(完整版)初三数学九上二次函数所有知识点总结和常考题型练习题,推荐文档

合集下载

初三数学二次函数知识点总结及经典习题含答案

初三数学二次函数知识点总结及经典习题含答案

初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()00, y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下()00,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0c , y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c .0a < 向下()0c ,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0h ,X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a <向下()0h ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.三、二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 四、二次函数()2y a x h k =-+与2y a x b x c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a<-时,y 随x 的增大而减小; 当2bx a>-时,y 随x 的增大而增大; 当2bx a=-时,y 有最小值244ac b a -.a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()h k ,X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值k . 0a < 向下()h k ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值k .2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式(交点式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴) 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.. ② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;二次函数对应练习试题一、选择题1. 二次函数247y x x =--的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3) 2. 把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A. 22(1)y x =-+ B. 22(1)y x =-- C. 221y x =-+ D. 221y x =-- 3.函数2y kx k =-和(0)ky k x=≠在同一直角坐标系中图象可能是图中的( )4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个5.已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是121.3x x ==和( )A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.方程222x x x-=的正根的个数为( ) A.0个 B.1个 C.2个. 3 个8.已知抛物线过点A(2,0),B(-1,0),与y 轴交于点C,且OC=2.则这条抛物线的解析式为A. 22y x x =-- B. 22y x x =-++C. 22y x x =--或22y x x =-++ D. 22y x x =---或22y x x =++二、填空题9.二次函数23y x bx =++的对称轴是2x =,则b =_______。

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数各知识点、考点、典型例题及对应练习专题一:二次函数的图象与性质本专题涉及二次函数概念,二次函数的图象性质,抛物线平移后的表达式等.试题多以填空题、选择题为主,也有少量的解答题出现.考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2b a ,244ac b a-).例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2ba的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限考点3.二次函数的平移当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2 专题练习一 1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3)图1C.开口向下,顶点坐标为(-5,3)D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号)专题复习二:二次函数表达式的确定本专题主要涉及二次函数的三种表示方法以及根据题目的特点灵活选用方法确定二次函数的表达式.题型多以解答题为主.考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式.例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标.图2ABCD图1菜园墙专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )A.y=2a (x-1) B.y=2a (1-x ) C.y=a (1-x 2) D.y=a (1-x )22.如图2,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=12,CO=BO ,AB=3,则这条抛物线的函数解析式是 .3.对称轴平行于y 轴的抛物线与y 轴交于点(0,-2),且x=1时,y=3;x=-1时y=1, 求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式;(2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点. 专题三:二次函数与一元二次方程的关系本专题主要涉及根据二次函数的图象求一元二次方程的近似根,由图象判断一元二次方程根的情况,由一元二次方程根的情况判断抛物线与x 轴的交点个数等,题型主要填空题、选择题和解答题.考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x<<D.6.19 6.20x <<考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.图2图1考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根.(2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.专题四:利用二次函数解决实际问题本专题主要涉及从实际问题中建立二次函数模型,根据二次函数的最值解决实际问题,能根据图象学习建立二次函数模型解决实际问题.解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.例某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?专题训练四1.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?2.某旅行社有客房120间,每间客房的日租金为50元,每天都客满.旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数就会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?3.一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.x图1。

(完整word)初三数学二次函数知识点总结,推荐文档

(完整word)初三数学二次函数知识点总结,推荐文档

初三数学 二次函数 知识点总结一、二次函数概念:1. 二次函数的概念:一般地,形如 y = ax 2 + bx + c ( a 何何b c 是常数, a ≠ 0 )的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数 a ≠ 0 ,而b 何 体实数.2. 二次函数 y = ax 2 + bx + c 的结构特征:c 可以为零.二次函数的定义域是全⑴ 等号左边是函数,右边是关于自变量 x 的二次式, x 的最高次数是 2. ⑵ a 何何b c 是常数, a 是二次项系数, b 是一次项系数, c 是常数项.二、二次函数的基本形式1. 二次函数基本形式: y = ax 2 的性质: a 的绝对值越大,抛物线的开口越小。

