2017-2018学年高二数学人教A版选修4-5教师用书:第1讲 一 不等式-1 含答案 精品
2017-2018学年高中数学选修4-5全册学案含解析人教A版115P

2017~2018学人教A版高中数学选修4-5全册学案解析版目录第一讲不等式和绝对值不等式一不等式1不等式的基本性质第一讲不等式和绝对值不等式一不等式2基本不等式第一讲不等式和绝对值不等式一不等式3三个正数的算术_几何平均不等式第一讲不等式和绝对值不等式二绝对值不等式1绝对值三角不等式第一讲不等式和绝对值不等式二绝对值不等式2绝对值不等式的解法第二讲证明不等式的基本方法一比较法第二讲证明不等式的基本方法三反证法与放缩法第二讲证明不等式的基本方法二综合法与分析法第三讲柯西不等式与排序不等式一二维形式的柯西不等式第三讲柯西不等式与排序不等式三排序不等式第三讲柯西不等式与排序不等式二一般形式的柯西不等式第四讲用数学归纳法证明不等式一数学归纳法第四讲用数学归纳法证明不等式二用数学归纳法证明不等式举例1.不等式的基本性质1.实数大小的比较(1)数轴上的点与实数一一对应,可以利用数轴上点的左右位置关系来规定实数的大小.在数轴上,右边的数总比左边的数大.(2)如果a-b>0,则a>b;如果a-b=0,则a=b;如果a-b<0,则a<b.(3)比较两个实数a与b的大小,归结为判断它们的差与0的大小;比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判断它们的差与0的大小.2.不等式的基本性质由两数大小关系的基本事实,可以得到不等式的一些基本性质:(1)如果a>b,那么b<a;如果b<a,那么a>b.即a>b⇔b<a.(2)如果a>b,b>c,那么a>c.即a>b,b>c⇒a>c.(3)如果a>b,那么a+c>b+c.(4)如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么ac<bc.(5)如果a>b>0,那么a n>b n(n∈N,n≥2).(6)如果a>b>0n∈N,n≥2).3.对上述不等式的理解使用不等式的性质时,一定要清楚它们成立的前提条件,不可强化或弱化它们成立的条件,盲目套用,例如:(1)等式两边同乘一个数仍为等式,但不等式两边同乘同一个数c(或代数式)结果有三种:①c>0时得同向不等式;②c=0时得等式;③c<0时得异向不等式.(2)a>b,c>d⇒a+c>b+d,即两个同向不等式可以相加,但不可以相减;而a>b>0,c>d>0⇒ac>bd,即已知的两个不等式同向且两边为正值时,可以相乘,但不可以相除.(3)性质(5)(6)成立的条件是已知不等式两边均为正值,并且n∈N,n≥2,否则结论不成立.而当n取正奇数时可放宽条件,a>b⇒a n>b n(n=2k+1,k∈N),a>b⇒na>nb(n=2k+1,k∈N*).已知x ,y 均为正数,设m =x +y ,n =x +y ,试比较m 和n 的大小.两式作差――→变形 转化为因式乘积形式――→与0比较判断正负,得出大小 m -n =1x +1y -4x +y =x +y xy -4x +y =x +y 2-4xy xy x +y =x -y 2xy x +y ,∵x ,y 均为正数,∴x >0,y >0,xy >0,x +y >0,(x -y )2≥0. ∴m -n ≥0,即m ≥n (当x =y 时,等号成立).比较两个数(式子)的大小,一般用作差法,其步骤是:作差—变形—判断差的符号—结论,其中“变形”是关键,常用的方法是分解因式、配方等.1.已知a ,b ∈R ,比较a 4+b 4与a 3b +ab 3的大小. 解:因为(a 4+b 4)-(a 3b +ab 3) =a 3(a -b )+b 3(b -a ) =(a -b )(a 3-b 3) =(a -b )2(a 2+ab +b 2)=(a -b )2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +b 22+34b 2≥0. 当且仅当a =b 时,等号成立, 所以a 4+b 4≥a 3b +ab 3.2.在数轴的正半轴上,A 点对应的实数为6a29+a 4,B 点对应的实数为1,试判断A 点在B 点的左边,还是在B 点的右边?解:因为6a 29+a 4-1=-a 2-29+a 4≤0,所以6a29+a4≤1.当且仅当a =±3时,等号成立,所以当a ≠±3时,A 点在B 点左边,当a =±3时,A 点与B 点重合.已知a >b >0,c <d <0,e <0.求证:ea -c >eb -d.可以作差比较,也可用不等式的性质直接证明. 法一:ea -c -eb -d=e b -d -a +c a -c b -d =e b -a +c -da -cb -d,∵a >b >0,c <d <0,∴b -a <0,c -d <0. ∴b -a +c -d <0.又∵a >0,c <0,∴a -c >0.同理b -d >0, ∴(a -c )(b -d )>0. ∵e <0,∴e b -a +c -d a -c b -d >0,即e a -c >e b -d.法二:⎭⎪⎬⎪⎫c <d <0⇒-c >-d >0a >b >0⇒⎭⎪⎬⎪⎫a -c >b -d >0⇒1a -c <1b -d e <0⇒e a -c >e b -d.进行简单的不等式的证明,一定要建立在记准、记熟不等式性质的基础之上,如果不能直接由不等式的性质得到,可以先分析需要证明的不等式的结构,利用不等式的性质进行逆推,寻找使其成立的充分条件.3.已知x ≥1,y ≥1,求证:x 2y +xy 2+1≤x 2y 2+x +y . 证明:左边-右边=(y -y 2)x 2+(y 2-1)x -y +1 =(1-y )=(1-y )(xy -1)(x -1).因为x ≥1,y ≥1,所以1-y ≤0,xy -1≥0,x -1≥0. 所以x 2y +xy 2+1≤x 2y 2+x +y .4.已知a ,b ,x ,y 都是正数,且1a >1b ,x >y ,求证:x x +a >yy +b .证明:因为a ,b ,x ,y 都是正数,且1a >1b ,x >y ,所以x a >y b ,所以a x <by.故a x +1<b y +1,即x +a x <y +b y .所以x x +a >yy +b.(1)已知-2≤α≤β≤2,求α-β的取值范围.(2)已知-1≤a +b ≤1,1≤a -2b ≤3,求a +3b 的取值范围.