任意抽一件产品恰好是次品的事件可认为几乎不可能发生的,如果确实出现了次品,我们就有理由怀疑这“100件产品中只有一件次品”的真实性。 那么取值多少才算是小概率呢?这就要视实际问题的需要而定,一般取0.1,0.05,0.01等。
一、假设检验问题的提出
统计推断的另一个重要问题是假设检验问题。在总体的分布函数未知或只知其形式,但不知其参数的情况下,为了推断总体的某些性质,提出某些关于总体的假设。例如,提出总体服从泊松分布的假设,又如,对于正态总体提出数学期望μ0的假设等。
这里,先结合例子来说明假设检验的基本思
二、假设检验的基本思想
假设检验的一般提法是:在给定备择假设H1下,利用样本对原假设H0作出判断,若拒绝原假设H0,那就意味着接受备择假设H1,否则,就接受原假设H0。 换句话说,假设检验就是要在原假设H0和备择假设H1中作出拒绝哪一个和接受哪一个的判断。究竟如何作出判断呢?对一个统计假设进行检验的依据是所谓小概率原理,即 概率很小的事件在一次试验中是几乎不可能发生

论假设检验方法的基本思想和实际运用

论假设检验方法的基本思想和实际运用

论假设检验方法的基本思想和实际运用一、引言在科学研究领域,假设检验是一种常用的统计推断方法,它被广泛应用于各个领域,如医学、经济学、生物学等。

假设检验方法的基本思想是根据样本数据来对总体参数进行推断,通过对比样本统计量和总体参数的差异来进行判断,进而对研究所要验证的假设进行验证。

本文将介绍假设检验方法的基本思想和实际运用,希望能够让读者对假设检验方法有一个更加深入的了解。

二、假设检验的基本思想1. 假设的提出在假设检验中,我们首先要提出一个关于总体参数的假设,这个假设通常称为原假设(H0)。

原假设可以是研究者所期望的结果,也可以是对研究对象性质的描述。

比如在医学实验中,原假设可以是新药对疾病的疗效没有显著影响,或者在市场调查中,原假设可以是某产品的市场占有率不超过50%。

原假设的提出是假设检验的起点,对于原假设的选择,通常是根据研究的目的和背景来确定的。

3. 统计量的计算和比较在假设检验中,我们首先要计算一个统计量,这个统计量通常是根据样本数据计算得到的。

然后,我们根据原假设和备择假设来确定临界值或者P值,通过对比统计量和临界值或者P值来进行假设的验证。

如果统计量落在临界值之内或者P值小于显著水平,我们就有足够的证据拒绝原假设;如果统计量落在临界值之外或者P值大于显著水平,我们就没有足够的证据拒绝原假设。

4. 结论的做出根据对比的结果,我们可以得出一个结论,如果有足够的证据拒绝原假设,那么我们将接受备择假设;如果没有足够的证据拒绝原假设,那么我们将继续接受原假设。

通过假设检验的基本思想,我们可以对我们所做的研究提出一个科学的结论。

三、假设检验方法的实际运用1. 医学领域在医学领域,假设检验方法被广泛应用于临床试验和流行病学调查中。

临床试验是评价医疗干预措施的有效性和安全性的重要手段,而流行病学调查是研究疾病发生和传播规律的重要途径。

在临床试验中,研究者通常会对照组和干预组进行对比,利用假设检验方法来评价干预措施的疗效;在流行病学调查中,研究者通常会利用假设检验方法来判断某一因素是否与疾病发生有关。