2.y = ax 2 + c 的性质: 上加下减。

3.y = a (x - h )2的性质:左加右减。

a < 0 向下(h 何0) X=h x >h 时,y 随x 的增大而减小;x <h 时,y 随x 的增大而增大;x =h 时,y 有最大值0 .4.y =a (x -h)2 +k 的性质:a 的符号开口方向顶点坐标对称轴性质a > 0 向上(h 何k ) X=h x >h 时,y 随x 的增大而增大;x <h 时,y 随x 的增大而减小;x =h 时,y 有最小值k .a < 0 向下(h 何k ) X=h x >h 时,y 随x 的增大而减小;x <h 时,y 随x 的增大而增大;x =h 时,y 有最大值k .三、二次函数图象的平移1.平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式y =a (x -h)2 +k ,确定其顶点坐标(h何k );⑵ 保持抛物线y =ax2的形状不变,将其顶点平移到(h 何k )处,具体平移方法如下:【【(k>0)【【【【(k<0)【【【|k|【【【【【( h>0)【【【( h<0【【【|k|【【【【【( h>0)【【【( h<0)【【|k|【【【【【( k>0)【【【( k<0)【【【|k|【【【【【( h>0)【【【( h<0)【【【|k|【【【y=a(x-h)2【【(k>0)【【【(k<0)【【【|k|【【【y=a(x-h)2+k2.平移规律在原有函数的基础上“ h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴ y =ax 2 +bx +c 沿y 轴平移:向上(下)平移m 个单位,y =ax 2 +bx +c 变成y =ax 2 +bx +c +m (或y =ax 2 +bx +c -m )⑵ y =ax 2 +bx +c 沿轴平移:向左(右)平移m 个单位,y =ax 2 +bx +c 变成y =a(x +m)2 +b(x +m) +c (或y =a(x -m)2 +b(x -m) +c )四、二次函数y =a (x -h)2 +k 与y=ax2+bx+c的比较y=ax2y=ax 2+k2a ⎝ ⎭⎝ ⎭从解析式上看, y = a (x - h )2+ k 与 y = ax 2 + bx + c 是两种不同的表达形式,后者通过配方可以得到前 ⎛ b ⎫24ac - b 2 b 4ac - b 2者,即 y = a x + ⎪ +⎝ ⎭,其中 h = - 何 k = . 4a 2a 4a五、二次函数 y = ax 2 + bx + c 图象的画法五点绘图法:利用配方法将二次函数 y = ax 2 + bx + c 化为顶点式 y = a (x - h )2 + k ,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点(0何 c )、以及(0何 c )关于对称轴对称的点(2h ,c )、与 x 轴的交点(x 1何 0), (x 2 何 0)(若与 x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与 x 轴的交点,与 y 轴的交点.六、二次函数 y = ax 2 + bx + c 的性质b⎛ b 4ac - b 2 ⎪⎫ . 1. 当 a > 0 时,抛物线开口向上,对称轴为 x = - 2a ,顶点坐标为 - 2a何 4a当 x < - b 时, y 随 x 的增大而减小;当 x > - b时, y 随 x 的增大而增大;当 x = - b 时, y 有最2a 2a2a 4ac - b 2小值 .4ab ⎛ b 4ac - b 2 ⎫ b2. 当 a < 0 时,抛物线开口向下,对称轴为 x = - 2a ,顶点坐标为 - 2a 何 4a ⎪ .当x < - 2a时, b b 4ac - b 2y 随 x 的增大而增大;当 x > - 2a 时, y 随 x 的增大而减小;当 x = - 2a 时, y 有最大值 .4a七、二次函数解析式的表示方法1. 一般式: y = ax 2 + bx + c ( a , b , c 为常数, a ≠ 0 );2. 顶点式: y = a (x - h )2 + k ( a , h , k 为常数, a ≠ 0 );3. 两根式: y = a (x - x 1)(x - x 2 ) ( a ≠ 0 , x 1 , x 2 是抛物线与 x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与 x 轴有交点,即b 2 - 4ac ≥ 0 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数 a二次函数 y = ax 2 + bx + c 中, a 作为二次项系数,显然 a ≠ 0 .⑴ 当 a > 0 时,抛物线开口向上, a 的值越大,开口越小,反之 a 的值越小,开口越大; ⑵ 当 a < 0 时,抛物线开口向下, a 的值越小,开口越小,反之 a 的值越大,开口越大.总结起来, a 决定了抛物线开口的大小和方向, a 的正负决定开口方向, a 的大小决定开口的大小.2. 一次项系数b在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴. ⑴ 在 a > 0 的前提下,当b > 0 时, - b< 0 ,即抛物线的对称轴在 y 轴左侧;2a 当b = 0 时, - b= 0 ,即抛物线的对称轴就是 y 轴;2a 当b < 0 时, - b> 0 ,即抛物线对称轴在 y 轴的右侧.2a⑵ 在 a < 0 的前提下,结论刚好与上述相反,即当b > 0 时, - b> 0 ,即抛物线的对称轴在 y 轴右侧;2a 当b = 0 时, - b= 0 ,即抛物线的对称轴就是 y 轴;2a 当b < 0 时, - b< 0 ,即抛物线对称轴在 y 轴的左侧.2a总结起来,在 a 确定的前提下, b 决定了抛物线对称轴的位置.bab 的符号的判定:对称轴 x = - 在 y 轴左边则 ab > 0 ,在 y 轴的右侧则 ab < 0 ,概括的说就是2a“左同右异” 总结: 3. 常数项c⑴ 当c > 0 时,抛物线与 y 轴的交点在 x 轴上方,即抛物线与 y 轴交点的纵坐标为正; ⑵ 当c = 0 时,抛物线与 y 轴的交点为坐标原点,即抛物线与 y 轴交点的纵坐标为0 ; ⑶ 当c < 0 时,抛物线与 y 轴的交点在 x 轴下方,即抛物线与 y 轴交点的纵坐标为负. 总结起来, c 决定了抛物线与 y 轴交点的位置. 总之,只要 a 何何b c 都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须 根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与 x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于 x 轴对称y = ax 2 + bx + c 关于 x 轴对称后,得到的解析式是 y = -ax 2 - bx - c ;y = a (x - h )2 + k 关于 x 轴对称后,得到的解析式是 y = -a (x - h )2- k ;ab 2. 关于 y 轴对称y = ax 2 + bx + c 关于 y 轴对称后,得到的解析式是 y = ax 2 - bx + c ;y = a (x - h )2+ k 关于 y 轴对称后,得到的解析式是 y = a (x + h )2+ k ; 3. 关于原点对称y = ax 2 + bx + c 关于原点对称后,得到的解析式是 y = -ax 2 + bx - c ;y = a (x - h )2+ k 关于原点对称后,得到的解析式是 y = -a (x + h )2- k ; 4. 关于顶点对称(即:抛物线绕顶点旋转 180°) 2 y = ax2+ bx + c 关于顶点对称后,得到的解析式是 y = -ax 2 - bx + c -; 2ay = a (x - h )2+ k 关于顶点对称后,得到的解析式是 y = -a (x - h )2+ k .5. 关于点(m 何 n )对称y = a (x - h )2+ k 关于点(m 何 n )对称后,得到的解析式是 y = -a (x + h - 2m )2+ 2n - k根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与 x 轴交点情况):一元二次方程 ax 2 + bx + c = 0 是二次函数 y = ax 2 + bx + c 当函数值 y = 0 时的特殊情况. 图象与 x 轴的交点个数:① 当∆ = b 2 - 4ac > 0 时,图象与 x 轴交于两点 A (x ,0,) ,B (x 0) (x ≠ x ) ,其中的 x ,x 是一元二次121212方程 ax 2 + bx + c = 0(a ≠ 0)的两根.这两点间的距离 AB = x 2- x 1 = .② 当∆ = 0 时,图象与 x 轴只有一个交点; ③ 当∆ < 0 时,图象与 x 轴没有交点.1' 当 a > 0 时,图象落在 x 轴的上方,无论 x 为任何实数,都有 y > 0 ;2 ' 当 a < 0 时,图象落在 x 轴的下方,无论 x 为任何实数,都有 y < 0 .2. 抛物线 y = ax 2 + bx + c 的图象与 y 轴一定相交,交点坐标为(0 , c ) ;3. 二次函数常用解题方法总结:x 2 y= -2y= -x 2y=-2x 2y=-2(x+3)2y=-2x 2y=-2(x-3)2y=2 x 2+2y=2 x 2y=2 x 2-4y=x 2 2y=2 x 2y=x 2⎩y=2 x 2y=2(x-4)2y=2(x-4)2-3y=3 (x+4)2y=3 x 2y=3 (x-2)2⑴ 求二次函数的图象与 x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数 y = ax 2 + bx + c 中 a , b , c 的符号,或由二次函数中 a , b , c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与 x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式 ax 2 + bx + c (a ≠ 0) 本身就是所含字母 x 的二次函数; 下面以 a > 0 时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:∆ > 0 抛物线与 x 轴有 两个交点 二次三项式的值可正、 可零、可负一元二次方程有两个不相等实根∆ = 0 抛物线与 x 轴只 有一个交点二次三项式的值为非负 一元二次方程有两个相等的实数根∆ < 0 抛物线与 x 轴无 交点二次三项式的值恒为正 一元二次方程无实数根.二次函数图像参考:十一、函数的应用二次函数应用⎧何何何何 ⎪ 何何何何何何何何 ⎨⎪何何何何何何何二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数y = (m - 2)x 2 +m2 -m - 2 的图像经过原点,则m 的值是2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数y =kx +b 的图像在第一、二、三象限内,那么函数y =kx 2 +bx - 1的图像大致是()D3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为x =5,求这条抛物线的解析式。