求代数式的范围应充分利用不等式的基本性质. (1)∵-π2≤α≤β≤π2,∴-π2≤α≤π2,-π2≤-β≤π2,且α≤β.∴-π≤α-β≤π且α-β≤0.∴-π≤α-β≤0.即α-β的取值范围为.(2)设a +3b =λ1(a +b )+λ2(a -2b )=(λ1+λ2)a +(λ1-2λ2)b . 解得λ1=53,λ2=-23.∴-53≤53(a +b )≤53,-2≤-23(a -2b )≤-23.∴-113≤a +3b ≤1.即a +3b 的取值范围为⎣⎢⎡⎦⎥⎤-113,1.求代数式的取值范围是不等式性质应用的一个重要方面,严格依据不等式的性质和运算法则进行运算,是解答此类问题的基础,在使用不等式的性质中,如果是由两个变量的范围求其差的范围,一定不能直接作差,而要转化为同向不等式后作和.5.已知1≤α+β≤4,-2≤α-β≤-1,求2α-β的取值范围. 解:设2α-β=m (α+β)+n (α-β),∴⎩⎪⎨⎪⎧m +n =2,m -n =-1⇒⎩⎪⎨⎪⎧m =12,n =32.又∵1≤α+β≤4,-2≤α-β≤-1, ∴⎩⎪⎨⎪⎧12≤12α+β,-3≤32α-β-32⇒-52≤2α-β≤12.∴2α-β的取值范围为⎣⎢⎡⎦⎥⎤-52,12.6.三个正数a ,b ,c 满足a ≤b +c ≤2a ,b ≤a +c ≤2b ,求b a的取值范围.解:两个不等式同时除以a ,得⎩⎪⎨⎪⎧1≤b a +ca≤2,①b a ≤1+c a ≤2·ba ,②将②×(-1),得⎩⎪⎨⎪⎧1≤b a +ca≤2,-2·b a ≤-1-c a ≤-ba,两式相加,得1-2b a ≤b a -1≤2-b a ,解得23≤b a ≤32.即b a 的取值范围是⎣⎢⎡⎦⎥⎤23,32.课时跟踪检测(一)1.下列命题中不.正确的是( ) A .若3a >3b ,则a >b B .若a >b ,c >d ,则a -d >b -c C .若a >b >0,c >d >0,则a d >b cD .若a >b >0,ac >bd ,则c >d解析:选D 当a >b >0,ac >ad 时,c ,d 的大小关系不确定. 2.已知a >b >c ,则下列不等式正确的是( ) A .ac >bc B .ac 2>bc 2C .b (a -b )>c (a -b )D .|ac |>|bc |解析:选C a >b >c ⇒a -b >0⇒(a -b )b >(a -b )c . 3.如果a <b <0,那么下列不等式成立的是( ) A.1a <1bB .ab <b 2C .-ab <-a 2D .-1a <-1b解析:选D 对于A 项,由a <b <0,得b -a >0,ab >0,故1a -1b =b -a ab >0,1a >1b,故A 项错误;对于B 项,由a <b <0,得b (a -b )>0,ab >b 2,故B 项错误;对于C 项,由a <b <0,得a (a -b )>0,a 2>ab ,即-ab >-a 2,故C 项错误;对于D 项,由a <b <0,得a -b <0,ab >0,故-1a -⎝ ⎛⎭⎪⎫-1b =a -b ab <0,-1a <-1b成立,故D 项正确.4.若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc<0;③a -c >b -d ;④a (d -c )>b (d -c )中,成立的个数是( )A .1B .2C .3D .4解析:选C ∵a >0>b ,c <d <0,∴ad <0,bc >0,∴ad <bc ,故①不成立.∵a >0>b >-a ,∴a >-b >0,∵c <d <0,∴-c >-d >0,∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd<0,故②成立.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ),a -c >b -d ,故③成立.∵a >b ,d -c >0,∴a (d -c )>b (d -c ),故④成立.成立的个数为3.5.给出四个条件:①b >0>a ;②0>a >b ;③a >0>b ;④a >b >0. 能得出1a <1b成立的有________(填序号).解析:由1a <1b ,得1a -1b <0,b -a ab <0,故①②④可推得1a <1b成立.答案:①②④6.设a >b >1,c <0,给出下列三个结论:①c a >c b;②a c <b c;③log b (a -c )>log a (b -c ). 其中所有的正确结论的序号是________.解析:由a >b >1,c <0,得1a <1b ,c a >c b;幂函数y =x c (c <0)是减函数,所以a c <b c;因为a-c >b -c ,所以log b (a -c )>log a (a -c )>log a (b -c ),①②③均正确.答案:①②③7.已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是________. 解析:设z =2x -3y =m (x +y )+n (x -y ),即2x -3y =(m +n )x +(m -n )y .∴⎩⎪⎨⎪⎧m +n =2,m -n =-3.解得⎩⎪⎨⎪⎧m =-12,n =52.∴2x -3y =-12(x +y )+52(x -y ).∵-1<x +y <4,2<x -y <3,∴-2<-12(x +y )<12,5<52(x -y )<152.由不等式同向可加性,得3<-12(x +y )+52(x -y )<8,即3<z <8.答案:(3,8)8.若a >0,b >0,求证:b 2a +a 2b≥a +b .证明:∵b 2a +a 2b -a -b =(a -b )⎝ ⎛⎭⎪⎫a b -b a =a -b 2a +b ab ,(a -b )2≥0恒成立,且已知a >0,b >0, ∴a +b >0,ab >0.∴a -b2a +bab≥0.∴b 2a +a 2b≥a +b .9.已知-6<a <8,2<b <3,分别求2a +b ,a -b ,a b的取值范围. 解:∵-6<a <8,∴-12<2a <16. 又2<b <3,∴-10<2a +b <19. ∵2<b <3,∴-3<-b <-2. 又∵-6<a <8,∴-9<a -b <6. ∵2<b <3,∴13<1b <12.①当0≤a <8时,0≤a b<4; ②当-6<a <0时,-3<a b<0. 综合①②得-3<a b<4.