【常考题】高一数学上期末模拟试题(含答案)
【必考题】高一数学上期末一模试卷附答案

【必考题】高一数学上期末一模试卷附答案一、选择题1.设23a log =,b =23c e=,则a b c ,,的大小关系是( ) A .a b c << B .b a c << C .b c a << D . a c b <<2.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a <<B .b a c <<C .a c b <<D .c a b <<3.对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的“上界值”,则函数33()33x x f x -=+的“上界值”为( )A .2B .-2C .1D .-14.已知函数()()y f x x R =∈满足(1)()0f x f x ++-=,若方程1()21f x x =-有2022个不同的实数根i x (1,2,3,2022i =),则1232022x x x x ++++=( )A .1010B .2020C .1011D .20225.已知函数2()log f x x =,正实数,m n 满足m n <且()()f m f n =,若()f x 在区间2[,]m n 上的最大值为2,则,m n 的值分别为A .12,2 B .2C .14,2 D .14,4 6.已知函数()2log 14x f x x ⎧+=⎨+⎩ 00x x >≤,则()()3y f f x =-的零点个数为( )A .3B .4C .5D .67.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.5%.已知在过滤过程中的污染物的残留数量P (单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为0ktP P e -=⋅(k 为常数,0P 为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,那么要能够按规定排放废气,还需要过滤n 小时,则正整数n 的最小值为( )(参考数据:取5log 20.43=) A .8B .9C .10D .148.已知全集为R ,函数()()ln 62y x x =--的定义域为集合{},|44A B x a x a =-≤≤+,且RA B ⊆,则a 的取值范围是( )A .210a -≤≤B .210a -<<C .2a ≤-或10a ≥D .2a <-或10a >9.设函数()f x 是定义为R 的偶函数,且()f x 对任意的x ∈R ,都有()()22f x f x -=+且当[]2,0x ∈-时, ()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x的方程()()log 20(1a f x x a -+=>恰好有3个不同的实数根,则a 的取值范围是 ( ) A .()1,2B .()2,+∞C.(D.)210.已知函数f (x )=12log ,1,24,1,x x x x >⎧⎪⎨⎪+≤⎩则1(())2f f )等于( )A .4B .-2C .2D .111.若函数()[)[]1,1,0{44,0,1xx x f x x ⎛⎫∈- ⎪=⎝⎭∈,则f (log 43)=( )A .13B .14C .3D .412.函数y =11x -在[2,3]上的最小值为( ) A .2 B .12 C .13D .-12二、填空题13.若函数()1f x mx x =--有两个不同的零点,则实数m 的取值范围是______. 14.已知幂函数(2)my m x =-在(0,)+∞上是减函数,则m =__________.15.通过研究函数()4221021=-+-f x x x x 在x ∈R 内的零点个数,进一步研究得函数()221021=+--n g x x x x (3n >,n N ∈且n 为奇数)在x ∈R 内零点有__________个16.已知函数()1352=++f x ax bx (a ,b 为常数),若()35f -=,则()3f 的值为______17.()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,若(0,3)x ∈时,()lg f x x x =+,则()f x 在(6,3)--上的解析式是______________.18.已知()f x 为奇函数,且在[)0,+∞上是减函数,若不等式()()12f ax f x -≤-在[]1,2x ∈上都成立,则实数a 的取值范围是___________.19.0.11.1a =,122log 2b =,ln 2c =,则a ,b ,c 从小到大的关系是________. 20.若函数在区间单调递增,则实数的取值范围为__________.三、解答题21.已知函数1()21xf x a =-+,()x R ∈. (1)用定义证明:不论a 为何实数()f x 在(,)-∞+∞上为增函数;(2)若()f x 为奇函数,求a 的值;(3)在(2)的条件下,求()f x 在区间[1,5]上的最小值. 22.设()()12log 10f x ax =-,a 为常数.若()32f =-.(1)求a 的值;(2)若对于区间[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围 .23.已知全集U =R ,函数()3lg(10)f x x x =--的定义域为集合A ,集合{}|57B x x =≤<(1)求集合A ; (2)求()U C B A ⋂. 24.已知函数()22xxf x k -=+⋅,()()log ()2xa g x f x =-(0a >且1a ≠),且(0)4f =.(1)求k 的值;(2)求关于x 的不等式()0>g x 的解集; (3)若()82x tf x ≥+对x ∈R 恒成立,求t 的取值范围. 25.已知函数()()()()log 1log 301a a f x x x a =-++<<. (1)求函数()f x 的定义域; (2)求函数()f x 的零点;(3)若函数()f x 的最小值为4-,求a 的值.26.已知全集U=R,集合{}240,A x x x =-≤{}22(22)20B x x m x m m =-+++≤. (Ⅰ)若3m =,求U C B 和AB ;(Ⅱ)若B A ⊆,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据指数幂与对数式的化简运算,结合函数图像即可比较大小. 【详解】 因为23a log =,3b =,23c e = 令()2f x log x =,()g x x =函数图像如下图所示:则()2442f log ==,()442g == 所以当3x =时23log 3>,即a b <3b =23c e = 则66327b ==,626443 2.753.1c e e ⎛⎫⎪==>≈ ⎪⎝⎭所以66b c <,即b c < 综上可知, a b c << 故选:A 【点睛】本题考查了指数函数、对数函数与幂函数大小的比较,因为函数值都大于1,需借助函数图像及不等式性质比较大小,属于中档题.2.D【解析】 【分析】可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D . 【点睛】考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.3.C解析:C 【解析】 【分析】利用换元法求解复合函数的值域即可求得函数的“上界值”. 【详解】 令3,0xt t => 则361133t y t t -==-<++ 故函数()f x 的“上界值”是1; 故选C 【点睛】本题背景比较新颖,但其实质是考查复合函数的值域求解问题,属于基础题,解题的关键是利用复合函数的单调性法则判断其单调性再求值域或 通过换元法求解函数的值域.4.C解析:C 【解析】 【分析】 函数()f x 和121=-y x 都关于1,02⎛⎫⎪⎝⎭对称,所有1()21f x x =-的所有零点都关于1,02⎛⎫⎪⎝⎭对称,根据对称性计算1232022x x x x ++++的值.()()10f x f x ++-=,()f x ∴关于1,02⎛⎫⎪⎝⎭对称,而函数121=-y x 也关于1,02⎛⎫⎪⎝⎭对称, ()121f x x ∴=-的所有零点关于1,02⎛⎫⎪⎝⎭对称, ()121f x x ∴=-的2022个不同的实数根i x (1,2,3,2022i =),有1011组关于1,02⎛⎫ ⎪⎝⎭对称,122022...101111011x x x ∴+++=⨯=.故选:C 【点睛】本题考查根据对称性计算零点之和,重点考查函数的对称性,属于中档题型.5.A解析:A 【解析】试题分析:画出函数图像,因为正实数,m n 满足m n <且()()f m f n =,且()f x 在区间2[,]m n 上的最大值为2,所以()()f m f n ==2,由2()log 2f x x ==解得12,2x =,即,m n 的值分别为12,2.故选A .考点:本题主要考查对数函数的图象和性质.点评:基础题,数形结合,画出函数图像,分析建立m,n 的方程.6.C解析:C 【解析】 【分析】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,结合图象可知,方程()3f t =有三个实根,进而可得答案. 【详解】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,如图所示,结合图象可知,方程()3f t =有三个实根11t =-,214t =,34t =, 则()1f x =- 有一个解,()14f x =有一个解,()4f x =有三个解, 故方程()()3ff x =有5个解.【点睛】本题主要考查了函数与方程的综合应用,其中解答中合理利用换元法,结合图象,求得方程()3f t =的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和解答问题的能力,以及数形结合思想的应用.7.C解析:C 【解析】 【分析】根据已知条件得出415ke-=,可得出ln 54k =,然后解不等式1200kt e -≤,解出t 的取值范围,即可得出正整数n 的最小值. 【详解】由题意,前4个小时消除了80%的污染物,因为0ktP P e -=⋅,所以()400180%kP Pe --=,所以40.2k e -=,即4ln0.2ln5k -==-,所以ln 54k =, 则由000.5%ktP P e -=,得ln 5ln 0.0054t =-, 所以()23554ln 2004log 2004log 52ln 5t ===⨯5812log 213.16=+=, 故正整数n 的最小值为14410-=.故选:C. 【点睛】本题考查指数函数模型的应用,涉及指数不等式的求解,考查运算求解能力,属于中等题.8.C解析:C 【解析】 【分析】由()()620x x -->可得{}|26=<<A x x ,{}44R C B x a x a 或=-+,再通过A 为R C B 的子集可得结果.【详解】由()()ln 62y x x =--可知,()()62026x x x -->⇒<<,所以{}|26=<<A x x ,{}44R C B x a x a 或=-+,因为R A C B ⊆,所以6424a a 或≤-≥+,即102a a ≥≤-或,故选C. 【点睛】本题考查不等式的解集和对数函数的定义域,以及集合之间的交集和补集的运算;若集合的元素已知,求解集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.9.D解析:D 【解析】∵对于任意的x ∈R ,都有f (x −2)=f (2+x ),∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[−2,0]时,f (x )=1 2x⎛⎫ ⎪⎝⎭−1,且函数f (x )是定义在R 上的偶函数,若在区间(−2,6]内关于x 的方程()()log 20a f x x -+=恰有3个不同的实数解, 则函数y =f (x )与y =()log 2a x +在区间(−2,6]上有三个不同的交点,如下图所示:又f (−2)=f (2)=3,则对于函数y =()log 2a x +,由题意可得,当x =2时的函数值小于3,当x =6时的函数值大于3,即4a log <3,且8a log >3,34a <2, 故答案为34,2).点睛:方程根的问题转化为函数的交点,利用周期性,奇偶性画出所研究区间的图像限制关键点处的大小很容易得解10.B解析:B 【解析】121242242f ⎛⎫=+=+= ⎪⎝⎭,则()1214log 422f f f ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭,故选B. 11.C解析:C 【解析】 【分析】根据自变量范围代入对应解析式,化简得结果. 【详解】f (log 43)=log434=3,选C. 【点睛】本题考查分段函数求值,考查基本求解能力,属基础题.12.B解析:B 【解析】 y =11x -在[2,3]上单调递减,所以x=3时取最小值为12,选B. 二、填空题13.【解析】【分析】令可得从而将问题转化为和的图象有两个不同交点作出图形可求出答案【详解】由题意令则则和的图象有两个不同交点作出的图象如下图是过点的直线当直线斜率时和的图象有两个交点故答案为:【点睛】本 解析:0,1【解析】 【分析】 令0f x,可得1mx x =-,从而将问题转化为y mx =和1y x =-的图象有两个不同交点,作出图形,可求出答案. 【详解】由题意,令()10f x mx x =--=,则1mx x =-, 则y mx =和1y x =-的图象有两个不同交点, 作出1y x =-的图象,如下图,y mx =是过点()0,0O 的直线,当直线斜率()0,1m ∈时,y mx =和1y x =-的图象有两个交点. 故答案为:0,1.【点睛】本题考查函数零点问题,考查函数图象的应用,考查学生的计算求解能力,属于中档题.14.-3【解析】【分析】根据函数是幂函数可求出m 再根据函数是减函数知故可求出m 【详解】因为函数是幂函数所以解得或当时在上是增函数;当时在上是减函数所以【点睛】本题主要考查了幂函数的概念幂函数的增减性属于解析:-3 【解析】 【分析】根据函数是幂函数可求出m,再根据函数是减函数知0m <,故可求出m. 【详解】 因为函数是幂函数所以||21m -=,解得3m =-或3m =. 当3m =时,3y x =在(0,)+∞上是增函数; 当3m =-时,y x =在(0,)+∞上是减函数, 所以3m =-. 【点睛】本题主要考查了幂函数的概念,幂函数的增减性,属于中档题.15.3【解析】【分析】令(为奇数)作出两个函数的图象后可判断零点的个数【详解】由题意令则零点的个数就是图象交点的个数如图所示:由图象可知与的图象在第一象限有一个交点在第三象限有一个交点因为当为正奇数时的解析:3 【解析】 【分析】令()2n s x x =(n 为奇数,3n >),()21021h x x x =-++,作出()s x 、()h x 两个函数的图象后可判断()g x 零点的个数. 【详解】由题意,令()*2,,5n s x x n N n =∈≥,()21021h x x x =-++,则()()()g x s x h x =-,()g x 零点的个数就是()(),s x h x 图象交点的个数,如图所示:由图象可知,()s x 与()h x 的图象在第一象限有一个交点,在第三象限有一个交点, 因为当n 为正奇数时()2ns x x =的变化速度远大于()h x 的变化速度,故在第三象限内, ()s x 、()h x 的图象还有一个交点,故()(),s x h x 图象交点的个数为3,所以()g x 零点的个数为3.