(word完整版)九年级上册数学二次函数知识点汇总,文档

(word完整版)九年级上册数学二次函数知识点汇总,文档

新人教版九年级上二次函数知识点总结知识点一:二次函数的定义1.二次函数的定义:一般地,形如 y ax2bx c 〔 a ,b ,c 是常数,a 0〕的函数,叫做二次函数.其中 a 是二次项系数, b 是一次项系数,c是常数项.知识点二:二次函数的图象与性质抛物线的三要素:张口、对称轴、极点2. 二次函数y a x h 2k 的图象与性质〔1〕二次函数根本形式 y ax2的图象与性质: a 的绝对值越大,抛物线的张口越小〔2〕 y ax2 c 的图象与性质:上加下减2〔3〕 y a x h的图象与性质:左加右减〔4〕二次函数 y a x h2k 的图象与性质3. 二次函数 yax 2 bx c 的图像与性质〔 1〕当 a 0 时,抛物线张口向上,对称轴为xb,极点坐标为b ,4ac b 2 .2a2a 4a当 xb 时, y 随 x 的增大而减小;当 xb 时, y 随 x 的增大而增大;当xb 时,2a2 a2ay 有最小值4 ac b 2.4a〔 2〕当 a 0 时,抛物线张口向下,对称轴为xb,极点坐标为b ,4ac b 2 .2 a2a 4a当 xb 时, y 随 x 的增大而增大;当 x b 时, y 随 x 的增大而减小;当xb 时,2a2 a2a2y 有最大值 4 ac b.4a4. 二次函数常有方法指导( 1〕二次函数 y ax 2 bx c 图象的画法①画精确图五点画图法〔列表 -描点 -连线〕利用配方法将二次函数y ax 2 bx c 化为极点式 y a(x h) 2 k ,确定其张口方向、 对称轴及极点坐标, 尔后在对称轴两侧,左右对称地描点画图.②画草图抓住以下几点:张口方向,对称轴,与 y 轴的交点,极点 .( 2〕二次函数图象的平移平移步骤:① 将抛物线解析式转变为极点式y a x h2h ,k ;k ,确定其极点坐标 ② 可以由抛物线 ax 2 经过合适的平移获取详尽平移方法以下:y=ax2向上 (k>0)【或向下 (k<0)】平移 |k |个单位y=ax 2+k向右 (h>0)【或左 ( h<0)】 向右 (h>0) 【或左 (h<0) 】 向右 (h>0)【或左 (h<0)】 平移 |k|个单位平移 |k|个单位平移 |k|个单位向上 (k>0) 【或下 (k<0) 】平移 |k|个单位y=a(x-h)2向上 (k>0) 【或下 (k<0)】平移 |k|个单位y=a(x-h)2+k平移规律:概括成八个字“左加右减,上加下减〞 .〔 3〕用待定系数法求二次函数的解析式①一般式:. 图象上三点或三对 、 的值,平时选择一般式 .②极点式:. 图象的极点或对称轴,平时选择极点式.③交点式:. 图象与轴的交点坐标、,平时选择交点式 .〔 4〕求抛物线的极点、对称轴的方法24ac b2b 4ac b2①公式法:2bx c a xby ax2a,∴极点是〔2a,〕,对称轴4a4a是直线 xb.2a②配方法:运用配方的方法,将抛物线的解析式化为 y a xh 2k 的形式,获取极点为( h , k ) ,对称轴是直线x h .③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,因此对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是极点.〔 5〕抛物线y ax2bx c 中, a,b, c 的作用① a 决定张口方向及张口大小,这与y ax 2中的a完满相同.② b和 a 共同决定抛物线对称轴的地址由于抛物线 y ax 2bx c 的对称轴是直线x b,故2a若是 b0 时,对称轴为y 轴;若是b0 〔即a、b同号〕时,对称轴在y 轴左侧;a若是b0 〔即a、b异号〕时,对称轴在y 轴右侧. a③ c 的大小决定抛物线y ax 2bx c 与y轴交点的地址当 x0 时, y c ,因此抛物线y ax 2bx c 与y轴有且只有一个交点〔0,c〕,故若是 c0 ,抛物线经过原点;若是 c0 ,与 y 轴交于正半轴;若是 c0 ,与 y 轴交于负半轴.知识点三:二次函数与一元二次方程的关系5.函数 y ax 2bx c ,当 y 0 时,获取一元二次方程ax2bx c 0 ,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况 .(1)当二次函数的图象与x 轴有两个交点,这时,那么方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,那么方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,那么方程没有实根 .经过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象方程有两个相等实数解方程有两个不等实数解方程没有实数解的解6.拓展:关于直线与抛物线的交点知识〔1〕y轴与抛物线y ax 2bx c 得交点为 (0, c) .〔 2 〕与y轴平行的直线x h 与抛物线y ax 2 bx c 有且只有一个交点( h , ah2bh c ).〔 3〕抛物线与x 轴的交点二次函数 y ax 2bx c 的图像与 x 轴的两个交点的横坐标x1、 x2,是对应一元二次方程 ax 2bx c0 的两个实数根.抛物线与 x 轴的交点情况可以由对应的一元二次方程的根的鉴识式判断:①有两个交点0抛物线与 x 轴订交;②有一个交点〔极点在 x 轴上〕0 抛物线与x轴相切;③没有交点0抛物线与x 轴相离.〔 4〕平行于x轴的直线与抛物线的交点同〔 3〕相同可能有0 个交点、 1 个交点、 2 个交点 . 当有 2 个交点时,两交点的纵坐标相等,设纵坐标为k ,那么横坐标是ax2bx c k 的两个实数根.〔 5〕一次函数y kx n k 0的图像 l 与二次函数y ax 2bx c a 0 的图像G的y kx n 交点,由方程组ax2的解的数目来确定:y bx c②方程组只有一组解时l 与 G 只有一个交点;③方程组无解时l 与 G 没有交点.〔 6 〕抛物线与x 轴两交点之间的距离:假设抛物线y ax 2bx c 与 x 轴两交点为A x ,,B x ,,由于x1、 x2是方程 ax 2bx c0 的两个根,故1 020x1x2b, x1 x2ca ab2b24acAB x1 x2x12x1 x224x1 x24cx2a a a a知识点四:利用二次函数解决实责问题7.利用二次函数解决实责问题,要建立数学模型,即把实责问题转变为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题 . 在研究实责问题时要注意自变量的取值范围应拥有实质意义.利用二次函数解决实责问题的一般步骤是:(1)建立合适的平面直角坐标系;(2)把实责问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去解析问题、解决问题.。

初三数学二次函数知识点总结与经典习题含答案

初三数学二次函数知识点总结与经典习题含答案

初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a<-时,y 随x 的增大而减小; 当2bx a>-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式(交点式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴) 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.. ② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;二次函数对应练习试题一、选择题1. 二次函数247y x x =--的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3) 2. 把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A. 22(1)y x =-+ B. 22(1)y x =-- C. 221y x =-+ D. 221y x =-- 3.函数2y kx k =-和(0)ky k x=≠在同一直角坐标系中图象可能是图中的( )4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个5.已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x的一元二次方程20ax bx c ++=的两个根分别是121.3x x ==和( )A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.方程222x x x-=的正根的个数为( ) A.0个 B.1个 C.2个. 3 个8.已知抛物线过点A(2,0),B(-1,0),与y 轴交于点C,且OC=2.则这条抛物线的解析式为A. 22y x x =-- B. 22y x x =-++C. 22y x x =--或22y x x =-++ D. 22y x x =---或22y x x =++二、填空题9.二次函数23y x bx =++的对称轴是2x =,则b =_______。