∴2a +b ,a -b ,a b的取值范围分别为(-10,19),(-9,6),(-3,4).10.已知a >0,a ≠1. (1)比较下列各式大小.①a 2+1与a +a ;②a 3+1与a 2+a ; ③a 5+1与a 3+a 2.(2)探讨在m ,n ∈N +条件下,am +n+1与a m +a n的大小关系,并加以证明.解:(1)由题意,知a >0,a ≠1,①a 2+1-(a +a )=a 2+1-2a =(a -1)2>0. ∴a 2+1>a +a .②a 3+1-(a 2+a )=a 2(a -1)-(a -1) =(a +1)(a -1)2>0,∴a 3+1>a 2+a , ③a 5+1-(a 3+a 2)=a 3(a 2-1)-(a 2-1)=(a 2-1)(a 3-1). 当a >1时,a 3>1,a 2>1,∴(a 2-1)(a 3-1)>0. 当0<a <1时,0<a 3<1,0<a 2<1,∴(a2-1)(a3-1)>0,即a5+1>a3+a2.(2)根据(1)可得a m+n+1>a m+a n.证明如下:a m+n+1-(a m+a n)=a m(a n-1)+(1-a n)=(a m-1)(a n-1).当a>1时,a m>1,a n>1,∴(a m-1)(a n-1)>0.当0<a<1时,0<a m<1,0<a n<1,∴(a m-1)(a n-1)>0.综上可知(a m-1)(a n-1)>0,即a m+n+1>a m+a n.2.基本不等式1.基本不等式的理解重要不等式a 2+b 2≥2ab 和基本不等式a +b2≥ab ,成立的条件是不同的.前者成立的条件是 a 与b 都为实数,并且a 与b 都为实数是不等式成立的充要条件;而后者成立的条件是a 与b 都为正实数,并且a 与b 都为正实数是不等式成立的充分不必要条件,如a =0,b ≥0仍然能使a +b2≥ab 成立.两个不等式中等号成立的充要条件都是a =b . 2.由基本不等式可推出以下几种常见的变形形式 (1)a 2+b 2≥a +b22;(2)ab ≤a 2+b 22;(3)ab ≤⎝⎛⎭⎪⎫a +b 22;(4)⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22; (5)(a +b )2≥4ab .已知a ,+求证:1a +1b +1c≥9.解答本题可先利用1进行代换,再用基本不等式来证明. 法一:∵a ,b ,c ∈R +,且a +b +c =1, ∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+b a +c a +a b +c b +a c +bc=3+⎝⎛⎭⎪⎫b a +ab +⎝⎛⎭⎪⎫c a +ac +⎝⎛⎭⎪⎫c b +bc≥3+2+2+2=9,当且仅当a =b =c 时,等号成立. 即1a +1b +1c≥9.法二:∵a ,b ,c ∈R +,且a +b +c =1, ∴1a +1b +1c=(a +b +c )⎝ ⎛⎭⎪⎫1a +1b +1c=1+b a +c a +a b +1+c b +a c +b c+1=3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c≥3+2+2+2=9,当且仅当a =b =c 时,等号成立. ∴1a +1b +1c≥9.用基本不等式证明不等式时,应首先依据不等式两边式子的结构特点进行恒等变形,使之具备基本不等式的结构和条件,然后合理地选择基本不等式进行证明.1.已知x 1,x 2,x 3为正实数,若x 1+x 2+x 3=1,求证:x 22x 1+x 23x 2+x 21x 3≥1.证明:因为x 1,x 2,x 3为正实数,所以x 22x 1+x 1+x 23x 2+x 2+x 21x 3+x 3≥2x 22+2x 23+2x 21=2(x 1+x 2+x 3)=2,当且仅当x 1=x 2=x 3时,等号成立.所以x 22x 1+x 23x 2+x 21x 3≥1.2.已知a ,b ,c >0,求证:a 2b +b 2c +c 2a ≥a +b +c .证明:∵a ,b ,c ,a 2b ,b 2c ,c 2a 均大于0,又a 2b+b ≥2 a 2b ·b =2a ,b 2c+c ≥2 b 2c ·c =2b ,c 2a +a ≥2 c 2a·a =2c , ∴⎝ ⎛⎭⎪⎫a 2b +b +⎝ ⎛⎭⎪⎫b 2c +c +⎝ ⎛⎭⎪⎫c 2a +a ≥2(a +b +c ). 即a 2b +b 2c +c 2a≥a +b +c .当且仅当a 2b =b ,b 2c =c ,c 2a=a ,即a =b =c 时,等号成立.(1)求当x >0时,f (x )=x 2+1的值域; (2)设0<x <32,求函数y =4x (3-2x )的最大值;(3)已知x >0,y >0,且1x +9y=1,求x +y 的最小值.根据题设条件,合理变形,创造能用基本不等式的条件,求最值. (1)∵x >0,∴f (x )=2x x 2+1=2x +1x. ∵x +1x ≥2,∴0<1x +1x≤12.∴0<f (x )≤1,当且仅当x =1时,等号成立.即f (x )=2xx 2+1的值域为(0,1]. (2)∵0<x <32,∴3-2x >0.∴y =4x (3-2x )=2≤2⎣⎢⎡⎦⎥⎤2x +-2x 22=92.当且仅当2x =3-2x ,即x =34时,等号成立.∴y =4x (3-2x )的最大值为92.(3)∵x >0,y >0,1x +9y=1,∴x +y =⎝ ⎛⎭⎪⎫1x +9y (x +y )=y x +9x y+10≥6+10=16.当且仅当y x =9x y ,又1x +9y=1, 即x =4,y =12时,上式取等号. 故当x =4,y =12时,x +y 的最小值为16.在应用基本不等式求最值时, 分以下三步进行:(1)首先看式子能否出现和(或积)的定值,若不具备,需对式子变形,凑出需要的定值; (2)其次,看所用的两项是否同正,若不满足,通过分类解决,同负时,可提取(-1)变为同正;(3)利用已知条件对取等号的情况进行验证.若满足,则可取最值,若不满足,则可通过函数单调性或导数解决.3.已知x >0,y >0且5x +7y =20,求xy 的最大值. 解:xy =135(5x ·7y )≤135⎝ ⎛⎭⎪⎫5x +7y 22=135×⎝ ⎛⎭⎪⎫2022=207.当且仅当5x =7y =10,即x =2,y =107时,等号成立,所以xy 的最大值为207.4.