总结假设检验的基本思想

总结假设检验的基本思想

总结假设检验的基本思想假设检验是统计学的重要方法之一,其基本思想是通过对样本数据进行统计分析,从而对总体参数进行推断。

其步骤包括建立原假设和备选假设、选择合适的统计量、确定显著性水平、计算检验统计量的值、进行假设检验并做出推断。

假设检验的基本思想可以总结为以下几点:1. 建立原假设和备选假设:在进行假设检验之前,需要首先建立原假设和备选假设。

原假设(H0)是对总体参数的一个假设,而备选假设(H1)则是对原假设的否定或对立假设。

通常情况下,原假设是关于总体参数等于某个特定值或满足某个特定条件的假设,而备选假设则是关于总体参数不等于特定值或不满足特定条件的假设。

2. 选择合适的统计量:假设检验需要选择一个合适的统计量来对样本数据进行分析。

统计量是从样本数据中计算得到的一个数值,可以用来推断总体参数。

选择合适的统计量需要考虑其与总体参数的关系,以及其满足的分布假设等。

3. 确定显著性水平:显著性水平是进行假设检验时所允许的错误发生的概率。

通常情况下,显著性水平被设定为0.05或0.01,表示允许发生5%或1%的错误。

显著性水平的选择需要根据具体情况进行权衡,过高的显著性水平可能导致过多的错误推断,而过低的显著性水平可能会导致错误推断的概率过大。

4. 计算检验统计量的值:根据样本数据和选择的统计量,可以计算得到检验统计量的值。

检验统计量是对样本数据进行统计分析后得到的一个数值,用于评估原假设的可信程度。

5. 进行假设检验并做出推断:根据计算得到的检验统计量的值和显著性水平,可以进行假设检验并做出推断。

如果检验统计量的值落在拒绝域内(即小于或大于显著性水平对应的临界值),则可以拒绝原假设,接受备选假设;如果检验统计量的值落在接受域内(即大于或小于显著性水平对应的临界值),则不能拒绝原假设。

综上所述,假设检验的基本思想是通过对样本数据进行统计分析,从而对总体参数进行推断。

通过建立原假设和备选假设,选择合适的统计量,确定显著性水平,计算检验统计量的值,并进行假设检验,可以对总体参数进行推断,并做出相应的结论。

总结假设检验的基本思想

总结假设检验的基本思想

总结假设检验的基本思想假设检验是统计学中一种常用的推断方法,用于对两个或多个互相竞争的假设进行比较,以确定观察数据是否支持某个假设。

它的基本思想是将待检验的问题转化为假设的形式,并根据样本数据进行统计推断,从而对原假设的真实性进行判断。

假设检验的基本思想可以总结为以下几个步骤:第一步:提出问题和建立假设。

在进行假设检验之前,首先需要明确一个问题,并对该问题提出两个或多个互相竞争的假设。

通常情况下,我们会将其中一个假设作为原假设(null hypothesis, H0),另一个作为备择假设(alternative hypothesis, Ha)。