(完整版)史上最全初三数学二次函数知识点归纳总结,推荐文档

(完整版)史上最全初三数学二次函数知识点归纳总结,推荐文档

二次函数知识点归纳及相关典型题第一部分基础知识1.定义:一般地,如果y =ax 2 +bx +c(a, b, c 是常数,a ≠ 0) ,那么y 叫做x 的二次函数.2.二次函数y =ax 2 的性质(1)抛物线y =ax 2 的顶点是坐标原点,对称轴是y 轴.(2)函数y =ax 2 的图像与a 的符号关系.①当a > 0 时⇔抛物线开口向上⇔顶点为其最低点;②当a < 0 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为y =ax 2(a ≠ 0).3.二次函数y =ax 2 +bx +c 的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数y =ax 2+bx +c 用配方法可化成:y =a(x -h)2 +k 的形式,其中h =- b,k =2a4ac -b 2.4a5.二次函数由特殊到一般,可分为以下几种形式:① y =ax 2 ;② y =ax 2 +k ;③ y =a(x -h)2 ;④ y =a(x -h)2 +k ;⑤ y =ax 2+bx +c .6.抛物线的三要素:开口方向、对称轴、顶点.① a 的符号决定抛物线的开口方向:当a > 0 时,开口向上;当a < 0 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作x =h .特别地,y 轴记作直线x = 0 .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法⎛ b ⎫24ac -b 2 b 4ac -b 2(1)公式法:y =ax 2 +bx +c =a +x ⎪+,∴顶点是(-,),⎝2a ⎭4a 2a 4a对称轴是直线x =-b .2a(2)配方法:运用配方的方法,将抛物线的解析式化为y =a(x -h)2 +k 的形式,得到顶点为( h , k ),对称轴是直线x =h .(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.9.抛物线y =ax 2 +bx +c 中,a, b, c 的作用(1)a 决定开口方向及开口大小,这与y =ax 2 中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线y =ax 2 +bx +c 的对称轴是直线x = - b2a,故:① b = 0 时,对称轴为 y 轴;② b > 0 (即a 、b 同号)时,a 对称轴在 y 轴左侧;③ b< 0 (即a 、b 异号)时,对称轴在 y 轴右侧.a(3) c 的大小决定抛物线 y = ax 2 + bx + c 与 y 轴交点的位置.当 x = 0 时, y = c ,∴抛物线 y = ax 2 + bx + c 与 y 轴有且只有一个交点(0,c ):① c = 0 ,抛物线经过原点; ② c > 0 ,与 y 轴交于正半轴;③ c < 0 ,与 y 轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在 y 轴右侧,则 b< 0 .a10. 几种特殊的二次函数的图像特征如下:11. 用待定系数法求二次函数的解析式(1) 一般式: y = ax 2 + bx + c .已知图像上三点或三对 x 、 y 的值,通常选择一般式.(2) 顶点式: y = a (x - h )2 + k .已知图像的顶点或对称轴,通常选择顶点式.(3) 交点式:已知图像与 x 轴的交点坐标 x 1 、 x 2 ,通常选用交点式: y = a (x - x 1 )(x - x 2 ). 12. 直线与抛物线的交点(1) y 轴与抛物线 y = ax 2 + bx + c 得交点为(0, c ).(2)与 y 轴平行的直线 x = h 与抛物线 y = ax 2 + bx + c 有且只有一个交点( h ,ah 2 + bh + c ).(3)抛物线与 x 轴的交点二次函数 y = ax 2 + bx + c 的图像与 x 轴的两个交点的横坐标 x 1 、 x 2 ,是对 应一元二次方程ax 2 + bx + c = 0 的两个实数根.抛物线与 x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点⇔ ∆ > 0 ⇔ 抛物线与 x 轴相交;②有一个交点(顶点在 x 轴上) ⇔ ∆ = 0 ⇔ 抛物线与 x 轴相切;③没有交点⇔ ∆ < 0 ⇔ 抛物线与 x 轴相离.(4)平行于 x 轴的直线与抛物线的交点同(3)一样可能有 0 个交点、1 个交点、2 个交点.当有 2 个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是ax 2 +bx +c =k 的两个实数根.(5)一次函数y =kx +n(k ≠ 0)的图像l 与二次函数y =ax 2 +bx +c(a ≠ 0)的图像y =kx +nG 的交点,由方程组的解的数目来确定:①方程组有两y =ax 2 +bx +c组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线y =ax 2 +bx +c 与x 轴两交点为A(x ,0),B(x ,0),由于x 、x是方程ax 2 +bx +c = 0 的两个根,故1 2 1 2第二部分典型习题1.抛物线y=x2+2x-2 的顶点坐标是( D )A.(2,-2)B.(1,-2)C.(1,-3)D.(-1,-3)2.已知二次函数y =ax 2 +bx +c 的图象如图所示,则下列结论正确的是( C )A.ab>0,c>0 B.ab>0,c<0 C.ab<0,c>0D.ab<0,c<0第2,3题图第4 题图3.二次函数y=ax2+bx+c 的图象如图所示,则下列结论正确的是(D)A.a>0,b<0,c>0 B.a<0,b<0,c>0C .a <0,b >0,c <0D .a <0,b >0,c >04.如图,已知 中,BC=8,BC 上的高 ,D 为 BC 上一点, ,交AB 于点 E ,交AC 于点 F (EF 不过 A 、B ),设 E 到 BC 的距离为 ,则 的面积 关于 的函数的图象大致为( D )5.抛物线 y = x 2 - 2x - 3 与 x 轴分别交于 A 、B 两点,则 AB 的长为 4 .6. 