故答案为:3.【点睛】本题主要考查了函数的零点的判定,其中解答中把函数的零点问题转化为两个函数的图象的交点个数求解是解答的关键,着重考查了数形结合思想的应用,属于中档试题.16.【解析】【分析】由求得进而求解的值得到答案【详解】由题意函数(为常数)且所以所以又由故答案为:【点睛】本题主要考查了函数值的求解其中解答中根据函数的解析式准确运算是解答的关键着重考查了计算能力属于基 解析:1-【解析】【分析】由()35f -=,求得1532723a b -⋅-+=,进而求解()3f 的值,得到答案.【详解】由题意,函数()1352=++f x ax bx (a ,b 为常数),且()35f -=,所以()15332725f a b -=-⋅-+=,所以153273a b -⋅-=,又由()1533272321f a b -=⋅++=-+=-.故答案为:1-.【点睛】本题主要考查了函数值的求解,其中解答中根据函数的解析式,准确运算是解答的关键,着重考查了计算能力,属于基础题. 17.【解析】【分析】首先根据题意得到再设代入解析式即可【详解】因为是上的奇函数且满足所以即设所以所以故答案为:【点睛】本题主要考查函数的奇偶性和对称性的综合题同时考查了学生的转化能力属于中档题解析:()6lg(6)f x x x =---+【解析】【分析】首先根据题意得到(6)()f x f x +=-,再设(6,3)x ∈--,代入解析式即可.【详解】因为()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,所以[3(3)][3(3)]f x f x ++=-+,即(6)()()f x f x f x +=-=-.设(6,3)x ∈--,所以6(0,3)x +∈.(6)6lg(6)()f x x x f x +=+++=-,所以()6lg(6)f x x x =---+.故答案为:()6lg(6)f x x x =---+【点睛】本题主要考查函数的奇偶性和对称性的综合题,同时考查了学生的转化能力,属于中档题. 18.【解析】【分析】根据为奇函数且在上是减函数可知即令根据函数在上单调递增求解的取值范围即可【详解】为奇函数且在上是减函数在上是减函数∴即令则在上单调递增若使得不等式在上都成立则需故答案为:【点睛】本题 解析:0a ≤【解析】【分析】根据()f x 为奇函数,且在[)0,+∞上是减函数,可知12ax x -≤-,即11a x≤-,令11y x =-,根据函数11y x=-在[]1,2x ∈上单调递增,求解a 的取值范围,即可. 【详解】 ()f x 为奇函数,且在[)0,+∞上是减函数∴()f x 在R 上是减函数.∴12ax x -≤-,即11a x ≤-. 令11y x =-,则11y x=-在[]1,2x ∈上单调递增. 若使得不等式()()12f ax f x -≤-在[]1,2x ∈上都成立. 则需min 111101a x ⎛⎫≤-=-= ⎪⎝⎭. 故答案为:0a ≤本题考查函数的单调性与奇偶性的应用,属于中档题.19.【解析】【分析】根据指数函数和对数函数的图象与性质分别求得实数的取值范围即可求解得到答案【详解】由题意根据指数函数的性质可得由对数函数的运算公式及性质可得且所以abc 从小到大的关系是故答案为:【点睛 解析:b c a <<【解析】【分析】根据指数函数和对数函数的图象与性质,分别求得实数,,a b c 的取值范围,即可求解,得到答案.【详解】由题意,根据指数函数的性质,可得0.101.111.1a >==, 由对数函数的运算公式及性质,可得121122211log log ()222b ===, 1ln 2ln 2c e =>=,且ln 2ln 1c e =<=, 所以a ,b ,c 从小到大的关系是b c a <<.故答案为:b c a <<.【点睛】 本题主要考查了指数函数与对数函数的图象与性质的应用,其中解答中熟记指数函数与对数函数的图象与性质,求得实数,,a b c 的取值范围是解答的关键,着重考查了推理与运算能力,属于基础题.20.(-∞1∪4+∞)【解析】由题意得a+1≤2或a≥4解得实数a 的取值范围为(-∞1∪4+∞)点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间ab 上单调则该函数在此区间的任意解析:【解析】由题意得 或 ,解得实数的取值范围为点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量的取值范围.三、解答题21.(1)见解析;(2)12a =;(3) 16. 【解析】【分析】(1)()f x 的定义域为R, 任取12x x <, 则121211()()2121x x f x f x a a -=--+++=121222(12)(12)x x x x -++. 12x x <,∴1212220,(12)(12)0x x x x -++.∴12())0(f x f x -<,即12()()f x f x <.所以不论a 为何实数()f x 总为增函数.(2)()f x 在x ∈R 上为奇函数,∴(0)0f =,即01021a -=+. 解得12a =. (3)由(2)知,11()221x f x =-+, 由(1) 知,()f x 为增函数,∴()f x 在区间[1,5)上的最小值为(1)f .∵111(1)236f =-=, ∴()f x 在区间[1,5)上的最小值为16. 22.(1)2a =(2)17,8⎛⎫-∞-⎪⎝⎭ 【解析】【分析】(1)依题意代数求值即可;(2)设()()121log 1022x g x x ⎛⎫=-- ⎪⎝⎭,题设条件可转化为()g x m >在[]3,4x ∈上恒成立,因此,求出()g x 的最小值即可得出结论.【详解】(1)()32f =-,()12log 1032a ∴-=-, 即211032a -⎛⎫-= ⎪⎝⎭,解得2a =; (2)设()()121log 1022xg x x ⎛⎫=-- ⎪⎝⎭,题设不等式可转化为()g x m >在[]3,4x ∈上恒成立,()g x 在[]3,4上为增函数,()31min2117(3)log (106)28g x g ⎛⎫∴==--=- ⎪⎝⎭, 178m ∴<-, m ∴的取值范围为17,8⎛⎫-∞- ⎪⎝⎭. 【点睛】本题考查函数性质的综合应用,属于中档题.在解决不等式恒成立问题时,常分离参数,将其转化为最值问题解决.23.(1) {}|310A x x =≤< (2) {}()|35710U C B A x x x ⋂=≤<≤<或【解析】试题分析:(1)根据真数大于零以及偶次根式被开方数非负列不等式,解得集合A (2)先根据数轴求U C B ,再根据数轴求交集 试题解析:(1)由题意可得:30100x x -≥⎧⎨->⎩,则{|310}A x x =≤< (2){|57}U C B x x x =<≥或(){|35710}U C B A x x x ⋂=≤<≤<或24.(1) 3k =;(2) 当1a >时,()2,log 3x ∈-∞;当01a <<时,()2log 3,x ∈+∞;(3)(],13-∞-【解析】【分析】(1)由函数过点()0,4,待定系数求参数值;(2)求出()g x 的解析式,解对数不等式,对底数进行分类讨论即可.(3)换元,将指数型不等式转化为二次不等式,再转化为最值求解即可.【详解】(1)因为()22x x f x k -=+⋅且(0)4f =,故:14k +=, 解得3k =.(2)因为()()log ()2x a g x f x =-,由(1),将()f x 代入得:()log (32?)x a g x -=,则log (32?)0x a ->,等价于:当1a >时,321x ->,解得()2,log 3x ∈-∞当01a <<时,321x -<,解得()2log 3,x ∈+∞.(3)()82xt f x ≥+在R 上恒成立,等价于: ()()228230x x t --+≥恒成立;令2x m =,则()0,m ∈+∞,则上式等价于:2830m m t --+≥,在区间()0,+∞恒成立.即:283t m m ≤-+,在区间()0,+∞恒成立,又()2283413m m m -+=--,故: 2(83)m m -+的最小值为:-13,故:只需13t ≤-即可.综上所述,(],13t ∈-∞-.【点睛】本题考查待定系数求参数值、解复杂对数不等式、由恒成立问题求参数范围,属函数综合问题.25.(1)()3,1.-(2)1-±3 【解析】【分析】(1)根据对数的真数大于零,列出不等式组并求出解集,函数的定义域用集合或区间表示出来;(2)利用对数的运算性质对解析式进行化简,再由()=0f x ,即223=1x x --+,求此方程的根并验证是否在函数的定义域内;(3)把函数解析式化简后,利用配方求真数在定义域内的范围,再根据对数函数在定义域内递减,求出函数的最小值log 4a ,得log 44a =-利用对数的定义求出a 的值.【详解】(1)由已知得10,30,x x ->⎧⎨+>⎩, 解得31x -<<所以函数()f x 的定义域为()3,1.- (2)()()()()()()2log 1log 3log 13log 23a a a a f x x x x x x x =-++=-+=--+,令()=0f x,得223=1x x --+,即222=0x x +-,解得1x =-±∵1(-3,1)-,∴函数()f x 的零点是1-(3)由2知,()()()22log 23log 14a a f x x x x ⎡⎤=--+=-++⎣⎦, ∵31x -<<,∴()20144x <-++≤.∵01a <<,∴()2log 14log 4a a x ⎡⎤-++≥⎣⎦, ∴()min log 44a f x ==-,∴1442a -==. 【点睛】本题是关于对数函数的综合题,考查了对数的真数大于零、函数零点的定义和对数型的复合函数求最值,注意应在函数的定义域内求解,灵活转化函数的形式是关键.26.(Ⅰ){05},{35}U A B x x C B x x x ⋃=≤≤=或(Ⅱ)02m ≤≤【解析】【分析】(Ⅰ)由3m =时,求得集合{04},{35}A x x B x x =≤≤=≤≤,再根据集合的并集、补集的运算,即可求解; (Ⅱ)由题意,求得{04},{2}A x x B x m x m =≤≤=≤≤+,根据B A ⊆,列出不等式组,即可求解。
高一数学上学期期末模拟质量检测试卷含答案

高一数学上学期期末模拟质量检测试卷含答案一、选择题1.设{1,0,1,2}U =-,集合2{|1,}A x x x U =<∈,则UA( )A .{0,1,2}B .{1,1,2}-C .{1,0,2}-D .{1,0,1}-2.函数()102f x x =+的定义域为( ) A .(),3-∞-B .[)3,2--C .()()3,22,--⋃-+∞D .()3,2--3.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3πB .3π-C .23π D .23π-4.已知点()3,4A ,向的OA 绕原点O 逆时针旋转3π后等于OB ,则点B 的坐标为( ) A.⎝⎭ B.⎝⎭C.⎝⎭D.⎝⎭5.方程e 10x x ++=的根所在的区间是( ) A .()0,1B .()1,0-C .()2,1--D .()1,26.为净化水质,向游泳池加入某种化学药品,加药后池水中该药品的浓度C (单位:mg /L )随时间t (单位:小时)的变化关系为220()t aC t t b+=+(,a b 为常数,0t ≥),当0t =时池水中药品的浓度为0mg /L ,当1t =小时池水中药品的浓度为4mg /L ,则池水中药品达到最大浓度需要( ) A .2小时B .3小时C .4小时D .5小时7.定义在R 上的偶函数()f x 在[)0,+∞上是增函数,且()20f =,则不等式()0f x x>的解集为( ) A .()()2,00,2- B .()(),22,-∞-+∞ C .()(),20,2-∞-D .()()2,02,-+∞8.已知函数121(02)()(2)(2)x x f x f x x -⎧-≤≤⎪=⎨->⎪⎩,()log (1)a g x x =+(0a >,且1a ≠),若()()()F x f x g x =-在[0,)+∞上至少有5个不相同的零点,则实数a 的取值范围为( )A .()3,4B .()4,5C .()2,3D .()5,+∞二、填空题9.下列函数中,既为奇函数又在定义域内单调递增的是( ) A .1010x x y -=- B .()22log 1y x =+ C .3y x =D .|sin |y x =10.使得“a b >”成立的充分不必要条件可以是( )A .1a b >-B .11a b< C D .10.30.3a b -<11.已知a ,b ,c 满足a b c >>,且0ac <,则下列不等式中恒成立的有( ) A .0a >,0c <B .b c a a>C .22b a c c>D .ab bc >12.下列说法正确的是( )A .“0x R ∃∈,0202x x >”的否定是“x R ∀∈,22x x ≤”B .函数()f x =的最小值为6C .函数1()2g x ⎛= ⎪⎝⎭1,12⎡⎤-⎢⎥⎣⎦D .a b >的充要条件是a a b b三、多选题13.若命题“2000,(1)10x R x a x ∃∈+-+<”是真命题,则实数a 的取值范围是_____________.14.函数()2xf x =和()3g x x =的图像的示意图如图所示,设两函数的图像交于点()11,A x y ,()22,B x y ,且12x x <.若[]1,1x a a ∈+,[]2,1x b b ∈+,且a ,{}1,2,3,4,5,6,7,8,9,10,11,12b ∈,则a b +=__________.15.已知函数22()tf x x t x =-+有最小值且最小值与t 无关,则t 的取值范围是_________. 16.对任意0,4πϕ⎡⎤∈⎢⎥⎣⎦,函数()sin()f x x ωϕ=+在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递增,则实数ω的取值范围是________.四、解答题17.已知函数()1ln3x f x x-=-的定义域为集合A ,关于x 的不等式()()2110ax a x a R +++>∈的解集为B .(1)求集合A ;(2)若A B ⋂≠∅,求实数a 的取值范围. 18.已知函数()223sin cos 2cos f x x x x =⋅+. (1)求函数()f x 的最小正周期; (2)求该函数的单调递增区间;(3)求函数()f x 在区间π5π,612⎡⎤-⎢⎥⎣⎦上的最小值和最大值.19.已知函数1()(0xxb f x a a a -=+>且1)a ≠是奇函数. (1)求b 的值;(2)令函数()()1x g x f x a =--,若关于x 的方程2()3t g x t +=+在R 上有解,求实数t 的取值范围.20.对于等式b a c =(0a >,1a ≠),如果将a 视为自变量x ,b 视为常数,c 为关于a (即x )的函数,记为y ,那么b y x =是幂函数;如果将a 视为常数,b 视为自变量x ,c 为关于b (即x )的函数,记为y ,那么x y a =是指数函数;如果将a 视为常数,c 视为自变量x ,b 为关于c (即x )的函数,记为y ,那么log a y x =是对数函数.事实上,由这个等式还可以得到更多的函数模型.如果c 为常数e (e 为自然对数的底),将a 视为自变量x (0x >,1x ≠),则b 为x 的函数,记为y ,那么y x e =,记将y 表示成x 的函数为()f x .(1)求函数()f x 的解析式,并作出其图象;(2)若0m n >>且均不等于1,且满足()()f m f n =,求证:243m n +≥.21.