若正数a ,b 满足ab =a +b +3,(1)求ab 的取值范围;(2)求a +b 的取值范围. 解:(1)∵a ,b ∈R +,∴ab =a +b +3≥2ab +3. 令y =ab ,得y 2-2y -3≥0,∴y ≥3或y ≤-1(舍去). ∴ab =y 2≥9.∴ab 的取值范围是 =17·1+3b +23a +2+a +3b +2+4≥17·⎣⎢⎡⎦⎥⎤5+2 3b +23a +2·a +3b +2=97, 当且仅当3b +23a +2=a +3b +2,即a =19,b =89时取等号.所以13a +2+43b +2的最小值为97.促销活动,经过市场调查和测算,化妆品的年销量x 万件与年促销费t 万元之间满足3-x 与t +1成反比例的关系,如果不搞促销活动,化妆品的年销量只能是1万件,已知2017年生产化妆品的设备折旧、维修等固定费用为3万元,每生产1万件化妆品需要投入32万元的生产费用,若将每件化妆品的售价定为其生产成本的150%与平均每件促销费的一半之和,则当年生产的化妆品正好能销完.(1)将2017年的利润y (万元)表示为促销费t (万元)的函数; (2)该企业2017年的促销费投入多少万元时,企业的年利润最大?(1)两个基本关系式是解答关键,即利润=销售收入-生产成本-促销费;生产成本=固定费用+生产费用;(2)表示出题中的所有已知量和未知量,利用它们之间的关系式列出函数表达式. (1)由题意可设3-x =kt +1,将t =0,x =1代入,得k =2.∴x =3-2t +1. 当年生产x 万件时,∵年生产成本=年生产费用+固定费用, ∴年生产成本为32x +3=32⎝⎛⎭⎪⎫3-2t +1+3. 当销售x 万件时,年销售收入为150%⎣⎢⎡⎦⎥⎤32⎝⎛⎭⎪⎫3-2t +1+3+12t . 由题意,生产x 万件化妆品正好销完,由年利润=年销售收入-年生产成本-促销费,得年利润y =-t 2+98t +35t +(t ≥0).(2)y =-t 2+98t +35t +=50-⎝ ⎛⎭⎪⎫t +12+32t +1 ≤50-2 t +12×32t +1=50-216=42, 当且仅当t +12=32t +1,即t =7时,等号成立,y max =42, ∴该企业2015年的促销费投入7万元时,企业的年利润最大.利用不等式解决实际应用问题时,首先要仔细阅读题目,弄清要解决的实际问题,确定是求什么量的最值;其次,分析题目中给出的条件,建立y 的函数表达式y =f (x )(x 一般为题目中最后所要求的量);最后,利用不等式的有关知识解题.求解过程中要注意实际问题对变量x 的范围制约.6.一商店经销某种货物,根据销售情况,年进货量为5万件,分若干次等量进货(设每次进货x 件),每进一次货运费为50元,且在销售完该次所进货物时,立即进货,现以年平均x2件货储存在仓库里,库存费以每件20元计算,要使一年的运费和库存费最省,每次进货量x 应是多少?解:设一年的运费和库存费共y 元,由题意,知y =50 000x ×50+x 2×20=25×105x +10x ≥2 25×106=104,当且仅当25×105x=10x 即x =500时,等号成立,y min =10 000,即每次进货500件时,一年的运费和库存费最省.7.某学校为了支持生物课程基地研究植物的生长规律,计划利用学校空地建造一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m ,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3 m 宽的通道,如图.设矩形温室的室内长为x (单位:m),三块种植植物的矩形区域的总面积为S (单位:m 2).(1)求S 关于x 的函数关系式; (2)求S 的最大值.解:(1)由题设,得S =(x -8)⎝ ⎛⎭⎪⎫900x -2=-2x -7 200x +916,x ∈(8,450).(2)因为8<x <450, 所以2x +7 200x≥22x ×7 200x=240,当且仅当x =60时等号成立,从而S ≤676.故当矩形温室的室内长为60 m 时,三块种植植物的矩形区域的总面积最大,为676 m 2.课时跟踪检测(二)1.下列不等式中,正确的个数是( ) ①若a ,b ∈R ,则a +b2≥ab ; ②若x ∈R ,则x 2+2+1x 2+2≥2; ③若x ∈R ,则x 2+1+1x 2+1≥2; ④若a ,b 为正实数,则a +b2≥ab .A .0B .1C .2D .3解析:选C 显然①不正确,③正确;虽然x 2+2=1x 2+2无解,但x 2+2+1x 2+2>2成立,故②正确;④不正确,如a =1,b =4.2.已知a >0,b >0,a ,b 的等差中项是12,且α=a +1a ,β=b +1b ,则α+β的最小值是( )A .3B .4C .5D .6解析:选C ∵a +b =2×12=1,a >0,b >0,∴α+β=a +1a +b +1b =1+1ab≥1+1⎝ ⎛⎭⎪⎫a +b 22=5,当且仅当a =b =12时,等号成立.3.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8解析:选B (x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y≥1+a +2a =(a +1)2(x ,y ,a >0),当且仅当y =ax 时取等号,所以(x +y )·⎝ ⎛⎭⎪⎫1x +a y 的最小值为(a +1)2,于是(a +1)2≥9恒成立,所以a ≥4,故选B.4.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元解析:选C 设底面矩形的长和宽分别为a m ,b m ,则ab =4.容器的总造价为20ab +2(a +b )×10=80+20(a +b )≥80+40ab =160(元)(当且仅当a =b =2时,等号成立).5.已知函数f (x )=4x +a x(x >0,a >0)在x =3时取得最小值,则a =________. 解析:∵x >0,a >0, ∴f (x )=4x +a x≥24x ·a x =4a ,当且仅当4x =a x时等号成立,此时a =4x 2,由已知x =3时函数取得最小值,∴a =4×9=36. 答案:366.若log 2x +log 2y =4,则x +y 的最小值是________. 