已知二次函数 y =kx 2+(2k -1)x -1与 x 轴交点的横坐标为 x 1、 x 2 ( x 1<x 2 ),则对于下列结论:①当 x =-2 时,y =1;②当 x >x 2 时,y >0;③方程kx 2+(2k -1)x -1=0 有两个不相等的实数根 x 、 x ;④ x <- 1, x >-1 ;⑤1212x -x,其中所有正确的结论是 ①③④ (只需填写序号).21k7. 已知直线 y = -2x + b (b ≠ 0)与 x 轴交于点 A ,与 y 轴交于点 B ;一抛物线的解析式为 y = x 2 - (b + 10)x + c .(1) 若该抛物线过点 B ,且它的顶点 P 在直线 y = -2x + b 上,试确定这条抛物线的解析式;(2) 过点 B 作直线 BC⊥AB 交x 轴交于点 C ,若抛物线的对称轴恰好过 C 点,试确定直线 y = -2x + b 的解析式. 解:(1) y = x 2 - 10 或 y = x 2 - 4x - 6将(0, b ) 代入,得c = b .顶点坐标为(b +10, - b 2 +16b +100 ) ,由题意得2 4-2 ⨯ b +10 + b = - b 2 +16b +100 ,解得b= -10, b = -6 . 2 41 2⎩ ⎩ ⎨ ⎨ ⎨b (2) y = -2x - 28. 有一个运算装置,当输入值为 x 时,其输出值为 y ,且 y 是 x 的二次函数,已知输入值为- 2 ,0,1时, 相应的输出值分别为 5, - 3 , - 4 .(1) 求此二次函数的解析式;(2) 在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y 为正数时输入值 x 的取值范围.解:(1)设所求二次函数的解析式为 y = ax 2 + bx + c ,⎧a (-2) 2 + b (-2) + c = 5⎧c = -3 ⎧a = 1则 a ⋅ 02 + b ⋅ 0 + c = -3 ,即⎪2a - b = 4 ,解得⎪= -2 ⎪a + b + c = -4 ⎪a + b = -1 ⎪c = -3⎩故所求的解析式为: y = x 2 - 2x - 3 .(2)函数图象如图所示.由图象可得,当输出值 y 为正数时, 输入值 x 的取值范围是 x < -1 或 x > 3 .9. 某生物兴趣小组在四天的实验研究中 发现:骆驼的体温会随外部环境 温度 的变化而变化,而且在这四天中 每昼 夜的体温变化情况相同.他们将一头 骆驼前两昼夜的体温变化情况绘下图.请根据图象回答:第 9 题制成1⑴第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间?⑵第三天 12 时这头骆驼的体温是多少?⑶兴趣小组又在研究中发现,图中 10 时到22 时的曲线是抛物线,求该抛物线的解析式.解:⑴第一天中,从 4 时到 16 时这头骆驼的体温是上升的它的体温从最低上升到最高需要 12 小时⑵第三天 12 时这头骆驼的体温是 39℃⑶ y = - x 2 + 2x + 24(10 ≤ x ≤ 22)1610. 已知抛物线 y = ax 2 + ( 4+ 3a )x + 4 与 x 轴交于3A 、B 两点,与 y 轴交于点C .是否存在实数 a ,使得△ABC 为直角三角形.若存在,请求出 a 的值;若不存在,请说明理由.解:依题意,得点 C 的坐标为(0,4).BO 2 + OC 2 | - 4 |2 +423a设点 A 、B 的坐标分别为( x 1 ,0),( x 2 ,0),由ax 2 + (4 + 3a )x + 4 = 0 ,解得 x = -3 , x = - 4.3 1 23a∴ 点 A 、B 的坐标分别为(-3,0),( - 4 3a,0).∴ AB =| - 4+ 3 |, AC = 3a= 5 ,BC = =.∴ AB 2 =| - 4+ 3 |2 = 16- 2 ⨯ 3⨯ 4 + 9 = 16 - 8 + 9 ,3a 9a 2 3a9a 2 aAC 2 = 25 , BC 2 = 169a 2+16 .〈ⅰ〉当 AB 2 = AC 2 + BC 2 时,∠ACB=90°.由 AB 2 = AC 2 + BC 2 , 得16 - 8 + 9 = 25 + ( 16+16) . 9a 2解得a a = - 1. 49a 2∴ 当a = - 1 时,点 B 的坐标为( 16 ,0), AB 2 =625 , AC 2 = 25 ,439BC 2 =400 .9于 是 AB 2 = AC 2 + BC 2 .∴ 当a = - 1时,△ABC 为直角三角形.4〈ⅱ〉当 AC 2 = AB 2 + BC 2 时,∠ABC=90°. 由 AC 2 = AB 2 + BC 2 ,得25 = (16 - 8 + 9) + ( 16+ 16) . 9a 2 a 9a 2AO 2 + OC 25 5解 得 a = 49 当a = 4时, - 49 3a=44 3⨯9= -3 ,点 B (-3,0)与点 A 重合,不合题意.〈ⅲ〉当BC 2 = AC 2 + AB 2 时,∠BAC=90°.由BC 2 = AC 2 + AB 2,得 169a 2解得 a = 4.不合题意.9+16 = 25 + ( 16 9a 2 - 8 + 9) . a 综合〈ⅰ〉、〈ⅱ〉、〈ⅲ〉,当a = - 1时,△ABC 为直角三角形.411. 已知抛物线 y =-x 2+mx -m +2.(1) 若抛物线与 x 轴的两个交点 A 、B 分别在原点的两侧,并且 AB = ,试求 m 的值;(2) 设 C 为抛物线与 y 轴的交点,若抛物线上存在关于原点对称的两点M 、N ,并且 △MNC 的面积等于 27,试求 m 的值.解: (1)A(x 1,0),B(x 2,0) . 则 x 1 ,x 2 是方程 x 2-mx +m -2=0 的两根.∵x 1 + x 2 =m , x 1·x 2 =m -2 <0 即 m <2 ;又 AB =∣x 1 — x 2∣= (+ )x 2 - 4x x =,121 2∴m 2-4m +3=0 .解得:m=1 或 m=3(舍去) , ∴m 的值为 1 ..2 - m 2 -m 2 - m (2)M(a ,b),则 N(-a ,-b) .∵M、N 是抛物线上的两点,∴ ⎨⎪-a 2 + ma - m + 2 = b , ①-a 2 - ma - m + 2 = -b . ②⎪①+②得:-2a 2-2m +4=0 . ∴a 2=-m +2 .∴当 m <2 时,才存在满足条件中的两点 M 、N.∴ a = .这时 M 、N 到 y又点 C 坐标为(0,2-m ),而 S △M N C= 27 ,1∴2× ×(2-m =27 .2∴解得 m=-7 .12. 