已知函数()()sin 20,02f x A x A πϕϕ⎛⎫=+><< ⎪⎝⎭的最大值为2,其图象与y 轴交点为()0,1.(1)求()f x 的解析式;(2)求()f x 在[]0,π上的单调增区间;(3)对于任意的0,3x π⎡⎤∈⎢⎥⎣⎦,()()240f x mf x -+≥恒成立,求实数m 用的取值范围.22.已知函数()x x f x a a -=-(0a >且1a ≠).(1)若(1)0f <,对任意[0,)x ∈+∞,恒有()2221a f x kx k a ⋅--+,求k 的最大值;(2)若3(1)2f =,函数()g x 满足(2)()()0(0)f x f x g x x +-⋅=≠.就实数m 的取值,讨论关于x 的方程()(2)10m g x g x ⋅=+的实数根的个数.【参考答案】1.B 【分析】先求出集合A ,根据补集运算,即可求出UA .【详解】由21x < 得: 11x -<<,又x U ∈,所以{}0A = ,因此{}1,1,2UA =- .故选:B. 【点睛】本题主要考查了集合的补集运算,属于基础题. 2.D 【分析】根据函数有意义列出式子求解即可. 【详解】解:由题可知()1330log 3020x x x ⎧+>⎪⎪+≥⎨⎪⎪+≠⎩,解得:322x x x >-⎧⎪≤-⎨⎪≠-⎩,故()32x ∈--,. 故选:D. 3.B 【分析】因为时针经过2小时相当于转了一圈的16,且按顺时针转所形成的角为负角,综合以上即可得到本题答案. 【详解】因为时针旋转一周为12小时,转过的角度为2π,按顺时针转所形成的角为负角,所以经过2小时,时针所转过的弧度数为11263ππ-⨯=-.故选:B本题主要考查正负角的定义以及弧度制,属于基础题. 4.D 【分析】设OA 与x 轴正方向所成的角为α,设OB 与y 轴正方向所成的角为β,先求出5OA =,34cos ,sin 55αα==,再结合两角和的正弦公式和余弦公式求出cos β和sin β,进而可以求出结果. 【详解】设OA 与x 轴正方向所成的角为α,设OB 与y 轴正方向所成的角为β,则3πβα=+,由题意知 5OA =,34cos ,sin 55αα==,所以cos cos cos cos sin sin 333πππβααα⎛⎫=+=-= ⎪⎝⎭sin sin sin cos cos sin 333πππβααα⎛⎫=+=+= ⎪⎝⎭所以点B 的横坐标为5cos 5β==;点B 的纵坐标为5sin 5β==;所以点B 的坐标为⎝⎭, 故选:D. 5.C 【分析】设e (1)x f x x =++,逐一分析各个选项,结合零点存在性定理,即可得答案. 【详解】设e (1)x f x x =++, 2211(2)10,(1)0,(0)2,(1)e 20,(2)e 30e ef f f f f -=-<-=>==+>=+> 因为(2)(1)0f f -⋅-<,根据零点存在性定理,可得()f x 的零点在区间()2,1--内. 故选:C6.A 【分析】由题意求出解析式,再由定义证明4,0y t t t=+>的单调性得出其最小值,进而得出池水中药品达到最大浓度需要的时间. 【详解】由题意可得02041a ba b ⎧=⎪⎪⎨+⎪=⎪+⎩,解得0,4a b ==当0t =时,(0)0C =,当0t >时,22020()44t C t t t t==++令4,0y t t t=+>任取()12,0,t t ∈+∞,且12t t <,则()()121212121212444t t t t y y t t t t t t --⎛⎫-=+-+= ⎪⎝⎭ 当2t ≥时,12120,4t t t t -<>,即12y y <;当02t <<时,12120,4t t t t -<<,即12y y > 则函数4,0y t t t=+>在()0,2上单调递减,在2,上单调递增,即min 4224t t ⎛⎫+=+= ⎪⎝⎭,即当2t =时,max ()(2)5C t C == 故选:A 【点睛】关键点睛:解决本题的关键是由定义证明函数4,0y t t t=+>的单调性进而得出其最小值.7.D 【分析】分0x >和0x <两种情况讨论,利用函数的奇偶性和单调性可解得结果. 【详解】 当0x >时,()0f x x>可化为()0f x >, 又()f x 为偶函数且(2)0f =,所以不等式()0f x >可化为(||)(2)f x f >, 因为()f x 在[)0,+∞上是增函数,所以||2x >,解得2x >; 当0x <时,()0f x x>可化为()0f x <, 又()f x 为偶函数且(2)0f =,所以不等式()0f x <可化为(||)(2)f x f <, 因为()f x 在[)0,+∞上是增函数,所以||2x <,解得20x -<<;综上所述:不等式()0f x x>的解集为()()2,02,-+∞.故选:D 【点睛】关键点点睛:利用函数的奇偶性和单调性求解是解题关键. 8.D 【分析】根据题意将问题转化为“()(),f x g x 的图象在[)0,+∞上至少有5个交点”,由此作出()(),f x g x 的图象,根据交点数分析出a 的取值范围.【详解】由题意可知:()(),f x g x 的图象在[)0,+∞上至少有5个交点; 因为2x >时,()()2f x f x =-,所以()()2f x f x +=, 所以()f x 为周期函数且一个周期为2, 当01a <<时,图象如下图所示:由图象可知:()(),f x g x 的图象没有交点,故不符合题意; 当1a >时,图象如下图所示:因为()(),f x g x 的图象至少有5个交点,所以由图象可得:()log 411a +<即可, 所以g 5log lo a a a <,所以5a >,即()5,a ∈+∞, 故选:D.【点睛】思路点睛:求解函数零点个数的问题,采用数形结合思想能高效解答问题,通过数与形的相互转化能使问题转化为更简单的问题,常见的图象应用的命题角度有: (1)确定方程根的个数; (2)求参数范围; (3)求不等式解集; (4)研究函数性质.二、填空题9.AC 【分析】分别利用奇偶性的定义判断每个选项中函数的奇偶性,对于符合奇函数的选项再接着判断其单调性即可. 【详解】四个函数的定义域为x ∈R ,定义域关于原点对称A :记()1010-=-x x f x ,所以()1010()x x f x f x --=-=-,所以函数()1010-=-x x f x 是奇函数,又因为10x y =是增函数,10x y -=是减函数,所以1010x x y -=-是增函数,符合题意;B :记()22()log 1=+g x x ,则()22()log 1()⎡⎤-=-+=⎣⎦g x x g x ,所以函数()22()log 1=+g x x 是偶函数,不符合题意;C :记3()h x x =,则33)()()(=-=--=-h x h x x x ,所以函数3()h x x =是奇函数,根据幂函数的性质,函数3()h x x =是增函数,符合题意;D :记()|sin |=t x x ,则()|sin()||sin |()-=-==t x x x t x ,所以函数()|sin |=t x x 为偶函数.故选:AC 10.CD 【分析】因为判断的是充分不必要条件,所以所选的条件可以推出a b >,且a b >无法推出所选的条件,由此逐项判断即可. 【详解】A .因为1a b >-不能推出a b >,但a b >可以推出1a b >-,所以1a b >-是a b >成立的必要不充分条件,故不满足;B .因为11a b <不能推出a b >(例如:1,1a b =-=),且a b >也不能推出11a b<(例如:1,1a b ==-),所以11a b<是a b >成立的既不充分也不必要条件,故不满足;C >0a b >≥能推出a b >,且a b >1,1a b ==-),a b >成立的充分不必要条件,故满足;D .因为函数0.3x y =在R 上单调递减,所以10.30.3a b -<可以推出1a b ->,即1a b >+, 所以10.30.3a b -<可以推出a b >,且a b >不一定能推出10.30.3a b -<(例如:1,1a b ==), 所以10.30.3a b -<是a b >成立的充分不必要条件,故满足, 故选:CD. 【点睛】结论点睛:充分、必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分也不必要条件,则p 对应集合与q 对应集合互不包含. 11.AB 【分析】根据不等式的基本性质,分别判断四个答案中的不等式是否恒成立,可得结论. 【详解】解:a b c >>,且0ac <,0a ∴>,0c <,故A 成立;所以10a> ∴由b c >,所以b ca a>恒成立,故B 成立; 对于C :若1a =,1b =-,则22b ac c =,故C 错误;对于D :若0b =,ab bc =,故D 错误; 故选:AB . 12.ACD 【分析】根据含全称量词、存在量词的命题的否定形式可判断A 选项是否正确; 根据基本不等式及等号成立的条件可判断B 选项是否正确; 利用复合函数单调性“同增异减”可判断C 选项的正误; 构造函数利用单调性判断D 选项是否正确. 【详解】对于A 选项,由特称命题的否定形式可知,A 选项正确;对于B 选项,若利用基本不等式有()6f x =≥,等号不能成立,故B 选项错误;对于C 选项,因为函数12ty ⎛⎫= ⎪⎝⎭为递减函数,若1()2g x ⎛= ⎪⎝⎭22y x x =--+递减,且220x x --+≥,解得112x -≤≤,故C 正确; 对于D 选项,设函数()22,0,0x x f x x x x x ⎧≥==⎨-<⎩,则函数[)0,+∞上递增,在(),0-∞上也递增,故()f x 为R 上的单调增函数,所以a b >时a ab b ;当a a b b 时,有a b >. 故a b >的充要条件是a ab b ,D 选项正确.故选:ACD.三、多选题13.{1a a <-或}3a > 【分析】根据存在命题的定义,结合一元二次不等式的解集性质进行求解即可. 【详解】因为命题“2000,(1)10x R x a x ∃∈+-+<”等价于200(1)10x a x +-+=有两个不等实数根,所以2(1)40a ∆=-->,即2230a a -->,解得1a <-或3a >.故答案为:{1a a <-或}3a >.14.10【分析】根据解析式与图像,判断12,C C 分别对应的解析式.根据零点存在定理,可判断两个交点所在的整数区间,即可求得,a b 的值,进而求得+a b . 【详解】根据函数()2x f x =过定点0,1,所以2C 对应函数()2xf x =;函数()3g x x =过()0,0,所以1C 对应函数()3g x x =因为()()()(),2211g f g f <> 所以由图像可知[]11,2x ∈,故1a = 因为()()()()9900,11g f g f >< 所以由图像可知[]29,10x ∈,故9b = 所以10a b += 故答案为:10 【点睛】本题考查了指数函数与幂函数的图像与性质应用,数形结合思想的应用,函数零点存在定理的应用,15.[1,)+∞【分析】本题可分为0t ≤、0t >两种情况进行讨论,然后0t >又可分为0u t <<、u t ≥进行讨论,最后对每种情况下是否有最小值以及最小值与t 是否有关进行研究,即可得出结果. 【详解】当0t ≤时,22()t f x x t x =-+, 令2u x =,则0>u ,ty u t u=+-在(0,)u ∈+∞时是增函数,无最小值. 当0t >时,令2u x =,0>u ,,0()(),t u t u t t uf xg u u t t u u t u t u ⎧-++<<⎪⎪==-+=⎨⎪+-≥⎪⎩,若0u t <<,()tg u u t u=-++是减函数,则()11g u t t >-++=, 若u t ≥,()t g u u t t t u =+-≥=,当且仅当u =时等号成立,t ,即1t ≥时,()g u 在[,)t +∞上递增,min ()()11g u g t t t ==-++=,t >,即01t <<时,min ()g u t =与t 有关,故答案为:[1,)+∞. 【点睛】关键点点睛:本题考查求函数的最值.对含绝对值的函数一般根据绝对值定义分类讨论去掉绝对值符号,然后可分段求最小值,最后比较可得.而利用函数的单调性是求最值的基本方法,有时也可用基本不等式求最值,但要注意基本不等式成立的条件,在条件不满足时,可用单调性得最值.16.130,42⎛⎤⎧⎫⋃-⎨⎬ ⎥⎝⎦⎩⎭【分析】 根据题意可得22T π≥,从而可得2ω≤,讨论0>ω,0ω=或0ω<,再求出()sin()f x x ωϕ=+的单调递增区间,只需,2ππ⎡⎤⎢⎥⎣⎦是单调递增区间的子集即可求解.【详解】()()sin f x x ωϕ=+,0,4πϕ⎡⎤∈⎢⎥⎣⎦,由正弦函数的性质,()f x 的每个增区间的长度为2T,其中函数()f x 的最小正周期为2T ωπ=.函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调地藏,可得22T π≥,即2ω≤.①当0>ω时,此时02ω<≤,x ωϕ+单调递增,当2,2,22x k k k Z ππωϕππ⎡⎤+∈-+∈⎢⎥⎣⎦,()f x 单调递增,解得112,2,22x k k k Z πππϕπϕωω⎡⎤⎛⎫⎛⎫∈--+-∈ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,只需11,2,2,222k k k Z πππππϕπϕωω⎡⎤⎡⎤⎛⎫⎛⎫⊆--+-∈ ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦,从而可得1222,122k k Z k πππϕωπππϕω⎧⎛⎫≥-- ⎪⎪⎪⎝⎭∈⎨⎛⎫⎪≤+- ⎪⎪⎝⎭⎩, 解得2141,2,2k k k Z ϕϕωππ⎡⎤∈--+-∈⎢⎥⎣⎦对0,4πϕ⎡⎤∀∈⎢⎥⎣⎦成立, 则21410214k k πωππ--⨯≤≤+-⨯,即141,2,4k k k Z ω⎡⎤∈-+∈⎢⎥⎣⎦,由124141204k k k ⎧+>-⎪⎪⎨⎪+>⎪⎩,解得1588k -<<,k Z ∈,0k ∴=.所以,10,4ω⎛⎤∈ ⎥⎝⎦;②当0ω=时,函数()sin f x ϕ=为常函数,不合乎题意; ③当0ω<时,20ω-≤<,x ωϕ+单调递减, 由322,22k x k k Z πππωϕπ+≤+≤+∈, 解得13122,22k x k k Z πππϕπϕωω⎛⎫⎛⎫+-≤≤+-∈ ⎪ ⎪⎝⎭⎝⎭对0,4πϕ⎡⎤∀∈⎢⎥⎣⎦成立, 可得13222,122k k Z k πππϕωπππϕω⎧⎛⎫≥+- ⎪⎪⎪⎝⎭∈⎨⎛⎫⎪≤+- ⎪⎪⎝⎭⎩,解得122,43,2k k k Z ϕϕωππ⎡⎤∈+-+-∈⎢⎥⎣⎦对0,4πϕ⎡⎤∀∈⎢⎥⎣⎦成立,于是12210434k k πωππ+-⨯≤≤+-⋅,即521,4,2k k k Z ω⎡⎤∈++∈⎢⎥⎣⎦,由5142225402k k k ⎧+≥+⎪⎪⎨⎪+<⎪⎩,解得518k -≤<-,由k Z ∈,1k =-,此时,32ω=-.综上所述,实数ω的取值范围是130,42⎛⎤⎧⎫⋃-⎨⎬ ⎥⎝⎦⎩⎭.故答案为:130,42⎛⎤⎧⎫⋃-⎨⎬ ⎥⎝⎦⎩⎭.【点睛】关键点点睛:本题考查了三角函数的性质,解题的关键是求出函数的单调递增区间,使,2ππ⎡⎤⎢⎥⎣⎦是单调递增区间的子集,考查了分类讨论的思想. 四、解答题17.(1){}13A x x =<<;(2){}1a a >-. 【分析】(1)利用对数的真数大于零可求得集合A ;(2)对实数a 的取值进行分类讨论,求出集合B ,根据A B ⋂≠∅可得出关于实数a 的不等式,综合可得出实数a 的取值范围. 【详解】(1)对于函数()1ln3x f x x -=-,103x x ->-,可得103x x -<-,解得13x <<, 因此,{}13A x x =<<;(2)由()2110ax a x +++>,可得()()110ax x ++>.