解析:由题意知x >0,y >0,log 2xy =4,得xy =4, ∴x +y ≥2xy =4(当且仅当x =y 时,等号成立).答案:47.y =3+x +x 2x +1(x >0)的最小值是________.解析:∵x >0,∴y =3+x +x 2x +1=3x +1+x +1-1≥23-1.当且仅当x +1=3时,等号成立. 答案:23-18.已知a ,b 是正数,求证: (1)a 2+b 22≥a +b2; (2)ab ≥21a +1b. 证明:(1)左边= a 2+b 2+a 2+b 24≥a 2+b 2+2ab4=a +b24=a +b2=右边,原不等式成立.(2)右边=21a +1b≤221ab=ab =左边,原不等式成立.9.设x >0,y >0且x +y =4,要使不等式1x +4y≥m 恒成立,求实数m 的取值范围.解:由x >0,y >0且x +y =4,得x +y4=1,∴1x +4y =x +y 4·⎝ ⎛⎭⎪⎫1x +4y =14⎝ ⎛⎭⎪⎫1+y x +4x y +4=14⎝ ⎛⎭⎪⎫5+y x +4x y≥14⎝⎛⎭⎪⎫5+2y x ·4x y =94. 当且仅当y x =4xy时,等号成立. 即y =2x (∵x >0,y >0,∴y =-2x 舍去). 此时,结合x +y =4,解得x =43,y =83.∴1x +4y 的最小值为94,∴m ≤94, ∴m 的取值范围为⎝⎛⎦⎥⎤-∞,94.10.如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程.(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.解:(1)令y =0,得kx -120(1+k 2)x 2=0.由实际意义和题设条件知x >0,k >0, 故x =20k 1+k 2=20k +1k≤202=10, 当且仅当k =1时取等号. 所以炮的最大射程为10千米.(2)因为a >0,所以炮弹可击中飞行物, 即存在k >0,使3.2=ka -120(1+k 2)a 2成立, 即关于k 的方程a 2k 2-20ak +a 2+64=0有正根 ⇒Δ=(-20a )2-4a 2(a 2+64)≥0⇒a ≤6.所以当a 不超过6(千米)时,可击中飞行物.3.三个正数的算术—几何平均不等式1.定理3如果a ,b ,c ∈R +,那么a +b +c3≥3abc ,当且仅当a =b =c 时,等号成立,用文字语言可叙述为:三个正数的算术平均不小于它们的几何平均.(1)不等式a +b +c3≥3abc 成立的条件是:a ,b ,c 均为正数,而等号成立的条件是:当且仅当a =b =c .(2)定理3可变形为:①abc ≤⎝⎛⎭⎪⎫a +b +c 33;②a 3+b 3+c 3≥3abc .(3)三个及三个以上正数的算术-几何平均不等式的应用条件与前面基本不等式的应用条件是一样的,即“一正、二定、三相等”.2.定理3的推广对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a nn≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.已知a ,b +b +c -a a +c +a -b b +a +b -cc≥3. 欲证不等式的右边为常数3,联想到不等式a +b +c ≥33abc (a ,b ,c ∈R +),故将所证不等式的左边进行恰当的变形.b +c -a a +c +a -b b +a +b -cc =⎝⎛⎭⎪⎫b a +c b +ac +⎝⎛⎭⎪⎫c a +a b +bc -3 ≥33b a ·c b ·a c +33c a ·a b ·b c-3=6-3=3.当且仅当a =b =c 时,等号成立.(1)不等式的证明方法较多,关键是从式子的结构入手进行分析.(2)运用三个正数的平均不等式证明不等式时,仍要注意“一正、二定、三相等”,在解题中,若两次用平均值不等式,则只有在“相等”条件相同时,才能取到等号.1.已知x >0,y >0,求证:(1+x +y 2)(1+x 2+y )≥9xy . 证明:因为x >0,y >0,所以1+x +y 2≥33xy 2>0,1+x 2+y ≥33x 2y >0,故(1+x +y 2)(1+x 2+y )≥33xy 2·33x 2y =9xy .2.已知a 1,a 2,…,a n 都是正数,且a 1a 2…a n =1,求证:(2+a 1)(2+a 2)…(2+a n )≥3n. 证明:∵a 1是正数,根据三个正数的平均不等式,有2+a 1=1+1+a 1≥33a 1. 同理2+a j ≥3 3a j (j =2,3,…,n ).将上述各不等式的两边分别相乘即得(2+a 1)(2+a 2) (2)a n )≥(33a 1)(33a 2)…(33a n )=3n ·3a 1a 2…a n .∵a 1a 2…a n =1,∴(2+a 1)(2+a 2)…(2+a n )≥3n. 当且仅当a 1=a 2=…=a n =1时,等号成立.(1)求函数y =(x -1)2(3-2x )⎝ ⎛⎭⎪⎫1<x <2的最大值.(2)求函数y =x +4x -2(x >1)的最小值.对于积的形式求最大值,应构造和为定值. (2)对于和的形式求最小值,应构造积为定值. (1)∵1<x <32,∴3-2x >0,x -1>0.y =(x -1)2(3-2x )=(x -1)(x -1)(3-2x )≤⎝⎛⎭⎪⎫x -1+x -1+3-2x 33=⎝ ⎛⎭⎪⎫133=127,当且仅当x -1=x -1=3-2x ,即x =43∈⎝ ⎛⎭⎪⎫1,32时,y max =127.(2)∵x >1,∴x -1>0,y =x +4x -2=12(x -1)+12(x -1)+4x -2+1≥3312x -12x -4x -2+1=4,当且仅当12(x -1)=12(x -1)=4x -2,即x =3时,等号成立.即y min =4.(1)利用三个正数的算术-几何平均不等式定理求最值,可简记为“积定和最小,和定积最大”.(2)应用平均不等式定理,要注意三个条件即“一正、二定、三相等”同时具备时,方可取得最值,其中定值条件决定着平均不等式应用的可行性,获得定值需要一定的技巧,如配系数、拆项、分离常数、平方变形等.3.设x >0,则f (x )=4-x -12x2的最大值为( ) A .4-22B .4- 2C .