原假设通常是我们希望通过数据证明的假设,而备择假设则是与原假设相对立的假设。

第二步:选择合适的检验统计量。

为了对假设进行检验,我们需要选择适当的检验统计量,它是样本数据的函数,用于对假设进行判断。

检验统计量的选择应该具备敏感性,即能够对不同假设下的数据波动进行有效的区分。

常见的检验统计量包括t统计量、z统计量、卡方统计量等。

第三步:确定显著性水平。

显著性水平(significance level)是我们对原假设进行拒绝的阈值。

通常情况下,我们选择显著性水平为0.05或0.01,代表了我们对得出假阳性结果的容忍度。

一旦检验统计量的观察值小于或大于临界值,我们将拒绝原假设。

第四步:计算检验统计量的观察值。

使用样本数据计算得到检验统计量的观察值,并将其与临界值进行比较。

一般情况下,观察值越远离临界值,我们越倾向于拒绝原假设。

第五步:做出决策。

根据第四步的比较结果,我们可以选择接受原假设,也可以选择拒绝原假设。

如果观察值小于或大于临界值,且差异达到显著性水平,则我们可以拒绝原假设。

相反,如果观察值位于临界值附近,则我们应该接受原假设。

第六步:给出结论。

根据第五步的决策,我们可以给出关于原假设真实性的结论。

如果拒绝了原假设,我们可以认为备择假设更为合理;如果接受了原假设,我们则认为原假设具有足够的证据支持。

假设检验的基本思想与步骤

假设检验的基本思想与步骤

假设检验的基本思想与步骤假设检验是统计学中重要的方法之一,用于验证关于总体特征的假设。

通过收集样本数据,利用统计分析方法对假设进行检验,从而对总体的真实特征进行推断。

本文将介绍假设检验的基本思想与步骤。

一、基本思想假设检验的基本思想是通过收集样本数据来判断总体的特征是否与我们所假设的一致。

在进行假设检验时,我们首先提出原假设(H0)和备择假设(H1)。

原假设通常表示我们对总体特征的假设,备择假设则是与原假设相对立的假设,用于检验原假设的推翻。

在收集样本数据后,通过对样本数据的统计分析,我们可以判断原假设是否应该被拒绝。

二、步骤假设检验的步骤可以分为六个主要的部分,下面将详细介绍每一步的具体内容。

1. 确定假设在进行假设检验前,我们首先需要确定原假设和备择假设。

原假设通常是我们所期望的总体特征,而备择假设则是与原假设相对立的假设。

例如,当我们想要检验某个产品的平均销售额是否达到预期水平时,原假设可以是销售额等于预期值,备择假设则可以是销售额不等于预期值。

2. 选择显著性水平显著性水平是决定是否拒绝原假设的标准。

在进行假设检验前,我们需要选择一个显著性水平(通常用α表示),该水平表示我们允许出现的错误类型I的概率。

常见的显著性水平选择包括0.05和0.01。

3. 计算检验统计量在进行假设检验时,我们需要计算一个检验统计量来对假设进行评估。

检验统计量的具体计算方法取决于所使用的统计分析方法和数据类型。

例如,在比较两个总体均值时,可以使用t检验,计算t值作为检验统计量。

4. 确定拒绝域拒绝域是根据显著性水平和检验统计量确定的。

拒绝域是指当检验统计量落在该区域内时,我们拒绝原假设。

拒绝域的确定需要根据所选用的检验方法和显著性水平进行计算。

5. 计算p值p值是根据样本数据计算得出的,在假设检验中用来判断原假设是否应该被拒绝。

p值表示当原假设为真时,观察到与样本数据一样极端情况的概率。

若p值小于显著性水平α,则拒绝原假设。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章假设检验
第一节假设检验的基本思想
统计推断的另一重要问题是假设检验.在总体分布未知或虽知其类型但分布中含有未知参数时,为推断总体的某些未知提出关于总体的一些假设.我们需根据样本提供的信息对所提的假设作出接受或拒绝的决策,假设检验就是作出这一决策的过程.
假设检验⎩⎨⎧参数假设检验非参数假设检验
0 引言以及运用适当的统计量,特性,
参数假设检验是针对总体分布函数中的未知参数而提出的假设进行检验;
鉴于本章主要讨论单参数假设检验问题,故本节就以此为背景来探讨一般假设检验问题.
非参数假设检验是针对总体分布函数形式或类型的假设进行检验。

下面结合例题来说明假设检验的基本思想.
设一箱中有红白两种颜色的球共100个,甲说这里有99个白球乙从箱中任取一个,发现是红球,说法是否正确?先作假设:0H 箱中确有99个白球.
如果假设0H 正确,则从箱中任取一个球是红球的概率为0.01,是小概率事件.通常认为在一次随机试验中,概率小的事件因此,问甲的取一个,发现是白球,若乙从箱中任则没有理由怀疑假设0H 的正确性.不易发生,今乙从箱中任取一个,发现是红球,即小概率事件竟然在一次试验中发生了,故有理由拒绝假设,0H 即认为甲的说法不正确.
1.假设检验的基本思想
假设检验的基本思想实质上是带有某种概率性质的反证法。

为了检验一个假设0H 是否正确,定该0H 正确,然后根据抽取到的样本对假设0H 作出接受或拒绝的决策.
如果样本观察值导致了不合理的现象的发生,就应拒绝假设,0H 假设.
0H 假设检验中所谓“不合理”,并非逻辑中的绝对矛盾,而是首先假否则应接受基于人们在实践中广泛采用的原则,试验中是几乎不发生的,即小概率事件在一次但概率小到什么程度才能看作
“小概率事件”?
显然,“小概率事件”的概率越小,越有说服力.常记这个概率值为),10(<<αα检验的显著性水平.对不同的问题,检验的显著性水平α不一定相同,但都应取为较小值,0.05或0.01等.否定原假设0H 就称为如0.1,。

相关文档
最新文档