①当0a =时,则有10x +>,解得1x >-,即{}1B x x =>-,此时A B ⋂≠∅成立; ②当0a <时,因为10a ->,解不等式()()110ax x ++>可得11x a-<<-,即11B x x a ⎧⎫=-<<-⎨⎬⎩⎭,因为A B ⋂≠∅,则11a ->,即10a a+<,解得10a -<<; ③当1a >时,110a -<-<,解不等式()()110ax x ++>可得1x <-或1x a>-, 即{1B x x =<-或1x a ⎫>-⎬⎭,此时A B ⋂≠∅成立;④当1a =时,则有()210x +>,解得1x ≠-,即{}1B x x =≠-,此时A B ⋂≠∅成立;⑤当01a <<时,11-<-a ,解不等式()()110ax x ++>可得1x a<-或1x >-, 即1B x x a ⎧=<-⎨⎩或}1x >-,此时A B ⋂≠∅成立.综上所述,实数a 的取值范围是{}1a a >-.18.(1)πT =;(2)πππ,π36k k ⎡⎤-++⎢⎥⎣⎦()k ∈Z ;(3)最大值为3,最小值为0.【分析】(1)利用二倍角公式以及辅助角公式化简()f x ,再由正弦函数的周期公式即可求解; (2)解不等式πππ2π22π262k x k -+≤+≤+,()k ∈Z 即可求解;(3)根据π5π,612x ⎡⎤∈-⎢⎥⎣⎦求出π26x +的范围,根据正弦函数的性质即可求解.【详解】(1)()2cos 2cos 2cos21f x x x x x x =⋅+=++π2sin 216x ⎛⎫=++ ⎪⎝⎭,所以函数()f x 的最小正周期为2ππ2T ==, (2)令πππ2π22π262k x k -+≤+≤+,解得:ππππ36k x k -+≤≤+,()k ∈Z所以该函数的单调递增区间为πππ,π36k k ⎡⎤-++⎢⎥⎣⎦()k ∈Z ;(3)因为π5π,612x ⎡⎤∈-⎢⎥⎣⎦,所以ππ2,π66x ⎡⎤+∈-⎢⎥⎣⎦,所以当ππ266x +=-即π6x =-时,πsin 26⎛⎫+ ⎪⎝⎭x 最小为12-,当ππ262x +=即π6x =时,πsin 26⎛⎫+ ⎪⎝⎭x 最大为1,所以1πsin 2126x ⎛⎫-≤+≤ ⎪⎝⎭,π12sin 226x ⎛⎫-≤+≤ ⎪⎝⎭, ()[]π2sin 210,36f x x ⎛⎫=++∈ ⎪⎝⎭,所以函数()f x 在区间π5π,612⎡⎤-⎢⎥⎣⎦上的最小值为0,最大值为3.19.(1) 0b = (2) 532t -<<- 【分析】(1)由()f x 的定义域为R ,且奇函数,则(0)0f =,从而可求出答案. (2)由题意1()1x g x a -=-,先求出函数()g x 的值域,方程2()3t g x t +=+在R 上有解,则max 2()3t g x t +>+,从而得出答案. 【详解】 (1)函数1()(0)x x b f x a a a-=+>的定义域为R ,又()f x 是奇函数 所以(0)110f b b =+-==当0b =时,1()xx f x a a =-,11()()xx x xf x a a f x a a --⎛⎫-==-=- ⎪⎝⎭-- 满足()f x 是奇函数,所以0b =(2) 11()()111x xxx xg x f x a a a a a --=--=--=- 由0x a >,则10x a >,所以10x a -<,所以111xa -<-- 即()g x 的值域为()1-∞-,方程2()3t g x t +=+在R 上有解,则213t t +<-+,解得532t -<<- 所以满足条件的实数t 的取值范围:532t -<<- 20.(1)1()ln f x x=,作图见解析;(2)证明见解析. 【分析】(1)对y x e =两边取对数,并化简即得到1ln y x =,即得到函数1()ln f x x=及图象; (2)结合图象化简关系得到ln ln n m -=,即1mn =,22144m n n n+=+,再构造函数21()4(01)g x x x x=+<<,结合单调性求其最小值为3,即得证,或者拼凑22211144422m n n n n n n+=+=++,利用三项的基本不等式证明结果即可. 【详解】(1)解:由(0,1)y x e x x =>≠两侧取以e 为底的对数,得ln ln y x e =,即1ln y x=, 所以1()ln f x x=,其图象如图所示.(2)证明:因为|()||()|f m f n =,且0m n >>, 所以(0,1),(1,)n m ∈∈+∞,且ln ln n m -=, 即ln ln 0,ln()0m n mn +==,故1mn =,则22144m n n n+=+. 法一:记21()4(01)g x x x x=+<<.任取12,x x ,且1201x x ,因为()()()2222121212121211114444g x g x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()1212211212211212144x x x x x x x x x x x x x x x x -+-=+-+=-⋅, 因为1201x x ,所以21120,0x x x x ->>. 当12102x x ≤<<时,()121241x x x x +<,所以()()120g x g x ->,即()()12g x g x >; 当12112x x ≤<<时,()121241x x x x +>,所以()()120g x g x -<,即()()12g x g x <. 所以21()4(01)g x x x x =+<<在10,2⎛⎤ ⎥⎝⎦上为减函数,在1,12⎡⎫⎪⎢⎣⎭上为增函数,所以当12x =时,min ()3g x =,所以243m n +≥. 法二:22223111114443432222m n n n n n n n n n+=+=++⋅⋅=≥(当且仅当2142n n =即12n =时取“=”),所以243m n +≥.21.(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2)06,π⎡⎤⎢⎥⎣⎦和2π,π3;(3)4m ≤. 【分析】(1)先由最值,求出2A =,再由函数过点()0,1,求出6π=ϕ,即可得出函数解析式; (2)根据正弦函数的单调性,即可求出函数在区间[]0,π上的增区间;(3)先由0,3x π⎡⎤∈⎢⎥⎣⎦,得到()[]1,2f x ∈,令()t f x =,将问题化为240t mt -+≥在[]1,2t ∈时恒成立,进而可求出结果. 【详解】(1)因为最大值为2,所以2A =.因为()f x 过点()0,1,所以2sin 1=ϕ,又因为02πϕ<<,所以6π=ϕ. 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭.(2)因为222,262k x k k Z πππππ-≤+≤+∈,所以,36k x k k Z ππππ-≤≤+∈.当0k =时,36x ππ-≤≤;当1k =时,2736x ππ≤≤. 又因为[]0,x π∈,所以()f x 在[]0,π上的单调增区间是06,π⎡⎤⎢⎥⎣⎦和2π,π3. (3)因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以52,666x πππ⎡⎤+∈⎢⎥⎣⎦,所以()[]1,2f x ∈.令()t f x =,则240t mt -+≥在[]1,2t ∈时恒成立, 即4m t t≤+在[]1,2t ∈时恒成立, 令()4g t t t=+,[]1,2t ∈,任取1212t t ≤<≤,则120t t -<,124t t <,所以()()()121212121244410g t g t t t t t t t t t ⎛⎫-=+--=--> ⎪⎝⎭,即()()12g t g t >, 所以()4g t t t=+在[]1,2t ∈上单调递减,则()()min 42242g t g ==+=,所以只需4m ≤,即实数m 用的取值范围是4m ≤. 【点睛】 思路点睛:求解含三角函数的二次型不等式恒成立的问题时,一般需要先根据三角函数的性质,确定所含三角函数的值域,再由换元法,将问题转化为一元二次不等式的形式,进行求解. 22.(1)12-;(2)答案见解析.【分析】(1)由(1)0f <得01a <<,利用()f x 的单调性得到212x k x -≤+当[)0,x ∈+∞时恒成立,再求212x x -+在[)0,x ∈+∞上的最小值即可; (2)由已知得到()22x x f x -=-,求出()g x ,问题等价于讨论关于()22222210x x x x m --⋅+=++实数根的个数,令()222x x s s -=+>问题转化为讨论y m =与8y s s =+()2s >交点的个数,结合8y s s=+的单调性可得答案. 【详解】(1)因为(1)0f <,所以110(1)f a a -=-<,解得01a <<, 所以()f x 在[)0,x ∈+∞上单调递减,由()2221a f x kx k a ⋅--+,得()2211(1)2a f x kx k a f a a-=-=--≤, 所以221x kx k --≥,所以212x k x -≤+当[)0,x ∈+∞时恒成立,()()2224231324222x x x x x x x +-++-==++-+++, 令2t x =+()2t ≥,3()4m t t t=+-,设122t t >≥,则()121212*********()()t t m t m t t t t t t t t t ⎛⎫--=+--=- ⎪⎝⎭, 因为122t t >≥,所以12120,4t t t t ->>,所以12()()0m t m t ->, ()m t 在 2t ≥时是单调递增函数,所以11()(2)2422m t m ≥=+-=-,所以12k ≤-,k 的最大值为12-;(2)若3(1)2f =,则113)2(1f a a -=-=,解得2a =,或12a =-舍去, ()22xxf x -=-,由(2)()()0(0)f x f xg x x +-⋅=≠得()2222()22022x xx x x xg x x ----==+≠-,问题等价于讨论关于()22222210x x x xm --⋅+=++实数根的个数, 令()222x xs s -=+>,则由28m s s ⋅=+,即8m s s=+()2s >, 即讨论y m =与8y s s=+()2s >交点的个数,设12s s >>8()n s s s=+,则()121212*********()()s s n s n s s s s s s s s s ⎛⎫--=+--=- ⎪⎝⎭,因为12s s >>12120,8s s s s ->>,所以12()()0n s n s ->,()n s 在s >()n s n >=设122s s <<< 则()121212*********()()s s n s n s s s s s s s s s ⎛⎫--=+--=- ⎪⎝⎭,因为122s s <<≤12120,8s s s s -<<,所以12()()0n s n s ->,()n s 在2s <≤()(2)n n s n ≤<,即()6n s <, 所以,当m <()(2)10m g x g x ⋅=+没有实数根;当m =6m ≥时,方程()(2)10m g x g x ⋅=+有2个实数根;当6m <时,方程()(2)10m g x g x ⋅=+有4个实数根. 【点睛】本题考查了利用函数的单调性解不等式、讨论实数根的个数,关键点是构造函数利用函数的单调性解决问题,考查了学生分析问题、解决问题的能力.。
【必考题】高一数学上期末模拟试题及答案

【必考题】高一数学上期末模拟试题及答案一、选择题1.已知0.2633,log 4,log 2a b c ===,则,,a b c 的大小关系为 ( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<2.已知0.11.1x =, 1.10.9y =,234log 3z =,则x ,y ,z 的大小关系是( ) A .x y z >> B .y x z >>C .y z x >>D .x z y >>3.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦4.函数ln x y x=的图象大致是( )A .B .C .D .5.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( )A .1,02⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,02⎛⎫-⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭6.已知函数f (x )=12log ,1,24,1,x x x x >⎧⎪⎨⎪+≤⎩则1(())2f f )等于( )A .4B .-2C .2D .17.已知3log 2a =,0.12b =,sin 789c =,则a ,b ,c 的大小关系是 A .a b c <<B .a c b <<C .c a b <<D .b c a <<8.偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos 12xf x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( )A .()3,5B .()2,4C .11,42⎛⎫⎪⎝⎭D .11,53⎛⎫⎪⎝⎭9.函数()()212ln 12f x x x =-+的图象大致是( ) A .B .C .D .10.已知定义在R 上的函数()f x 在(),2-∞-上是减函数,若()()2g x f x =-是奇函数,且()20g =,则不等式()0xf x ≤的解集是( )A .][(),22,-∞-⋃+∞B .][)4,20,⎡--⋃+∞⎣C .][(),42,-∞-⋃-+∞D .][(),40,-∞-⋃+∞11.对任意实数x ,规定()f x 取4x -,1x +,()152x -三个值中的最小值,则()f x ( )A .无最大值,无最小值B .有最大值2,最小值1C .有最大值1,无最小值D .有最大值2,无最小值12.已知函数()()f x g x x =+,对任意的x ∈R 总有()()f x f x -=-,且(1)1g -=,则(1)g =( )A .1-B .3-C .3D .1二、填空题13.已知f (x )是定义域在R 上的偶函数,且f (x )在[0,+∞)上是减函数,如果f (m ﹣2)>f (2m ﹣3),那么实数m 的取值范围是_____.14.己知函数()221f x x ax a =-++-在区间[]01,上的最大值是2,则实数a =______.15.若集合{||1|2}A x x =-<,2|04x B x x -⎧⎫=<⎨⎬+⎩⎭,则A B =______. 16.若点(4,2)在幂函数()f x 的图像上,则函数()f x 的反函数1()f x -=________. 17.对于函数()y f x =,若存在定义域D 内某个区间[a ,b ],使得()y f x =在[a ,b ]上的值域也为[a ,b ],则称函数()y f x =在定义域D 上封闭,如果函数4()1xf x x=-+在R 上封闭,则b a -=____.18.若函数()121xf x a =++是奇函数,则实数a 的值是_________. 19.已知正实数a 满足8(9)aaa a =,则log (3)a a 的值为_____________.20.已知函数()232,11,1x x f x x ax x ⎧+<=⎨-+≥⎩,若()()02f f a =,则实数a =________________. 