不存在 D.52解析:选D ∵x >0,∴f (x )=4-x -12x 2=4-⎝ ⎛⎭⎪⎫x 2+x 2+12x 2≤4-33x 2·x 2·12x 2=4-32=52. 4.已知x ,y ∈R +且x 2y =4,试求x +y 的最小值及达到最小值时x ,y 的值. 解:∵x ,y ∈R +且x 2y =4,∴x +y =12x +12x +y ≥3314x 2y =3314×4=3.当且仅当x 2=x2=y 时,等号成立. 又∵x 2y =4,∴当x =2,y =1时,x +y 取最小值3.大家知道,灯挂得太高了,桌子边缘处的亮度就小;挂得太低,桌子的边缘处仍然是不亮的.由物理学知道,桌子边缘一点处的照亮度E 和电灯射到桌子边缘的光线与桌子的夹角θ的正弦成正比,而和这一点到光源的距离r 的平方成反比,即E =k sin θr2.这里k 是一个和灯光强度有关的常数,那么究竟应该怎样选择灯的高度h ,才能使桌子边缘处最亮?根据题设条件建立r 与θ的关系式→将它代入E =k sin θr2→得到以θ为自变量,E 为因变量的函数关系式 →用平均不等式求函数的最值→获得问题的解 ∵r =2cos θ,∴E =k ·sin θcos 2θ4⎝⎛⎭⎪⎫0<θ<π2.∴E2=k 216·sin 2θ·cos 4θ=k 232·(2sin 2θ)·cos 2θ·cos 2θ≤k 232·⎝ ⎛⎭⎪⎫2sin 2θ+cos 2θ+cos 2θ33=k 2108. 当且仅当2sin 2θ=cos 2θ时取等号, 即tan 2θ=12,tan θ=22.∴h =2tan θ= 2.即h =2时,E 最大.本题获解的关键是在获得了E =k ·sin θcos 2θ4后,对E 的表达式进行变形求得E 的最大值.解应用题时必须先读懂题意,建立适当的函数关系式,若把问题转化为求函数的最值问题,常配凑成可以用平均不等式的形式,若符合条件“一正、二定、三相等”即可求解.5.已知长方体的表面积为定值S ,试问这个长方体的长、宽、高各是多少时,它的体积最大,求出这个最大值.解:设长方体的体积为V ,长、宽、高分别是a ,b ,c , 则V =abc ,S =2ab +2bc +2ac .V 2=(abc )2=(ab )(bc )(ac )≤⎝ ⎛⎭⎪⎫ab +bc +ac 33=⎝ ⎛⎭⎪⎫S 63=S 3216.当且仅当ab =bc =ac ,即a =b =c 时,上式取等号,V 2取最小值S 3216.由⎩⎪⎨⎪⎧a =b =c ,2ab +2bc +2ac =S ,解得a =b =c =6S6.即当这个长方体的长、宽、高都等于6S 6时,体积最大,最大值为S 6S 36. 课时跟踪检测(三)1.已知x 为正数,下列各题求得的最值正确的是( ) A .y =x 2+2x +4x3≥33x 2·2x ·4x3=6,∴y min =6.B .y =2+x +1x ≥332·x ·1x=332,∴y min =332.C .y =2+x +1x≥4,∴y min =4. D .y =x (1-x )(1-2x ) ≤13⎣⎢⎡⎦⎥⎤3x +-x +-2x 33=881, ∴y max =881.解析:选C A 、B 、D 在使用不等式a +b +c ≥33abc (a ,b ,c ∈R +)和abc ≤⎝ ⎛⎭⎪⎫a +b +c 33(a ,b ,c ∈R +)都不能保证等号成立,最值取不到.C 中,∵x >0,∴y =2+x +1x=2+⎝ ⎛⎭⎪⎫x +1x ≥2+2=4,当且仅当x =1x,即x =1时,等号成立.2.已知a ,b ,c 为正数,则a b +b c +c a有( ) A .最小值3B .最大值3C .最小值2D .最大值2解析:选A a b +b c +ca ≥33ab ×bc ×c a =3,当且仅当a b =b c =c a,即a =b =c 时,等号成立. 3.若log x y =-2,则x +y 的最小值是( )A.3322B.833C.332D.223解析:选A 由log x y =-2,得y =1x 2.而x +y =x +1x2=x 2+x 2+1x 2≥33x 2·x 2·1x 2=3314=3322,当且仅当x 2=1x2,即x =32时,等号成立. 4.已知圆柱的轴截面周长为6,体积为V ,则下列不等式总成立的是( ) A .V ≥π B .V ≤π C .V ≥18πD .V ≤18π解析:选B 设圆柱底面半径为r ,则圆柱的高h =6-4r 2,所以圆柱的体积为V =πr 2·h=πr 2·6-4r 2=πr 2(3-2r )≤π⎝ ⎛⎭⎪⎫r +r +3-2r 33=π. 当且仅当r =3-2r ,即r =1时,等号成立. 5.若a >2,b >3,则a +b +1a -b -的最小值为________.解析:∵a >2,b >3,∴a -2>0,b -3>0, 则a +b +1a -b -=(a -2)+(b -3)+1a -b -+5 ≥33a -b -1a -b -+5=8.当且仅当a -2=b -3=1a -b -,即a =3,b =4时,等号成立.答案:86.设0<x <1,则x (1-x )2的最大值为 ________. 解析:∵0<x <1,∴1-x >0.故x (1-x )2=12×2x (1-x )(1-x )≤12⎣⎢⎡⎦⎥⎤2x +-x ++x 33=12×827=427(当且仅当x =13时,等号成立). 答案:4277.已知关于x 的不等式2x +1x -a2≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为________.解析:2x +1x -a=(x -a )+(x -a )+1x -a+2a .∵x -a >0, ∴2x +1x -a2≥33x -a x -a1x -a2+2a =3+2a ,当且仅当x -a =1x -a2即x =a +1时,等号成立.∴2x +1x -a2的最小值为3+2a .由题意可得3+2a ≥7,得a ≥2. 答案:28.设a ,b ,c ∈R +,求证: (a +b +c )⎝⎛⎭⎪⎫1a +b +1b +c +1a +c ≥92.证明:∵a ,b ,c ∈R +,∴2(a +b +c )=(a +b )+(b +c )+(c +a )≥33a +b b +c c +a >0.1a +b +1b +c +1a +c ≥331a +b ·1b +c ·1a +c >0, ∴(a +b +c )⎝⎛⎭⎪⎫1a +b +1b +c +1a +c ≥92.当且仅当a =b =c 时,等号成立.9.