已知:抛物线 y =ax 2+4ax +t 与 x 轴的一个交点为 A (-1,0).(1) 求抛物线与 x 轴的另一个交点 B 的坐标;(2)D 是抛物线与 y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形 ABCD 的面积为 9,求此抛物线的解析式;(3)E 是第二象限内到 x 轴、y 轴的距离的比为 5∶2 的点,如果点 E 在(2) 中的抛物线上,且它与点 A 在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点 P ,使△APE 的周长最小?若存在,求出点 P 的坐标; 若不存在,请说明理由.0 0解法一:(1) 依题意,抛物线的对称轴为 x =-2.∵ 抛物线与 x 轴的一个交点为 A (-1,0),∴由抛物线的对称性,可得抛物线与 x 轴的另一个交点 B 的坐标为(-3,0).(2) ∵ 抛物线 y =ax 2+4ax +t 与 x 轴的一个交点为 A (-1, 0),∴ a (-1)2+4a (-1)+t =0.∴ t=3a .∴ y =ax 2+4ax +3a .∴D (0,3a ).∴ 梯形 ABCD 中,AB∥CD,且点 C 在抛物线y =ax 2+4ax +3a 上,∵ C (-4,3a ).∴ AB =2,CD =4.∵ 梯形 ABCD 的面积为 9,∴1 ( AB + CD ) ⋅OD =9 .∴ 21 (2+4) 3a =9 . 2∴ a±1.∴所求抛物线的解析式为 y =x 2+4x +3 或.(3) 设点 E 坐标为( x 0 , y 0 ).依题意, x 0<0 ,y =- x 2 - 4ax -y 0<0,且 y = 5 .∴ y =- 5x .x 22 0⎨ ①设点 E 在抛物线 y =x 2+4x +3 上,∴ y =x 2+4x +3 .⎧5 ⎧x '=- 1⎪ y 0=- x 0 , ⎨⎧x =- 6,⎨0 2解方程组⎪⎨y =x 2+2 4x +3得 ⎩0 y 0=15;⎪ y '=5. ⎩ 0 0 0⎪ 0 4∵ 点 E 与点 A 在对称轴 x =-2 的同侧,∴ 点 E 坐标为( - 125 , ).4设在抛物线的对称轴 x =-2 上存在一点 P ,使△APE 的周长最小.∵ AE 长为定值,∴ 要使△APE 的周长最小,只须 PA +PE 最小.∴ 点 A 关于对称轴 x =-2 的对称点是 B (-3,0), ∴ 由几何知识可知,P 是直线 BE 与对称轴 x =-2 的交点. 设过点 E 、B 的直线的解析式为 y =mx +n ,⎧ 15 ⎧m =1 , ⎪- m +n = ,∴ 解得 2⎨ 24 ⎩-3m +n =0.⎪n = 3 . ⎩ 2点 P 坐标为(-2, ).②设点 E 在抛物线 y =- x 2 - 4x - 3 上,∴ y =- x 2 - 4x - 3 .⎧y =- 5 x , 解方程组⎪ 02 0消去 y3 ,得x 2 + x 0+3=0 .⎪⎨ y =- x 2 - 4x - 3. ⎩ 0 0 02∴ 直线 BE 的解析式为 y = 1 x + 3 .∴ 把 x =-2 代入上式,得 y = 1.222∴ 1 2∴△<0 . ∴此方程无实数根.1综上,在抛物线的对称轴上存在点 P(-2,),使△APE 的周长最小.2解法二:(1)∵抛物线y=ax2+4ax+t 与x 轴的一个交点为A(-1,0),∴a(-1)2+4a(-1)+t=0.∴t=3a.∴.y=ax2+4ax+3a令y=0,即ax2+4ax+3a=0 .解得x =-1,x =-3 .1 2∴ 抛物线与 x 轴的另一个交点 B 的坐标为(-3,0).(2)由y=ax2+4ax+3a ,得 D(0,3a).∵ 梯形 ABCD 中,AB∥CD,且点 C 在抛物线y=ax2+4ax+3a 上,∴ C(-4,3a).∴AB=2,CD=4.∵梯形ABCD 的面积为9,∴1( AB+CD) OD=9 .解得 OD=3.2∴ 3a=3 .∴ a±1.∴ 所求抛物线的解析式为y=x2+4x+3 或y=-x2-4x-3 .(3)同解法一得,P 是直线 BE 与对称轴 x=-2 的交点.∴如图,过点E 作EQ⊥x轴于点Q.设对称轴与x 轴的交点为 F.由PF∥EQ,可得BF=PF.∴1=PF .∴PF=1 BQ EQ.1点P 坐标为(-2,).2 以下同解法一.5 5 2 2 413.已知二次函数的图象如图所示.(1)求二次函数的解析式及抛物线顶点 M 的坐标.(2)若点 N 为线段 BM 上的一点,过点 N 作 x 轴的垂线,垂足为点 Q.当点 N 在线段 BM 上运动时(点 N 不与点 B,点 M 重合),设 NQ 的长为 l,四边形 NQAC 的面积为 S,求S 与t 之间的函数关系式及自变量 t 的取值范围;(3)在对称轴右侧的抛物线上是否存在点 P,使△PAC为直角三角形?若存在,求出所有符合条件的点 P 的坐标;若不存在,请说明理由;(4)将△OAC补成矩形,使△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需∴- , P 要计算过程).解:(1)设抛物线的解析式 y = a (x + 1)(x - 2) , ∴ - 2 = a ⨯1⨯ (-2) .∴a = 1 .∴ y = x 2 - x -2 . 其顶点 M 的坐标是⎛ 1 ,- 9 ⎫ .⎪ ⎝ 2 4 ⎭(2)设线段 BM 所在的直线的解析式为 y = kx + b ,点 N 的坐标为 N (t ,h ),∴ ⎨ ⎧0 = 2k + b ,3 ⎪ 9= 1k + b . .解得k = 2 ,b = -3 . ⎪ 4 2∴ 线段 BM 所在的直线的解析式为 y = 3x - 3 .2∴ h = 3 t - 3 ,其中 1 < t < 2 .∴ s = 1 ⨯1⨯ 2 + 1 (2 + 2 t - 3)t = 3 t 2 - 1t +1.222 2342∴s 与t 间的函数关系式是S = 3t 2 - 1 t +1,自变量 t 的取值范围是42 1< t < 2 . 2(3) 存在符合条件的点 P ,且坐标是P⎛ 5 7⎫ , ⎪ ⎛ 3 ,- 5 ⎫ .1 2⎝ 4 ⎭2 ⎝ 2 4 ⎭⎪设点 P 的坐标为 P (m ,n ) ,则n = m 2 - m - 2 .PA 2 = (m +1)2 + n 2 , PC 2 = m 2 + (n + 2)2,AC 2 = 5 . 分以下几种情况讨论:i ) 若∠PAC=90°,则PC 2 = PA 2 + AC 2 .⎪n = m 2 - m - 2,∴⎪⎩m 2 + (n + 2)2 = (m + 1)2 +n 2 + 5. 