三、解答题21.已知函数()f x 对任意实数x ,y 都满足()()()f xy f x f y =,且()11f -=-,()1279f =,当1x >时,()()0,1f x ∈. (1)判断函数()f x 的奇偶性;(2)判断函数()f x 在(),0-∞上的单调性,并给出证明; (3)若()319f a +≤-,求实数a 的取值范围.22.已知函数31()31x xf x m -=⋅+是定义域为R 的奇函数. (1)求证:函数()f x 在R 上是增函数; (2)不等式()21cos sin 32f x a x --<对任意的x ∈R 恒成立,求实数a 的取值范围. 23.计算或化简:(1)112320412730.1log 321664π-⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭; (2)6log 3332log 27log 2log 36lg 2lg 5-⋅---.24.若()221x x af x +=-是奇函数.(1)求a 的值;(2)若对任意()0,x ∈+∞都有()22f x m m ≥-,求实数m 的取值范围.25.已知.(1)若函数的定义域为,求实数的取值范围; (2)若函数在区间上是递增的,求实数的取值范围.26.已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数.(1)求a ,b 的值;(2)判断函数()f x 的单调性,并用定义证明;(3)当1,32x ⎡⎤∈⎢⎥⎣⎦时,()2(21)0f kx f x +->恒成立,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】先比较三个数与零的大小关系,确定三个数的正负,然后将它们与1进行大小比较,得知1a >,0,1b c <<,再利用换底公式得出b 、c 的大小,从而得出三个数的大小关系.【详解】函数3xy =在R 上是增函数,则0.20331a =>=,函数6log y x =在()0,∞+上是增函数,则666log 1log 4log 6<<,即60log 41<<, 即01b <<,同理可得01c <<,由换底公式得22393log 2log 2log 4c ===, 且96ln 4ln 4log 4log 4ln 9ln 6c b ==<==,即01c b <<<,因此,c b a <<,故选A . 【点睛】本题考查比较数的大小,这三个数的结构不一致,这些数的大小比较一般是利用中间值法来比较,一般中间值是0与1,步骤如下:①首先比较各数与零的大小,确定正负,其中正数比负数大;②其次利用指数函数或对数函数的单调性,将各数与1进行大小比较,或者找其他中间值来比较,从而最终确定三个数的大小关系.2.A解析:A 【解析】 【分析】利用指数函数、对数函数的单调性直接比较. 【详解】解:0.1x 1.1 1.11=>=, 1.100y 0.90.91<=<=,22334z log log 103=<<,x ∴,y ,z 的大小关系为x y z >>. 故选A . 【点睛】本题考查三个数的大小的比较,利用指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.3.B解析:B 【解析】 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.4.C解析:C 【解析】 分析:讨论函数ln x y x=性质,即可得到正确答案.详解:函数ln x y x=的定义域为{|0}x x ≠ ,ln ln x x f x f x xxx--==-=-()(), ∴排除B ,当0x >时,2ln ln 1-ln ,,x x xy y xx x===' 函数在()0,e 上单调递增,在(),e +∞上单调递减, 故排除A,D , 故选C .点睛:本题考查了数形结合的思想应用及排除法的应用.5.A解析:A 【解析】 【分析】由已知可知,()f x 在()1,-+∞上单调递减,结合二次函数的开口方向及对称轴的位置即可求解. 【详解】∵二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,∴()f x 在()1,-+∞上单调递减, ∵对称轴12x a=, ∴0112a a<⎧⎪⎨≤-⎪⎩,解可得102a -≤<,故选A . 【点睛】本题主要考查了二次函数的性质及函数单调性的定义的简单应用,解题中要注意已知不等式与单调性相互关系的转化,属于中档题.6.B解析:B 【解析】121242242f ⎛⎫=+=+= ⎪⎝⎭,则()1214log 422f f f ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭,故选B. 7.B解析:B 【解析】 【分析】 【详解】由对数函数的性质可知34333log 2log 342a =<=<,由指数函数的性质0.121b =>,由三角函数的性质00000sin 789sin(236069)sin 69sin 60c ==⨯+=>,所以c ∈, 所以a c b <<,故选B.8.D解析:D 【解析】试题分析:由()()2f x f x =-,可知函数()f x 图像关于1x =对称,又因为()f x 为偶函数,所以函数()f x 图像关于y 轴对称.所以函数()f x 的周期为2,要使函数()()log a g x f x x =-有且仅有三个零点,即函数()y f x =和函数log a y x =图形有且只有3个交点.由数形结合分析可知,0111{log 31,53log 51a a a a <<>-⇒<<<-,故D 正确. 考点:函数零点【思路点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.9.A解析:A 【解析】函数有意义,则:10,1x x +>∴>-, 由函数的解析式可得:()()21002ln 0102f =⨯-+=,则选项BD 错误; 且211111112ln 1ln ln 402222848f ⎛⎫⎛⎫⎛⎫-=⨯--⨯-+=-=+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则选项C 错误; 本题选择A 选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.10.C解析:C 【解析】【分析】由()()2g x f x =-是奇函数,可得()f x 的图像关于()2,0-中心对称,再由已知可得函数()f x 的三个零点为-4,-2,0,画出()f x 的大致形状,数形结合得出答案. 【详解】由()()2g x f x =-是把函数()f x 向右平移2个单位得到的,且()()200g g ==,()()()4220f g g -=-=-=,()()200f g -==,画出()f x 的大致形状结合函数的图像可知,当4x ≤-或2x ≥-时,()0xf x ≤,故选C. 【点睛】本题主要考查了函数性质的应用,作出函数简图,考查了学生数形结合的能力,属于中档题.11.D解析:D 【解析】 【分析】由题意画出函数图像,利用图像性质求解 【详解】画出()f x 的图像,如图(实线部分),由()1152y x y x =+⎧⎪⎨=-⎪⎩得()1,2A . 故()f x 有最大值2,无最小值 故选:D【点睛】本题主要考查分段函数的图像及性质,考查对最值的理解,属中档题.12.B解析:B 【解析】由题意,f (﹣x )+f (x )=0可知f (x )是奇函数, ∵()()f x g x x =+,g (﹣1)=1, 即f (﹣1)=1+1=2 那么f (1)=﹣2. 故得f (1)=g (1)+1=﹣2, ∴g (1)=﹣3, 故选:B二、填空题13.(﹣∞1)(+∞)【解析】【分析】因为先根据f (x )是定义域在R 上的偶函数将f (m ﹣2)>f (2m ﹣3)转化为再利用f (x )在区间0+∞)上是减函数求解【详解】因为f (x )是定义域在R 上的偶函数且f解析:(﹣∞,1)(53,+∞) 【解析】 【分析】因为先根据f (x )是定义域在R 上的偶函数,将 f (m ﹣2)>f (2m ﹣3),转化为()()223f m f m ->-,再利用f (x )在区间[0,+∞)上是减函数求解.【详解】因为f (x )是定义域在R 上的偶函数,且 f (m ﹣2)>f (2m ﹣3), 所以()()223fm f m ->- ,又因为f (x )在区间[0,+∞)上是减函数, 所以|m ﹣2|<|2m ﹣3|, 所以3m 2﹣8m +5>0, 所以(m ﹣1)(3m ﹣5)>0, 解得m <1或m 53>, 故答案为:(﹣∞,1)(53,+∞). 【点睛】本题主要考查了函数的单调性与奇偶性的综合应用,还考查了转化化归的思想和运算求解的能力,属于中档题.14.或【解析】【分析】由函数对称轴与区间关系分类讨论求出最大值且等于2解关于的方程即可求解【详解】函数对称轴方程为为;当时;当即(舍去)或(舍去);当时综上或故答案为:或【点睛】本题考查二次函数的图像与解析:1-或2. 【解析】 【分析】由函数对称轴与区间关系,分类讨论求出最大值且等于2,解关于a 的方程,即可求解. 【详解】函数()22221()1f x x ax a x a a a =-++-=--+-+,对称轴方程为为x a =;当0a ≤时,max ()(0)12,1f x f a a ==-==-;当2max 01,()()12a f x f a a a <<==-+=,即210,a a a --==(舍去),或152a (舍去); 当1a ≥时,max ()(1)2f x f a ===, 综上1a =-或2a =. 故答案为:1-或2. 【点睛】本题考查二次函数的图像与最值,考查分类讨论思想,属于中档题.15.【解析】【分析】先分别求解出绝对值不等式分式不等式的解集作为集合然后根据交集概念求解的结果【详解】因为所以所以;又因为所以所以所以;则故答案为:【点睛】解分式不等式的方法:首先将分式不等式转化为整式 解析:()1,2-【解析】 【分析】先分别求解出绝对值不等式、分式不等式的解集作为集合,A B ,然后根据交集概念求解A B 的结果.【详解】因为12x -<,所以13x ,所以()1,3A =-;又因为204x x -<+,所以()()4204x x x ⎧+-<⎨≠-⎩,所以42x -<<,所以()4,2B =-; 则()1,2AB =-.故答案为:()1,2-. 【点睛】解分式不等式的方法:首先将分式不等式转化为整式不等式,若对应的整式不等式为高次可因式分解的不等式,可采用数轴穿根法求解集.16.【解析】【分析】根据函数经过点求出幂函数的解析式利用反函数的求法即可求解【详解】因为点在幂函数的图象上所以解得所以幂函数的解析式为则所以原函数的反函数为故答案为:【点睛】本题主要考查了幂函数的解析式 解析:2(0)x x ≥【解析】 【分析】根据函数经过点(4,2)求出幂函数的解析式,利用反函数的求法,即可求解. 【详解】因为点(4,2)在幂函数()()f x x R αα=∈的图象上,所以24α=,解得12α=, 所以幂函数的解析式为12y x =, 则2x y =,所以原函数的反函数为12()(0)f x x x -=≥.故答案为:12()(0)f x x x -=≥【点睛】本题主要考查了幂函数的解析式的求法,以及反函数的求法,其中熟记反函数的求法是解答的关键,着重考查了推理与运算能力,属于基础题.17.6【解析】【分析】利用定义证明函数的奇偶性以及单调性结合题设条件列出方程组求解即可【详解】则函数在R 上为奇函数设即结合奇函数的性质得函数在R 上为减函数并且由题意可知:由于函数在R 上封闭故有解得:所以解析:6 【解析】 【分析】利用定义证明函数()y f x =的奇偶性以及单调性,结合题设条件,列出方程组,求解即可. 【详解】44()()11x xf x f x x x--=-==-+-+,则函数()f x 在R 上为奇函数设120x x ≤<,4()1xf x x=-+ ()()()2112121212444()()01111x x x x f x f x x x x x --=-+=>++++,即12()()f x f x > 结合奇函数的性质得函数()f x 在R 上为减函数,并且(0)0f = 由题意可知:0,0a b <>由于函数()f x 在R 上封闭,故有4141()()a bab f a b f b aa b-=-⎧⎪=⎧⎪⇒⎨⎨=⎩-=+⎪⎪⎩ ,解得:3,3a b =-=所以6b a -= 故答案为:6 【点睛】本题主要考查了利用定义证明函数的奇偶性以及单调性,属于中档题.18.【解析】【分析】由函数是奇函数得到即可求解得到答案【详解】由题意函数是奇函数所以解得当时函数满足所以故答案为:【点睛】本题主要考查了利用函数的奇偶性求解参数问题其中解答中熟记奇函数的性质是解答的关键解析:12- 【解析】 【分析】由函数()f x 是奇函数,得到()010021f a =+=+,即可求解,得到答案. 【详解】由题意,函数()121x f x a =++是奇函数,所以()010021f a =+=+,解得12a =-, 当12a =-时,函数()11212xf x =-+满足()()f x f x -=-, 所以12a =-. 故答案为:12-.【点睛】本题主要考查了利用函数的奇偶性求解参数问题,其中解答中熟记奇函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.19.【解析】【分析】将已知等式两边同取以为底的对数求出利用换底公式即可求解【详解】故答案为:【点睛】本题考查指对数之间的关系考查对数的运算以及应用换底公式求值属于中档题 解析:916【解析】 【分析】将已知等式8(9)aaa a =,两边同取以e 为底的对数,求出ln a ,利用换底公式,即可求解. 【详解】8(9)a a a a =,8ln ,l )l n 8(ln 9(9ln n )a a a a a a a a +==,160,7ln 16ln 3,ln ln 37a a a >∴=-=-,ln 3ln 39log (3)116ln 16ln 37a a a a ∴==+=-.故答案为:916. 【点睛】本题考查指对数之间的关系,考查对数的运算以及应用换底公式求值,属于中档题.20.2【解析】【分析】利用分段函数分段定义域的解析式直接代入即可求出实数的值【详解】由题意得:所以由解得故答案为:2【点睛】本题考查了由分段函数解析式求复合函数值得问题属于一般难度的题解析:2 【解析】 【分析】利用分段函数分段定义域的解析式,直接代入即可求出实数a 的值. 【详解】由题意得:()00323f =+=,()23331103f a a =-+=-,所以由()()01032ff a a =-=, 解得2a =.故答案为:2. 【点睛】本题考查了由分段函数解析式求复合函数值得问题,属于一般难度的题.三、解答题21.(1)()f x 为奇函数;(2)()f x 在(),0-∞上单调递减,证明见解析;(3)[)4,1--. 【解析】 【分析】(1)令1y =-,代入抽象函数表达式即可证明函数的奇偶性;(2)先证明当0x >时,()0f x >,再利用已知和单调函数的定义,证明函数()f x 在()0,∞+上的单调性,根据函数的奇偶性,即可得到函数()f x 在(),0-∞上的单调性;(3)先利用赋值法求得()3f -=再利用函数的单调性解不等式即可【详解】解:(1)令1y =-,则()()()1f x f x f -=-. ∵()11f -=-,∴()()f x f x -=- ∴函数()f x 为奇函数;(2)函数()f x 在(),0-∞上单调递减. 