已知正数a ,b ,c 满足abc =1,求(a +2)(b +2)·(c +2)的最小值. 解:因为(a +2)(b +2)(c +2)=(a +1+1)(b +1+1)(c +1+1) ≥3·3a ·3·3b ·3·3c =27·3abc =27, 当且仅当a =b =c =1时,等号成立. 所以(a +2)(b +2)(c +2)的最小值为27.10.已知a ,b ,c 均为正数,证明:a 2+b 2+c 2+⎝ ⎛⎭⎪⎫1a +1b +1c 2≥63,并确定a ,b ,c 为何值时,等号成立.证明:法一:因为a ,b ,c 均为正数,由平均值不等式,得a 2+b 2+c 2≥3(abc )23,①1a +1b +1c ≥3(abc )-13, 所以⎝ ⎛⎭⎪⎫1a +1b +1c 2≥9(abc )-23.②故a 2+b 2+c 2+⎝ ⎛⎭⎪⎫1a +1b +1c 2≥3(abc )23+9(abc )-23.又3(abc )23+9(abc )-23≥227=63,③所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立. 当且仅当3(abc )23=9(abc )-23时,③式等号成立.即当且仅当a =b =c =314时,原式等号成立.法二:因为a ,b ,c 均为正数,由基本不等式,得a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac ,所以a 2+b 2+c 2≥ab +bc +ac ,① 同理1a 2+1b 2+1c 2≥1ab +1bc +1ac,②故a 2+b 2+c 2+⎝ ⎛⎭⎪⎫1a +1b +1c 2≥ab +bc +ac +3ab +3bc +3ac≥63,③所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立;当且仅当a =b =c ,(ab )2=(bc )2=(ac )2=3时,③式等号成立,即当且仅当a =b =c =314时,原式等号成立.1.绝对值三角不等式绝对值三角不等式(1)定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立. 几何解释:用向量a ,b 分别替换a ,b .①当a 与b 不共线时,有|a +b|<|a |+|b |,其几何意义为:三角形的两边之和大于第三边.②若a ,b 共线,当a 与b 同向时,|a +b |=|a |+|b |,当a 与b 反向时,|a +b |<|a |+|b |.由于定理1与三角形之间的这种联系,故称此不等式为绝对值三角不等式. ③定理1的推广:如果a ,b 是实数,则||a |-|b ||≤|a ±b |≤|a |+|b |. (2)定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |. 当且仅当(a -b )(b -c )≥0时,等号成立.几何解释:在数轴上,a ,b ,c 所对应的点分别为A ,B ,C , 当点B 在点A ,C 之间时,|a -c |=|a -b |+|b -c |.当点B 不在点A ,C 之间时:①点B 在点A 或点C 上时,|a -c |=|a -b |+|b -c |; ②点B 不在点A ,C 上时,|a -c |<|a -b |+|b -c |. 应用:利用该定理可以确定绝对值函数的值域和最值.已知|A -a |<3,|B -b |<3,|C -c |<3.求证:|(A +B +C )-(a +b +c )|<s .原式――→变形 重新分组――→定理 转化为|A -a |+|B -b |+|C -c |―→得出结论 |(A +B +C )-(a +b +c )| =|(A -a )+(B -b )+(C -c )| ≤|(A -a )+(B -b )|+|C -c | ≤|A -a |+|B -b |+|C -c |.因为|A -a |<s 3,|B -b |<s 3,|C -c |<s3,所以|A -a |+|B -b |+|C -c |<s 3+s 3+s3=s .所以|(A +B +C )-(a +b +c )|<s .含绝对值不等式的证明题主要分两类:一类是比较简单的不等式,往往可通过平方法、换元法去掉绝对值转化为常见的不等式证明,或利用绝对值三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |,通过适当的添、拆项证明;另一类是综合性较强的函数型含绝对值的不等式,往往可考虑利用一般情况成立,则特殊情况也成立的思想,或利用一元二次方程的根的分布等方法来证明.1.设a ,b 是满足ab <0的实数,则下列不等式中正确的是( ) A .|a +b |>|a -b | B .|a +b |<|a -b | C .|a -b |<||a |-|b ||D .|a -b |<|a |+|b |解析:选B ∵ab <0且|a -b |2=a 2+b 2-2ab , ∴(a +b )2=a 2+b 2+2ab <|a -b |2. ∴(|a |+|b |)2=a 2+b 2+2|ab |=|a -b |2. 故A 、D 不正确;B 正确; 又由定理1的推广知C 不正确. 2.设ε>0,|x -a |<ε4,|y -a |<ε6.求证:|2x +3y -2a -3b |<ε.证明:|2x +3y -2a -3b |=|2(x -a )+3(y -b )|≤|2(x -a )|+|3(y -b )|=2|x -a |+3|y -b |<2×ε4+3×ε6=ε.(1)(2)设a ∈R ,函数f (x )=ax 2+x -a (-1≤x ≤1).若|a |≤1,求|f (x )|的最大值. 利用绝对值三角不等式或函数思想方法可求解. (1)法一:||x -3|-|x +1||≤|(x -3)-(x +1)|=4, ∴-4≤|x -3|-|x +1|≤4. ∴y max =4,y min =-4. 法二:把函数看作分段函数.y =|x -3|-|x +1|=⎩⎪⎨⎪⎧4,x <-1,2-2x ,-1≤x ≤3,-4,x >3.∴-4≤y ≤4. ∴y max =4,y min =-4. (2)∵|x |≤1,|a |≤1,∴|f (x )|=|a (x 2-1)+x |≤|a (x 2-1)|+|x | =|a ||x 2-1|+|x |≤|x 2-1|+|x | =1-|x 2|+|x |=-|x |2+|x |+1 =-⎝⎛⎭⎪⎫|x |-122+54≤54.