解得: m = 5 , m = -1(舍去). ∴ 点P ⎛ 5 7 ⎫.1 221 , ⎪ ⎝2 4 ⎭ii ) 若∠PCA=90°,则PA 2 = PC 2 + AC 2 .⎪n = m 2 - m - 2,∴⎪⎩(m +1)2 + n 2 = m 2 + (n + 2)2 + 5.解得: m = 3 ,m = 0 (舍去).∴ 点P ⎛ 3 ,- 5⎫ .3242 ⎝4 ⎪⎭iii ) 由图象观察得,当点 P 在对称轴右侧时, PA > AC ,所以边 AC 的对角∠APC 不可能是直角.(4) 以点 O ,点 A (或点 O ,点 C )为矩形的两个顶点,第三个顶点落在矩形这边 OA (或边 OC )的对边上,如图 a ,此时未知顶点坐标是点D (-1,-2),以点 A ,点 C 为矩形的两个顶点,第三个顶点落在矩形这一边 AC 的对边上,如图 b ,此时未知顶点坐标是 E ⎛- 12 ⎫ ,F ⎛ 4 , ⎪ 8 ⎫ .⎪ ⎝ 5 5 ⎭⎝ 55 ⎭图 a图 b14. 已知二次函数 y =ax 2-2 的图象经过点(1,-1).求这个二次函数的解析式,并判断该函数图象与 x 轴的交点的个数. 解:根据题意,得 a -2=-1.2,-2∴ a =1. ∴ 这个二次函数解析式是 y =x 2- 2 .因为这个二次函数图象的开口向上,顶点坐标是(0,-2),所以该函数图象与 x 轴有两个交点.15. 卢浦大桥拱形可以近似看作抛物线的一部分.在大桥截面 1∶11000 的比例图上,跨度 AB =5 cm ,拱高 OC =0.9 cm ,线段 DE 表示大桥拱内桥长,DE∥AB,如图(1).在比例图上,以直线 AB 为 x 轴,抛物线的对称轴为 y 轴,以 1 cm 作为数轴的单位长度,建立平面直角坐标系,如图(2).(1)求出图(2)上以这一部分抛物线为图象的函数解析式,写出函数定义域;(2)如果 DE 与 AB 的距离 OM =0.45 cm ,求卢浦大桥拱内实际桥长(备用数据: ≈ 1.4 ,计算结果精确到 1 米).解:(1)由于顶点 C 在 y 轴上,所以设以这部分抛物线为图象的函数解析式为y =ax 2+ 9 .10因为点 A ( - 5 ,0)(或 B ( 5 ,0) 在抛物线上, 所以0=a ⋅(- 5 )2+ 9,2 2 得a =- 18.1252 10因此所求函数解析式为 y =-18x 2+ 9 (- 5 ≤ x ≤ 5) .(2) 因为点 D 、E 的纵坐.所以点 D 的坐标为( 125 10 2 2标为 9 , 所 以 9 =- 18 x 2+ 9 ,得 x = 20 , 9 ), 20 125 点 E 的坐标为(10 , 9 ). 20 203 2 c所以DE = 5 2-(-52) 5 2 . = 44 2因此卢浦大桥拱内实际桥长为 5 2⨯11000 ⨯ 0.01=275 ≈ 385 (米). 216. 已知在平面直角坐标系内,O 为坐标原点,A 、B 是x 轴正半轴上的两点,点A 在点B 的左侧,如图.二次函数 y =ax 2+bx +c (a≠0)的图象经过点A 、B ,与 y 轴相交于点C .(1) a 、c 的符号之间有何关系?(2) 如果线段 OC 的长度是线段 OA 、OB 长度的比例中项,试证a 、c 互为倒数;(3) 在(2)的条件下,如果 b =-4, AB =4 ,求 a 、c 的值. 解:(1) a 、c 同号. 或当 a >0 时,c >0;当 a <0 时,c <0.(2) 证明:设点 A 的坐标为( x 1 ,0),点 B 的坐标为( x 2 ,0),则0<x 1<x 2 .∴ OA = x 1 , OB = x 2 , OC = c .据题意, x 1 、 x 2 是方程ax 2+bx +c = 0(a ≠ 0) 的两个根. ∴ x 1 ⋅ x 2 = .a由题意,得OA ⋅OB =OC 2 ,即 c=c 2=c 2 .a所以当线段 OC 长是线段 OA 、OB 长的比例中项时,a 、c 互为倒数.(x 1+x 2)2 - 4x 1x 22 3 33 3 (3)当b = -4 时,由(2)知, x +xb 40 ,∴ a >0.12=- a = a >解法一:AB =OB -OA = x -x =,21∴ AB =∵ AB = 4=, ∴ 2 = . a 3 =4 .得a = 1.∴ c =2. a 2 解法二:由求根公式, x 2 ± 3 , a ∴ x = x = 2 + 3 .12∴ AB =OB -OA =x -x =2 +3 .21a∵ AB =4 ,∴2 3 =4 ,得a = 1.∴ c=2. a 217. 如图,直线 y = -A 、B 两点. 3 x + 3分别与 x 轴、y 轴交于点 A 、B ,⊙E 经过原点 O 及(1)C 是⊙E 上一点,连结 BC 交 OA 于点 D ,若∠COD=∠CBO,求点 A 、B 、C的坐标;(2) 求经过 O 、C 、A 三点的抛物线的解析式:(3) 若延长 BC 到P ,使 DP =2,连结 AP ,试判断直线 PA 与⊙E 的位置关系,并说明理由.16 - 4ac a 2 ( 4 )2-4( c ) a a 3 33 3 3 解:(1)连结 EC 交x 轴于点 N (如图).∵ A 、B 是直线 y = - 3 x +3分别与 x 轴、y 轴的交点.∴ A (3,0),B又∠COD=∠CBO. ∴ ∠CBO=∠ABC.∴ C 是的中点. ∴ EC⊥OA.∴ ON = 1 OA = 3 , EN = OB = .22 2 23,- 2 连结 OE .∴ ). 2 EC = OE = . ∴ NC = EC - EN = 3.∴ C 点的坐标为(2 (2)设经过 O 、C 、A 三点的抛物线的解析式为 y = ax (x - 3).∵ C( 3 ,- 2 ). ∴ - 3 = a ⋅ 3 ( 3 - 3) .∴ a =2 3 . 2 2 2 2 9∴ y = 2 3 x 2 - 9 2 3 x 为所求. 8(3)∵ tan ∠BAO = 3 , ∴ ∠BAO=30°,∠ABO=50°.由(1)知∠OBD=∠ABD.∴ ∠OBD = 1 ∠ABO - 1 ⨯ 60︒ = 30︒ .2 2∴ OD=OB·tan30°-1.∴ DA=2.∵ ∠ADC=∠BDO=60°,PD =AD =2.∴ △ADP 是等边三角形.∴ ∠DAP=60°.∴ ∠BAP=∠BAO+∠DAP=30°+60°=90°. 即PA⊥AB. 即直线 PA 是⊙E 的切线.(0, 3) .3 33“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