证明如下:由函数()f x 为奇函数得()()111f f =--=当()0,1x ∈时,11x>,()10,1f x ⎛⎫∈ ⎪⎝⎭,()111f x f x =>⎛⎫ ⎪⎝⎭所以当0x >时,()0f x >, 设120x x <<,则211x x >,∴2101x f x ⎛⎫<< ⎪⎝⎭, 于是()()()22211111x x f x f x f f x f x x x ⎛⎫⎛⎫=⋅=<⎪ ⎪⎝⎭⎝⎭, 所以函数()f x 在()0,∞+上单调递减.∵函数()f x 为奇函数,∴函数()f x 在(),0-∞上单调递减. (3)∵()1279f =,且()()()()327393f f f f ==⎡⎤⎣⎦,∴()3f = 又∵函数()f x 为奇函数,∴()3f -= ∵()1f a +≤()()13f a f +≤-,函数()f x 在(),0-∞上单调递减. 又当0x ≥时,()0f x ≥.∴310a -≤+<,即41a -≤<-, 故a 的取值范围为[)4,1--. 【点睛】本题考查了抽象函数表达式的意义和运用,函数奇偶性的定义和判断方法,函数单调性定义及其证明,利用函数的单调性解不等式的方法 22.(1)证明见解析(2)44a -≤≤ 【解析】 【分析】(1)先由函数()f x 为奇函数,可得1m =,再利用定义法证明函数的单调性即可; (2)结合函数的性质可将问题转化为2sin sin 30x a x ++≥在R 上恒成立,再利用二次不等式恒成立问题求解即可. 【详解】解:(1)∵函数31()31x xf x m -=⋅+是定义域为R 的奇函数, ()()f x f x ∴-=-31313131x x x x m m ----∴=-⋅+⋅+3131331x x x xm m --∴=+⋅+,()(1)310x a ∴--=,等式()(1)310xm --=对于任意的x ∈R 均恒成立,得1m =,则31()31x x f x -=+,即2()131xf x =-+, 设12,x x 为任意两个实数,且12x x <,()()()()()121212122332231313131x x x x x x f x f x -⎛⎫-=---= ⎪++++⎝⎭, 因为12x x <,则1233x x ≤,所以()()120f x f x -<,即()()12f x f x <, 因此函数()f x 在R 上是增函数; (2)由不等式()21cos sin 32f x a x --≤对任意的x ∈R 恒成立, 则()2cos sin 3(1)f x a x f --≤.由(1)知,函数()f x 在R 上是增函数,则2cos sin 31x a x --≤,即2sin sin 30x a x ++≥在R 上恒成立.令sin x t =,[1,1]t ∈-,则222()33024a a g t t at t ⎛⎫=++=++-≥ ⎪⎝⎭在[1,1]-上恒成立.①当12a->时,即2a <-,可知min ()(1)40g t g a ==+≥,即4a ≥-, 所以42a -≤<-;②当112a -≤-≤时,即22a -≤≤,可知2min ()3024a a g t g ⎛⎫=-=-≥ ⎪⎝⎭.即a -≤≤22a -≤≤; ③当12a-<-时,即2a >,可知min ()(1)40g t g a =-=-≥,即4a ≤, 所以24a <≤,综上,当44a -≤≤时,不等式()21cos sin 32f x a x --≤对任意的x ∈R 恒成立. 【点睛】本题考查了利用函数奇偶性求函数解析式及定义法证明函数的单调性,重点考查了含参二次不等式恒成立问题,属中档题. 23.(1)99;(2)3-. 【解析】 【分析】(1)直接根据指数与对数的性质运算即可; (2)直接利用对数运算性质即可得出.【详解】(1)原式21123325249131log 216104-⎡⎤⎛⎫⎛⎫⎛⎫=++--⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦7351001442=++-- 99=.(2)原式323log 313=---31422=-- 3=-.【点睛】本题主要考查了指数对数运算性质,考查了推理能力与计算能力,属于中档题. 24.(1)1a = (2)112m -≤≤ 【解析】 【分析】(1)根据函数的奇偶性,可得结果.(2)根据(1)的条件使用分离常数方法,化简函数()f x ,可知()f x 的值域,结合不等式计算,可得结果. 【详解】 (1)()2121a f +=-,()121112af +-=-因为()221x x af x +=-是奇函数.所以()()11f f =--,得1a =; 经检验1a =满足题意(2)根据(1)可知()2121x x f x +=-化简可得()2121x f x =+- 所以可知()2121x f x =+- 当()0,x ∈+∞时,所以()1f x >对任意()0,x ∈+∞都有()22f x m m ≥-所以212m m ≥-, 即112m -≤≤ 【点睛】本题考查根据函数的奇偶性求参数,还考查了恒成立问题,对存在性,恒成立问题一般转化为最值问题,细心计算,属中档题. 25.(1)(2)【解析】试题分析:(1)由于函数定义域为全体实数,故恒成立,即有,解得;(2)由于在定义域上是减函数,故根据复合函数单调性有函数在上为减函数,结合函数的定义域有,解得.试题解析:(1)由函数的定义域为可得:不等式的解集为,∴解得,∴所求的取值范围是(2)由函数在区间上是递增的得: 区间上是递减的, 且在区间上恒成立;则,解得26.(1)2a =,1b =;(2)单调递减,见解析;(3)(,1)-∞-【解析】 【分析】(1)根据(0)0f =得到1b =,根据(1)(1)f f -=-计算得到2a =,得到答案. (2)化简得到11()221x f x =++,12x x <,计算()()210f x f x -<,得到是减函数. (3)化简得到212kx x <-,参数分离212x k x-<,求函数212()xg x x -=的最小值得到答案.【详解】(1)因为()f x 在定义域R 上是奇函数.所以(0)0f =,即102b a-+=+,所以1b =.又由(1)(1)f f -=-,即111214a a-+-=++, 所以2a =,检验知,当2a =,1b =时,原函数是奇函数.(2)()f x 在R 上单调递减.证明:由(1)知11211()22221xx xf x +-==+++, 任取12,x x R ∈,设12x x <,则()()()()12211221112221212121x x x x x x f x f x --=-=++++, 因为函数2xy =在R 上是增函数,且12x x <,所以12220x x -<,又()()1221210x x ++>,所以()()210f x f x -<,即()()21f x f x <, 所以函数()f x 在R 上单调递减.(3)因为()f x 是奇函数,从而不等式()2(21)0f kx f x +->等价于()2(21)(12)f kx f x f x >--=-,因为()f x 在R 上是减函数,由上式推得212kx x <-,即对一切1,32x ⎡⎤∈⎢⎥⎣⎦有212x k x -<恒成立,设221211()2()x g x x x x -==-⋅, 令1t x =,1,23t ⎡∈⎤⎢⎥⎣⎦则有2()2h t t t =-,1,23t ⎡∈⎤⎢⎥⎣⎦,所以min min ()()(1)1g x h t h ===-,所以1k <-,即k 的取值范围为(,1)-∞-. 【点睛】本题考查了函数解析式,单调性,恒成立问题,将恒成立问题通过参数分离转化为最值问题是解题的关键.。
【典型题】高一数学上期末模拟试卷(及答案)

【典型题】高一数学上期末模拟试卷(及答案)一、选择题1.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C .等于0D .正负都有可能2.设a b c ,,均为正数,且122log aa =,121log 2bb ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c <<B .c b a <<C .c a b <<D .b a c <<3.已知函数3()3(,)f x ax bx a b =++∈R .若(2)5f =,则(2)f -=( )A .4B .3C .2D .14.已知0.11.1x =, 1.10.9y =,234log 3z =,则x ,y ,z 的大小关系是( ) A .x y z >> B .y x z >>C .y z x >>D .x z y >>5.在实数的原有运算法则中,补充定义新运算“⊕”如下:当a b ≥时,a b a ⊕=;当a b <时,2a b b ⊕=,已知函数()()()[]()1222,2f x x x x x =⊕-⊕∈-,则满足()()13f m f m +≤的实数的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,22⎡⎤⎢⎥⎣⎦C .12,23⎡⎤⎢⎥⎣⎦D .21,3⎡⎤-⎢⎥⎣⎦6.已知函数2()2log x f x x =+,2()2log x g x x -=+,2()2log 1x h x x =⋅-的零点分别为a ,b ,c ,则a ,b ,c 的大小关系为( ). A .b a c << B .c b a << C .c a b <<D .a b c <<7.若函数()2log ,?0,?0xx x f x e x >⎧=⎨≤⎩,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( ) A .1e B .eC .21eD .2e8.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.5%.已知在过滤过程中的污染物的残留数量P (单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为0ktP P e -=⋅(k 为常数,0P 为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,那么要能够按规定排放废气,还需要过滤n 小时,则正整数n 的最小值为( )(参考数据:取5log 20.43=) A .8B .9C .10D .149.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a升,则m 的值为( )A .10B .9C .8D .510.已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增。
【常考题】高一数学上期末模拟试题(附答案)

【常考题】高一数学上期末模拟试题(附答案)一、选择题1.已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>2.已知函数()()2,211,22xa x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭3.函数y =a |x |(a >1)的图像是( ) A .B .C .D .4.德国数学家狄利克在1837年时提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数,”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象,表格述是其它形式已知函数f (x )由右表给出,则1102f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值为( )A .0B .1C .2D .35.函数()2sin f x x x =的图象大致为( )A .B .C .D .6.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞,7.若函数y =x a a - (a >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( ) A .1B .2C .3D .48.已知()y f x =是以π为周期的偶函数,且0,2x π⎡⎤∈⎢⎥⎣⎦时,()1sin f x x =-,则当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()f x =( ) A .1sin x +B .1sin x -C .1sin x --D .1sin x -+9.已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增。
【常考题】高一数学上期末模拟试题及答案

【常考题】高一数学上期末模拟试题及答案一、选择题1.已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围是( ) A .1,110⎛⎫⎪⎝⎭B .10,10,10C .1,1010⎛⎫⎪⎝⎭D .()()0,110,⋃+∞2.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增 B .()f x 在(0,2)单调递减C .()y =f x 的图像关于直线x=1对称D .()y =f x 的图像关于点(1,0)对称3.设4log 3a =,8log 6b =,0.12c =,则( ) A .a b c >>B .b a c >>C .c a b >>D .c b a >>4.定义在R 上的偶函数()f x 满足:对任意的1x ,212[0,)()x x x ∈+∞≠,有2121()()0f x f x x x -<-,则( ).A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-5.德国数学家狄利克在1837年时提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数,”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象,表格述是其它形式已知函数f (x )由右表给出,则1102f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值为( )A .0B .1C .2D .36.已知131log 4a =,154b=,136c =,则( ) A .a b c >>B .a c b >>C .c a b >>D .b c a >>7.[]x 表示不超过实数x 的最大整数,0x 是方程ln 3100x x +-=的根,则0[]x =( ) A .1B .2C .3D .48.设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,则实数a 的取值范围是( ) A .[]3,5B .()3,5C .[]4,6D .()4,69.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a升,则m 的值为( ) A .10B .9C .8D .510.已知3log 2a =,0.12b =,sin 789c =,则a ,b ,c 的大小关系是 A .a b c <<B .a c b <<C .c a b <<D .b c a <<11.已知定义在R 上的函数()f x 在(),2-∞-上是减函数,若()()2g x f x =-是奇函数,且()20g =,则不等式()0xf x ≤的解集是( )A .][(),22,-∞-⋃+∞B .][)4,20,⎡--⋃+∞⎣C .][(),42,-∞-⋃-+∞D .][(),40,-∞-⋃+∞12.对任意实数x ,规定()f x 取4x -,1x +,()152x -三个值中的最小值,则()f x ( )A .无最大值,无最小值B .有最大值2,最小值1C .有最大值1,无最小值D .有最大值2,无最小值二、填空题13.若函数()1f x mx x =--有两个不同的零点,则实数m 的取值范围是______. 14.已知函数()1352=++f x ax bx (a ,b 为常数),若()35f -=,则()3f 的值为______15.求值: 2312100log lg += ________ 16.已知常数a R +∈,函数()()22log f x x a =+,()()g x f f x =⎡⎤⎣⎦,若()f x 与()g x 有相同的值域,则a 的取值范围为__________.17.函数()()4log 5f x x =-+________. 18.若集合{||1|2}A x x =-<,2|04x B x x -⎧⎫=<⎨⎬+⎩⎭,则A B =______. 19.若幂函数()a f x x 的图象经过点1(3)9,,则2a -=__________.20.若函数()()22f x x x a x a =+--在区间[]3,0-上不是单调函数,则实数a 的取值范围是______.三、解答题21.已知函数()221f x x ax =-+满足()()2f x f x =-.(1)求a 的值; (2)若不等式()24x xf m ≥对任意的[)1,x ∈+∞恒成立,求实数m 的取值范围;(3)若函数()()()22log log 1g x f x k x =--有4个零点,求实数k 的取值范围. 22.已知集合{}{}{}|2318,|215,|1A x x B x x C x x a x a =≤-≤=-<=≤≥+或. (1)求,AB A B ;(2)若()R C C A ⊆,求实数a 的取值范围. 23.已知函数()()2lg 1x f x x =++.(1)判断函数()f x 的奇偶性;(2)若()()1210f m f m -++≤,求实数m 的取值范围. 24.已知函数2()1()f x x mx m =-+∈R .(1)若函数()f x 在[]1,1x ∈-上是单调函数,求实数m 的取值范围; (2)若函数()f x 在[]1,2x ∈上有最大值为3,求实数m 的值. 25.已知函数()2()log 21xf x kx =+-为偶函数. (1)求实数k 的值; (2)若不等式1()2f x a x >-恒成立,求实数a 的取值范围; (3)若函数1()2()24f x x x h x m +=+⋅,[1,2]x ∈,是否存在实数m ,使得()h x 的最小值为2,若存在,请求出m 的值;若不存在,请说明理由.26.即将开工的南昌与周边城镇的轻轨火车路线将大大缓解交通的压力,加速城镇之间的流通.根据测算,如果一列火车每次拖4节车厢,每天能来回16次;如果一列火车每次拖7节车厢,每天能来回10次,每天来回次数是每次拖挂车厢个数的一次函数. (1)写出与的函数关系式;(2)每节车厢一次能载客110人,试问每次应拖挂多少节车厢才能使每天营运人数最多?并求出每天最多的营运人数(注:营运人数指火车运送的人数)【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【解析】 【分析】利用偶函数的性质将不等式()()lg 1f x f <-变形为()()lg 1f x f <,再由函数()y f x =在[)0,+∞上的单调性得出lg 1x <,利用绝对值不等式的解法和对数函数的单调性即可求出结果. 【详解】由于函数()y f x =是偶函数,由()()lg 1f x f <-得()()lg 1f x f <, 又函数()y f x =在[)0,+∞上是增函数,则lg 1x <,即1lg 1x -<<,解得11010x <<. 故选:C. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,同时也涉及了对数函数单调性的应用,考查分析问题和解决问题的能力,属于中等题.2.C解析:C 【解析】由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线1x =对称,故C 正确,D 错误;又()ln[(2)]f x x x =-(02x <<),由复合函数的单调性可知()f x 在(0,1)上单调递增,在(1,2)上单调递减,所以A ,B 错误,故选C .【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 3.D解析:D 【解析】 【分析】由对数的运算化简可得2log a =log b =,结合对数函数的性质,求得1a b <<,又由指数函数的性质,求得0.121c =>,即可求解,得到答案.【详解】由题意,对数的运算公式,可得24222log 31log 3log 3log log 42a ====28222log 61log 6log 6log log 83b ====,2<<,所以222log log log 21<<=,即1a b <<,由指数函数的性质,可得0.10221c =>=, 所以c b a >>. 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及指数函数的图象与性质的应用,其中解答中熟练应用指数函数与对数函数的图象与性质,求得,,a b c 的范围是解答的关键,着重考查了推理与运算能力,属于基础题.4.A解析:A 【解析】由对任意x 1,x 2 ∈ [0,+∞)(x 1≠x 2),有()()1212f x f x x x -- <0,得f (x )在[0,+∞)上单独递减,所以(3)(2)(2)(1)f f f f <=-<,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行5.D解析:D 【解析】 【分析】采用逐层求解的方式即可得到结果. 【详解】∵(] 121∈-∞,,∴112f ⎛⎫= ⎪⎝⎭, 则110102f ⎛⎫= ⎪⎝⎭,∴()1(())21010f f f =,又∵[)102∈+∞,,∴()103f =,故选D . 【点睛】本题主要考查函数的基础知识,强调一一对应性,属于基础题.6.C解析:C 【解析】 【分析】首先将b 表示为对数的形式,判断出0b <,然后利用中间值以及对数、指数函数的单调性比较32与,a c 的大小,即可得到,,a b c 的大小关系. 【详解】因为154b=,所以551log log 104b =<=,又因为(133331log log 4log 3,log 4a ==∈,所以31,2a ⎛⎫∈ ⎪⎝⎭, 又因为131133336,82c ⎛⎫⎛⎫⎛⎫ ⎪=∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭,所以3,22c ⎛⎫∈ ⎪⎝⎭, 所以c a b >>. 故选:C. 【点睛】本题考查利用指、对数函数的单调性比较大小,难度一般.利用指、对数函数的单调性比较大小时,注意数值的正负,对于同为正或者负的情况可利用中间值进行比较.7.B解析:B 【解析】 【分析】先求出函数()ln 310f x x x =+-的零点的范围,进而判断0x 的范围,即可求出[]0x . 【详解】由题意可知0x 是()ln 310f x x x =+-的零点, 易知函数()f x 是(0,∞+)上的单调递增函数,而()2ln2610ln240f =+-=-<,()3ln3910ln310f =+-=->, 即()()230f f <所以023x <<,结合[]x 的性质,可知[]02x =. 故选B. 【点睛】本题考查了函数的零点问题,属于基础题.8.D解析:D 【解析】由()()0f x f x --=,知()f x 是偶函数,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,且()f x 是R 上的周期为2的函数,作出函数()y f x =和()y log 1a x =+的函数图象,关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,即为函数()y f x =和()y log 1a x =+的图象有5个交点,所以()()1log 311log 511a aa >⎧⎪+<⎨⎪+>⎩,解得46a <<.故选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.9.D解析:D 【解析】由题设可得方程组()552{4n m n ae aa ae +==,由55122n nae a e =⇒=,代入(5)1142m n mn ae a e +=⇒=,联立两个等式可得512{12mn ne e ==,由此解得5m =,应选答案D 。
【必考题】高一数学上期末模拟试题(及答案)

【必考题】高一数学上期末模拟试题(及答案)一、选择题1.函数()12cos 12x x f x x ⎛⎫-= ⎪+⎝⎭的图象大致为()A .B .C .D .2.设集合{}1|21x A x -=≥,{}3|log ,B y y x x A ==∈,则BA =( )A .()0,1B .[)0,1C .(]0,1D .[]0,13.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭4.已知0.2633,log 4,log 2a b c ===,则,,a b c 的大小关系为 ( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<5.设23a log =,3b =,23c e=,则a b c ,,的大小关系是( ) A .a b c <<B .b a c <<C .b c a <<D . a c b <<6.函数y =a |x |(a >1)的图像是( ) A .B .C .D .7.已知定义域R 的奇函数()f x 的图像关于直线1x =对称,且当01x ≤≤时,3()f x x =,则212f ⎛⎫= ⎪⎝⎭( )A .278-B .18-C .18D .2788.[]x 表示不超过实数x 的最大整数,0x 是方程ln 3100x x +-=的根,则0[]x =( ) A .1B .2C .3D .49.已知全集为R ,函数()()ln 62y x x =--的定义域为集合{},|44A B x a x a =-≤≤+,且RA B ⊆,则a 的取值范围是( )A .210a -≤≤B .210a -<<C .2a ≤-或10a ≥D .2a <-或10a >10.定义在[]7,7-上的奇函数()f x ,当07x <≤时,()26xf x x =+-,则不等式()0f x >的解集为A .(]2,7B .()(]2,02,7- C .()()2,02,-+∞D .[)(]7,22,7--11.已知3log 2a =,0.12b =,sin 789c =,则a ,b ,c 的大小关系是 A .a b c <<B .a c b <<C .c a b <<D .b c a <<12.曲线1(22)y x =-≤≤与直线24y kx k =-+有两个不同的交点时实数k 的范围是( ) A .53(,]124B .5(,)12+∞ C .13(,)34D .53(,)(,)124-∞⋃+∞ 二、填空题13.已知函数()()22,03,0x x f x x x ⎧+≤⎪=⎨->⎪⎩,则关于x 的方程()()()()200,3f af x a x -=∈的所有实数根的和为_______.14.若函数()(0,1)xf x a a a =>≠且在[1,2]上的最大值比最小值大2a,则a 的值为____________.15.若函数()1f x mx x =--有两个不同的零点,则实数m 的取值范围是______. 16.已知幂函数(2)my m x =-在(0,)+∞上是减函数,则m =__________. 17.函数y =________ 18.对数式lg 25﹣lg 22+2lg 6﹣2lg 3=_____. 19.2()2f x x x =+(0x ≥)的反函数1()fx -=________20.()()sin cos f x x π=在区间[]0,2π上的零点的个数是______.三、解答题21.已知函数()2log f x x =(1)解关于x 的不等式()()11f x f x +->;(2)设函数()()21xg x f kx =++,若()g x 的图象关于y 轴对称,求实数k 的值.22.计算221(1).log 24lglog lg 2log 32+--326031(2).(32)(8)9⎛⎫⨯--- ⎪⎝⎭- 23.已知()1log 1axf x x-=+(0a >,且1a ≠). (1)当(],x t t ∈-(其中()1,1t ∈-,且t 为常数)时,()f x 是否存在最小值,如果存在,求出最小值;如果不存在,请说明理由;(2)当1a >时,求满足不等式()()2430f x f x -+-≥的实数x 的取值范围. 24.已知函数()f x 是二次函数,(1)0f -=,(3)(1)4f f -==. (1)求()f x 的解析式;(2)函数()()ln(||1)h x f x x =-+在R 上连续不断,试探究,是否存在()n n ∈Z ,函数()h x 在区间(,1)n n +内存在零点,若存在,求出一个符合题意的n ,若不存在,请说明由. 25.某支上市股票在30天内每股的交易价格P (单位:元)与时间t (单位:天)组成有序数对(),t P ,点.(),t P 落在..如图所示的两条线段上.该股票在30天内(包括30天)的日交易量Q (单位:万股)与时间t (单位:天)的部分数据如下表所示: 第t 天4 10 16 22 Q (万股)36302418(Ⅰ)根据所提供的图象,写出该种股票每股的交易价格P 与时间t 所满足的函数解析式;(Ⅱ)根据表中数据确定日交易量Q 与时间t 的一次函数解析式;(Ⅲ)若用y (万元)表示该股票日交易额,请写出y 关于时间t 的函数解析式,并求出在这30天中,第几天的日交易额最大,最大值是多少?26.已知()log a f x x =,()()()2log 2201,1,a g x x a a a =+>+≠∈R ,()1h x x x=+. (1)当[)1,x ∈+∞时,证明:()1h x x x=+为单调递增函数; (2)当[]1,2x ∈,且()()()F x g x f x =-有最小值2时,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】函数f (x )=(1212xx-+)cosx ,当x=2π时,是函数的一个零点,属于排除A ,B ,当x ∈(0,1)时,cosx >0,1212x x -+<0,函数f (x )=(1212xx-+)cosx <0,函数的图象在x 轴下方. 排除D . 故答案为C 。
高一数学上学期期末模拟综合试题带答案