(完整版)九年级上册数学二次函数知识点汇总

(完整版)九年级上册数学二次函数知识点汇总
同(3)一样可能有 0 个交点、1 个交点、2 个交点.当有 2 个交点时,两交点的纵坐
标相等,设纵坐标为 k ,则横坐标是 ax 2 bx c k 的两个实数根.
(5)一次函数 y kx nk 0的图像 l 与二次函数 y ax2 bx ca 0的图像
y kx n
G
的交点,由方程组
(1)当二次函数的图象与 x 轴有两个交点,这时
,则方程有两个不相等实根;
(2)当二次函数的图象与 x 轴有且只有一个交点,这时
,则方程有两个相等实
根;(3)当二次函数的图象与 x 轴没有交点,这时
,则方程没有实根.
通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:
5
hing at a time and All things in their being are good for somethin
利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性 质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系; (2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;
③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直 平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.
(5)抛物线 y ax 2 bx c 中, a,b, c 的作用
① a 决定开口方向及开口大小,这与 y ax 2 中的 a 完全一样. ② b 和 a 共同决定抛物线对称轴的位置 由于抛物线 y ax 2 bx c 的对称轴是直线 x b ,故
的图象
的解

(完整版)浙教版九年级上册二次函数知识点总结及典型例题,推荐文档

(完整版)浙教版九年级上册二次函数知识点总结及典型例题,推荐文档

y a(x m)2 b(x m) c (或 y a(x m)2 b(x m) c )
【例 1】、将抛物线 y x2 向左平移 2 个单位后,得到的抛物线的解析式是(
)
A. y (x 2)2 B. y x2 2 C. y (x 2)2 D. y x2 2
【例 2】、将抛物线 y=x2-2x 向上平移 3 个单位,再向右平移 4 个单位等到的抛物线是_______.
随 x 的增大而增大;在对称轴的右侧,即
当 x≥ b 时,y 随 x 的增大而减小,简 2a
记左增右减;
(4)抛物线有最高点,当 x= b 时,y 有最 2a
小值,
y最小值
4ac b2 4a
大值,
y最大值
4ac b2 4a
2、二次函数 y ax 2 bx c(a,b, c是常数,a 0) 中, a、b、c 的含义:
a
a
对称轴在 y 轴右侧.口诀---左同,右异 (a、b 同号,对称轴在 y 轴左侧)
(3) c 的大小决定抛物线 y ax 2 bx c 与 y 轴交点的位置.
当 x 0 时, y c ,∴抛物线 y ax 2 bx c 与 y 轴有且只有一个交点(0, c ):
① c 0 ,抛物线经过原点; ② c 0 ,与 y 轴交于正半轴; ③ c 0 ,与 y 轴交于负半轴.
【例 2】、如图,抛物线 y ax 2 bx c 与 x 轴的一个交点 A 在点(-2,0)和(-1,0)之间(包括这两点),
顶点 C 是矩形 DEFG 上(包括边界和内部)的一个动点,则(1)abc (2)a 的取值范围是
0 (>或<或=)
【例 3】、下列二次函数中,图象以直线 x = 2 为对称轴,且经过点(0,1)的是 ( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

升高度 s(m)与抛出时间 t(s)满足: 运动过程中最高点距地面_________m.
(其中 g 是常数,通常取 10m/s2).若 v0=10m/s,则该物体在
17. 试写出一个开口方向向上,对称轴为直线 x=2,且与 y 轴的交点坐标为(0,3)的抛物线的解析式为
______________.
6. 二次函数 y=ax2+bx+c 的图象如图所示,则点 A. 一 B. 二 C. 三 D. 四
在第___象限( )
7. 如图所示,已知二次函数 y=ax2+bx+c(a≠0)的图象的顶点 P 的横坐标是 4,图象交 x 轴 于点 A(m,0)和点 B,且 m>4,那么 AB 的长是( ) A. 4+m B. m C. 2m-8 D. 8-2m 8. 若一次函数 y=ax+b 的图象经过第二、三、四象限,则二次函数 y=ax2+bx 的图象只可能 是( )
x 轴的上方,则 a 的值为( )
A. 1
B. -1
C. 2
D. -2
12. 已知二次函数
的图象如图所示,记

.则下列选项正确的是( )
A.
B.
C.
D.m、n 的大小关系不能确定
二、填空题
13. 二次函数 y=x2-2x+1 的对称轴方程是______________.
14.
如果将抛物线 y=x2+2x-1 向上平移,使它经过点 A(0,3),那么所得新抛物线的表达式是
2a 时,y 随
(3)当 x h 时,
(3)当 x<h 时,
x 的增大而减小;当
x 的增大而增大;当
y 随 x 的增大而 y 随 x 的增大而 减小;当 x>h 增大;当 x>h
x b
x b
时,y 随 x 的增 时,y 随 x 的增
2a 时,y 随 x 的
2a 时,y 随 x 的 大而增大。
大而减小
向上无限延伸
向下无限延伸
延伸
延伸
性ห้องสมุดไป่ตู้
b
b
(2)对称轴是 x= 2a , (2)对称轴是 x= 2a , (2)对称轴是
(2)对称轴是
顶点是(
顶点是(
x=h,顶点是 x=h,顶点是
b
4ac b2 ,
2a
4a )
b
4ac b2 ,
2a
4a )
(h,k)
(h,k)

x b
(3)当
2a 时,y 随
x b
(3)当
(1)求此二次函数图象上点 A 关于对称轴 (2)求此二次函数的解析式;
对称的点 A′的坐标;
21. 在直角坐标平面内,点 O 为坐标原点,二次函数 y=x2+(k-5)x-(k+4) 的图象交 x 轴于点 A(x1,0)、 B(x2,0),且(x1+1)(x2+1)=-8. (1)求二次函数解析式; (2)将上述二次函数图象沿 x 轴向右平移 2 个单位,设平移后的图象与 y 轴的交点为 C,顶点为 P,求 △POC 的面积.
上的点,且-
10.把抛物线 系式是( )
的图象向左平移 2 个单位,再向上平移 3 个单位,所得的抛物线的函数关
A.
B.
C.
D.
11. 二次函数 y a(x 4)2 4(a 0) 的图象在 2< x <3 这一段位于 x 轴的下方,在 6< x <7 这一段位于
二次函数知识点
12. 二次函数的性质
函 数
二次函数 y ax 2 bx c
a、b、c 为常数,a≠0
a>0
a<0
y a(x h)2 k (a、h、k 为常
数,a≠0)
a>0
a<0
图 象
(1)抛物线开口向 (1)抛物线开口向
(1)抛物线开口向上,并 (1)抛物线开口向下,并
上,并向上无限 下,并向下无限
9. 已知抛物线和直线 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线
x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线
1<x1<x2,x3<-1,则 y1,y2,y3 的大小关系是( ) A. y1<y2<y3 B. y2<y3<y1 C. y3<y1<y2 D. y2<y1<y3
增大而增大 (4)抛物线有最低点,当
x b 2a 时,y 有最小
增大而减小 (4)抛物线有最高点,当
x b 2a 时,y 有最大
(4)抛物线有最低 (4)抛物线有最高
点,当 x=h 时, 点,当 x=h 时,
y 有最小值
y 有最大值
y 最小值
值,
4ac b2 4a
y 最大值
值,
4ac b2 4a
4. 抛物线
的对称轴是( )
A. x=-2 B.x=2 C. x=-4 D. x=4 5. 已知二次函数 y=ax2+bx+c 的图象如图所示,则下列结论中,正确的是( )
A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0
_______________.
15. 已知二次函数 y=ax2+bx+c 的图象交 x 轴于 A、B 两点,交 y 轴于 C 点,且△ABC 是直角三角形,请
写出一个符合要求的二次函数解析式________________.
16. 在距离地面 2m 高的某处把一物体以初速度 v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上
18. 已知抛物线 y=x2+x+b2 经过点
,则 y1 的值是_________.
19. 如图,已知直线
分别交 轴、 轴于点 、 , 是抛物线
上的一个动
点,其横坐标为 ,过点 且平行于 轴的直线交直线

.
于点 ,则当
时, 的值
三、解答下列各题
20. 若二次函数的图象的对称轴方程是 ,并且图象过 A(0,-4)和 B(4,0)
22.
已知:如图,二次函数 y=ax2+bx+c 的图象与 x 轴交于 A、B 两点,其中 A 点坐标为(-1,0),点
y最小值 k
y最大值 k
二次函数练习 一、选择题 1.下列关系式中,属于二次函数的是(x 为自变量)( )
A.
B.
C.
D.
2. 函数 y=x2-2x+3 的图象的顶点坐标是( ) A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3. 抛物线 y=2(x-3)2 的顶点在( ) A. 第一象限 B. 第二象限 C. x 轴上 D. y 轴上
相关文档
最新文档