高一数学上学期期末模拟综合试题带答案一、选择题1.已知全集U =R ,{|lg 0}A x x =<,则UA( )A .{|1}x x ≥B .{|0x x ≤或1}x ≥C .{|0 x x <或1}x >D .{|0}x x ≤2.函数1()1f x x =-的定义域是( ) A .R B .[1,)-+∞C .[1,1)(1,)-⋃+∞D .(,1)(1,)-∞⋃+∞3.若角θ满足条件sin cos 1θθ+<-,则θ的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知角α的终边过点(,1)(0)M x x -<,且cos x α=,则x =( )A .B .C .D .5.在下列区间中,函数()ln 3f x x x =+-的零点所在的区间为( ) A .()0,1B .()1,2C .()2,3D .()3,46.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭.它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中SN叫做信噪比.当信噪比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W ,而将信噪比SN从1000提升至2000,则C 大约增加了( )(lg 20.3010)≈ A .10%B .30%C .60%D .90%7.已知定义在[]22-,上的奇函数()f x 满足:对任意的[]12,2,2x x ∈-都有()()1212f x f x x x -<-成立,则不等式()()1140f x f x ++->的解集为( ) A .13,44⎛⎫- ⎪⎝⎭B .12,43⎛⎫- ⎪⎝⎭C .1,14⎛⎫- ⎪⎝⎭D .23,34⎛⎤ ⎥⎝⎦8.已知函数231,2()1024,2x x f x x x x ⎧-≤⎪=⎨-+>⎪⎩,若函数2()2(())()F x f x mf x =-,且函数()F x 有6个零点,则非零实数m 的取值范围是 A .()()2,00,16⋃- B .()216, C .[)2,16D .()()2,00,-+∞二、填空题9.函数()f x 是定义在R 上的奇函数,当0x >时,()1f x xx=+,则下列结论正确的是( )A .当0x <时,()1x f x x=-+ B .关于x 的不等式()()210f x f x +-<的解集为1,3⎛⎫-∞ ⎪⎝⎭C .关于x 的方程()13f x x =有三个实数解D .12,x x ∀∈R ,()()212f x f x -< 10.下列结论正确的是( )A .在ABC 中,AB >是sin sin A B >充要条件B .在ABC 中,2cos sin sin B A C =,则ABC 为等腰三角形 C .在ABC 中,cos cos a A c C =,则ABC 为等腰三角形D .在ABC 中,2b ac =,且2sin sin sin B A C =+,则ABC 为正三角形 11.下列命题正确的有( )A .若()(),y f x y g x == 均为R 上的增函数,则()()y f x g x =+ 也是R 上的增函数B .若a b > ,则22ac bc >C .命题“0x ∃>,使得2+ax 30ax -≥ ”的否定是“0x ∀>,使得2+ax 30ax -<”D .已知()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,2()2f x x x =-+,则 (0,)x ∈+∞时,函数解析式为2()2f x x x =-12.对于函数sin ,sin cos ()cos ,sin cos x x xf x x x x ≤⎧=⎨>⎩,下列四个结论正确的是( )A .()f x 是以π为周期的函数B .当且仅当()x k k ππ=+∈Z 时,()f x 取得最小值-1C .()f x 图象的对称轴为直线()4x k k ππ=+∈ZD .当且仅当22()2k x k k πππ<<+∈Z 时,0()f x <≤三、多选题13.已知集合{}2,3A =,{}1B x ax ==,若A B B =,则实数a 的所有可能的取值组成的集合为_________. 14.函数()()af x x a R x=+∈在[)1,2上存在零点,则实数a 的取值范围是______. 15.已知函数f (x )=2x ,1()()()g x f x f x =-,若1()(2)()(2)h x f x tg x f x =++(t 为实数)在(0,+∞)上有两个不同的零点x 1、x 2,则x 1+x 2的取值范围为_______16.已知()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增.若对任意x ∈R ,不等式()()(21),f a x b f x x a b +-≥--∈R 恒成立,则222a b +的最小值是___________.四、解答题17.已知全集U =R ,集合{}2560A xx x =-+≤∣,集合{}2220B x x x =-->∣. (1)求A R,A B ;(2)若集合{30}C xx a =+>∣,满足A C C =,求实数a 的取值范围.18.设函数()sin 224f x x x m π⎛⎫=-+ ⎪⎝⎭,x ∈R ,m R ∈(1)求函数()f x 的最小正周期及单调增区间; (2)当04x π≤≤时,()f x 的最小值为0,求实数m 的值. 19.已知函数3()1f x x =-. (1)画出函数的草图,并用定义证明函数的单调性; (2)若[]2,7x ∈,求函数的最大值和最小值.20.已知函数()log a f x x =(0a >,且1a ≠),且()31f =. (1)求a 的值,并写出函数()f x 的定义域;(2)设函数()()()11g x f x f x =+--,试判断()g x 的奇偶性,并说明理由;(3)若不等式()()42x xf t f t ⋅≥-对任意[]1,2x ∈恒成立,求实数t 的取值范围.21.已知()()()2log 2f x g x x +=-,其中()f x 为奇函数,()g x 为偶函数. (1)求()f x 与()g x 的解析式;(2)判断函数()f x 在其定义域上的单调性; (3)解关于t 不等式()()12130f t f t t -++->. 22.函数2()1ax b f x x +=+是定义在(,)-∞+∞上的奇函数,且12()25f =. (1)求实数,a b 的值.(2)用定义证明在(1,1)-上是增函数;(3)写出的单调减区间,并判断有无最大值或最小值?如有,写出最大值或最小值(无需说明理由)【参考答案】一、选择题 1.B 【解析】 【分析】首先利用对数函数的性质求出集合A ,然后再利用集合的补集运算即可求解. 【详解】R U =.{|lg 0}{|01}A x x x x =<=<<, {|0UA x x ∴=≤或1}x ≥故选:B. 【点睛】本题考查了集合的补集运算以及对数函数的性质,属于基础题. 2.C 【分析】根据函数的特点,直接列式求函数的定义域. 【详解】函数的定义域需满足1010x x +≥⎧⎨-≠⎩,解得:1x ≥-且1x ≠,所以函数的定义域是[)()1,11,-+∞.故选:C 3.C 【分析】推导出sin 0θ<,cos 0θ<,由此能求出θ的终边在第几象限. 【详解】解:角θ满足条件sin cos 1θθ+<-,sin 0θ∴<,cos 0θ<,θ∴的终边在第三象限.故选:C . 4.C 【分析】先求出点(,1)(0)M x x -<到坐标原点的距离r ,再利用三角函数的定义cos x r α==即可求解. 【详解】设r OM ==由三角函数的定义可得:cos xrα=, 整理可得:213x +=, 因为0x <,所以x = 故选:C 5.C 【分析】先判断()ln 3f x x x =+-的单调性,利用零点存在定理判断根所在的区间. 【详解】()ln 3f x x x =+-在0+∞(,)是增函数, 而()()()1ln113=-2<0,2ln 223=ln 21<0,3ln333=ln3>0,f f f =+-=+--=+-(2)(3)0f f ∴⋅<根据零点存在定理,可得函数()ln 3f x x x =+-的零点所在的区间为()2,3. 故选:C 【点睛】判断函数零点所在的大致区间的方法如下:若函数()y f x =在闭区间[a,b ]上的图像是连续曲线,并且在区间端点的函数值符号不同,即()()0f a f b ⋅≤,则在区间[a,b ]内,函数()y f x =至少有一个零点,即相应的方程()0f x =在区间[a,b ]内至少有一个实数解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
26
36
的单调性得到 a<b,∴c<a,且 a<b;∴c<a<b.
故选 D.
【点睛】
考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和 0 比较, 做商和 1 比较,或者构造函数利用函数的单调性得到结果.
4.D
解析:D 【解析】
【分析】
函数 f (x) 2x log2x , g(x) 2x log2x , h(x) 2x log2x 1的零点可以转化为求函数
9.B
解析:B 【解析】
试题分析:利用函数 f(x)=x(ex+ae﹣x)是偶函数,得到 g(x)=ex+ae﹣x 为奇函数,然后利
(2)若不等式 f a2 a 2 x2 2a 12 x 2 4 0 对任意 x1,3恒成立,求实
数 a 的取值范围.
26.已知全集 U=R,集合 A x x2 4x 0 , B x x2 (2m 2)x m2 2m 0 .
(Ⅰ)若 m 3 ,求 CU B 和 A B ; (Ⅱ)若 B A ,求实数 m 的取值范围.
的两根也
关于 x b 对称.而选项 D 中 4 16 1 64 .故选 D.
2a
2
2
【点睛】
对于形如 f g x 0 的方程(常称为复合方程),通过的解法是令 t g x ,从而得
到方程组
f g
t x
0 t
,考虑这个方程组的解即可得到原方程的解,注意原方程的解的特征
取决于两个函数的图像特征.
次函数的图像的对称性知道 4 个不同的解中,有两个的解的和与余下两个解的和相等,故 可得正确的选项. 【详解】
设关于 f x 的方程 mf 2 x nf x p 0 有两根,即 f x t1或 f x t2 .
而
f
x
ax2
bx c
的图象关于
x
b 2a
对称,因而
f
x
t1 或
f
x
t2
18.已知函数
f
(x)
a
1 是奇函数,则 4x 1
的值为________.
19. f (x) x2 2x ( x 0 )的反函数 f 1(x) ________
x 1,x 0
20.已知函数
f
(x)
ln
x
1,
x
,若方程
0
f
(x)
m(m R) 恰有三个不同的实数解
a、b、c(a b c) ,则 (a b)c 的取值范围为______;
6.已知函数 f (x) log2 x ,正实数 m, n 满足 m n 且 f (m) f (n) ,若 f (x) 在区间
[m2 , n] 上的最大值为 2,则 m, n 的值分别为
A. 1 ,2 2
B. 2 , 2 2
C. 1 ,2 4
D. 1 ,4 4
7.函数 f(x)=ax2+bx+c(a≠0)的图象关于直线 x=- 对称.据此可推测,对任意的非零
故选 D. 【点睛】 该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性 质,建立不等关系,求出参数的取值范围,属于简单题目.
6.A
解析:A 【解析】
试题分析:画出函数图像,因为正实数 m, n 满足 m n 且 f (m) f (n) ,且 f (x) 在区间
[m2 , n] 上的最大值为
【分析】
可以得出 a 1 ln 32, c 1 ln 25 ,从而得出 c<a,同样的方法得出 a<b,从而得出 a,
10
10
b,c 的大小关系.
【详解】
a
f
2
ln 2
ln 32
,
c
f
5
1 ln 5
ln 25
,根据对数函数的单调性得到 a>c,
2 10
5
10
b f 3 ln 3 ,又因为 a f 2 ln 2 ln 8 , b f 3 ln 3 ln 9 ,再由对数函数
B. 3
C. 3
D.1
13.定义在 R 上的奇函数 f(x)在(0,+∞)上单调递增,且 f(4)=0,则不等式 f
(x)≥0 的解集是___.
14.若函数 f (x) ax (a 0, 且a 1) 在[1, 2] 上的最大值比最小值大 a ,则 a 的值为 2
____________.
15.已知函数
y log2x 与函数 y 2x , y 2x , y 2x 的交点,再通过数形结合得到 a , b , c 的大小
关系.
【详解】
令 f (x) 2x log2 x 0 ,则 log2 x 2x . 令 g(x) 2x log1 x 0 ,则 log2 x 2x .
2
令 h(x)
8.A
解析:A 【解析】 【分析】 根据二次根式的性质求出函数的定义域即可. 【详解】
2 x 0
由题意得:
x
1
0
解得:﹣1<x≤2,
故函数的定义域是(﹣1,2],
故选 A.
【点睛】
本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域 的类型有:对数,要求真数大于 0 即可;偶次根式,要求被开方数大于等于 0;分式,要 求分母不等于 0,零次幂,要求底数不为 0;多项式要求每一部分的定义域取交集.
2.C
解析:C 【解析】
【分析】
首先将 b 表示为对数的形式,判断出 b 0 ,然后利用中间值以及对数、指数函数的单调性
比较 3 与 a, c 的大小,即可得到 a,b, c 的大小关系. 2
【详解】
因为 5b
1 4
,所以 b
log5
1 4
log5 1
0
,
又因为
a
log 1
3
1 4
log3
4
log3 3, log3 3
(Ⅰ)若 a 1,求 M ( R N ) ; (Ⅱ) M N M ,求实数 a 的取值范围.
25.义域为 R 的函数 f x 满足:对任意实数 x,y 均有 f x y f x f y 2,且
f 2 2 ,又当 x 1时, f x 0 .
(1)求 f 0. f 1 的值,并证明:当 x 1时, f x 0 ;
b , c ,则 a , b , c 的大小关系为( ).
A. b a c
B. c b a
C. c a b
D. a b c
5.设
f(x)=
x a2 , x 0
x
ቤተ መጻሕፍቲ ባይዱ
1 x
a,
x
0
若
f(0)是
f(x)的最小值,则
a
的取值范围为(
)
A.[-1,2]
B.[-1,0]
C.[1,2]
D.[0,2]
a2 a 2 ,解不等式可得 a 的取值范围.
【详解】
因为当 x≤0 时,f(x)= x a 2 ,f(0)是 f(x)的最小值,
所以 a≥0.当 x>0 时, f (x) x 1 a 2 a ,当且仅当 x=1 时取“=”. x
要满足 f(0)是 f(x)的最小值,
需 2 a f (0) a2 ,即 a2 a 2 0 ,解得 1 a 2, 所以 a 的取值范围是 0 a 2 ,
数,且 g 2 0 ,则不等式 xf x 0 的解集是( )
A. , 2 2, C. , 4 2,
B. 4, 20, D., 4 0,
12.已知函数 f (x) g(x) x ,对任意的 x R 总有 f (x) f (x) ,且 g(1) 1,则
g(1) ( )
A. 1 二、填空题
2,所以
f (m)
f
(n) =2,由
f (x)
log2
x
2 解得 x
2, 1 2
,即
m, n 的值分别为 1 ,2.故选 A. 2
考点:本题主要考查对数函数的图象和性质.
点评:基础题,数形结合,画出函数图像,分析建立 m,n 的方程.
7.D
解析:D
【解析】
【分析】
方程 mf x2 nf x p 0 不同的解的个数可为 0,1,2,3,4.若有 4 个不同解,则可根据二
【常考题】高一数学上期末模拟试题(含答案)
一、选择题
1.若函数 f(x)=a|2x-4|(a>0,a≠1)满足 f(1)= 1 ,则 f(x)的单调递减区间是( ) 9
A.(-∞,2]
B.[2,+∞)
C.[-2,+∞)
D.(-∞,-2]
2.已知 a
log 1
3
1 4
, 5b
1 4
,c
1
63
,则(
)
A. a b c
3
,所以
a
1,
3 2
,
又因为
c
1
63
3 2
3
1
3
,
1
83
,所以
c
3 2
,
2
,
所以 c a b.
故选:C. 【点睛】
本题考查利用指、对数函数的单调性比较大小,难度一般.利用指、对数函数的单调性比较 大小时,注意数值的正负,对于同为正或者负的情况可利用中间值进行比较.
3.D
解析:D 【解析】
B. a c b
C. c a b
D. b c a
3.已知函数 f ( x) ln x ,若 a f (2) , b f (3) , c f (5) ,则 a , b , c 的大小关 x
系是( )
A. b c a
B. b a c