∴|x |=12时,|f (x )|取得最大值54.(1)利用绝对值不等式求函数最值,要注意利用绝对值的性质进行转化,构造绝对值不等式的形式.(2)求最值时要注意等号成立的条件,它也是解题的关键.3.(江西高考)x ,y ∈R ,若|x |+|y |+|x -1|+|y -1|≤2,则x +y 的取值范围为________.解析:|x |+|x -1|≥|x -(x -1)|=1,|y |+|y -1|≥|y -(y -1)|=1, 所以|x |+|y |+|x -1|+|y -1|≥2,当且仅当x ∈,y ∈时,|x |+|y |+|x -1|+|y -1|取得最小值2, 而已知|x |+|y |+|x -1|+|y -1|≤2, 所以|x |+|y |+|x -1|+|y -1|=2, 此时x ∈,y ∈,所以x +y ∈. 答案:4.求函数f (x )=|x -1|+|x +1|的最小值.解:∵|x -1|+|x +1|=|1-x |+|x +1|≥|1-x +x +1|=2,当且仅当(1-x )(1+x )≥0,即-1≤x ≤1时取等号.∴当-1≤x ≤1时,函数f (x )=|x -1|+|x +1|取得最小值2. 5.若对任意实数,不等式|x +1|-|x -2|>a 恒成立,求a 的取值范围. 解:由题意知a <|x +1|-|x -2|对任意实数恒成立,∴a<min.∵||x+1|-|x-2||≤|(x+1)-(x-2)|=3,∴-3≤|x+1|-|x-2|≤3.∴min=-3.∴a<-3.即a的取值范围为(-∞,-3).课时跟踪检测(四)1.对于|a|-|b|≤|a+b|≤|a|+|b|,下列结论正确的是( )A.当a,b异号时,左边等号成立B.当a,b同号时,右边等号成立C.当a+b=0时,两边等号均成立D.当a+b>0时,右边等号成立;当a+b<0时,左边等号成立解析:选B 当a,b异号且|a|>|b|时左边等号才成立,A不正确,显然B正确;当a +b=0时,右边等号不成立,C不正确,D显然不正确.2.不等式|a+b||a|+|b|<1成立的充要条件是( )A.a,b都不为零B.ab<0C.ab为非负数D.a,b中至少有一个不为零解析:选B 原不等式即为|a+b|<|a|+|b|⇔a2+b2+2ab<a2+b2+2|ab|⇔ab<0. 3.已知a,b,c∈R,且a>b>c,则有( )A.|a|>|b|>|c| B.|ab|>|bc|C.|a+b|>|b+c| D.|a-c|>|a-b|解析:选D ∵a,b,c∈R,且a>b>c,令a=2,b=1,c=-6.∴|a|=2,|b|=1,|c|=6,|b|<|a|<|c|,故排除A.又|ab|=2,|bc|=6,|ab|<|bc|,故排除B.又|a+b|=3,|b+c|=5,|a+b|<|b+c|,排除C.而|a-c|=|2-(-6)|=8,|a-b|=1,∴|a-c|>|a-b|.4.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是( )A.|a+b|+|a-b|>2B.|a+b|+|a-b|<2C.|a+b|+|a-b|=2D.不可能比较大小解析:选B 当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2.当(a +b )(a -b )<0时,|a +b |+|a -b |=|(a +b )-(a -b )|=2|b |<2. 5.不等式|x -1|-|x -2|<a 恒成立,则a 的取值范围为________. 解析:若使不等式|x -1|-|x -2|<a 恒成立,只需a >(|x -1|-|x -2|)max . 因为|x -1|-|x -2|≤|x -1-(x -2)|=1, 故a >1.故a 的取值范围为(1,+∞). 答案:(1,+∞)6.设a ,b ∈R ,|a -b |>2,则关于实数x 的不等式|x -a |+|x -b |>2的解集是________. 解析:∵|x -a |+|x -b |=|a -x |+|x -b |≥|(a -x )+(x -b )|=|a -b |>2, ∴|x -a |+|x -b |>2对x ∈R 恒成立,故解集为(-∞,+∞). 答案:(-∞,+∞) 7.下列四个不等式: ①log x 10+lg x ≥2(x >1); ②|a -b |<|a |+|b |;③⎪⎪⎪⎪⎪⎪b a +a b ≥2(ab ≠0); ④|x -1|+|x -2|≥1.其中恒成立的是______(把你认为正确的序号都填上). 解析:log x 10+lg x =1lg x +lg x ≥2,①正确;ab ≤0时,|a -b |=|a |+|b |,②不正确;∵ab ≠0时,b a 与a b同号,∴⎪⎪⎪⎪⎪⎪b a +a b =⎪⎪⎪⎪⎪⎪b a +⎪⎪⎪⎪⎪⎪a b ≥2,③正确; 由|x -1|+|x -2|的几何意义知|x -1|+|x -2|≥1恒成立,④正确. 综上可知①③④正确. 答案:①③④8.已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.证明:|x +5y |=|3(x +y )-2(x -y )|. 由绝对值不等式的性质,得|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )| =3|x +y |+2|x -y |≤3×16+2×14=1,即|x +5y |≤1.9.设f (x )=x 2-x +b ,|x -a |<1,求证:|f (x )-f (a )|<2(|a |+1). 证明:∵f (x )-f (a )=x 2-x -a 2+a =(x -a )(x +a -1), |f (x )-f (a )|=|(x -a )(x +a -1)|=|x-a||x+a-1|<|x+a-1|=|(x-a)+2a-1|≤|x-a|+|2a-1|≤|x-a|+2|a|+1<2|a|+2=2(|a|+1),∴|f(x)-f(a)|<2(|a|+1).10.设函数y=|x-4|+|x-3|.求:(1)y的最小值;(2)使y<a有解的a的取值范围;(3)使y≥a恒成立的a的最大值.解:(1)y=|x-4|+|x-3|=|x-4|+|3-x|≥|(x-4)+(3-x)|=1,∴y min=1.(2)由(1)知y≥1,要使y<a有解,∴a>1,即a的取值范围为(1,+∞).(3)要使y≥a恒成立,只要y的最小值1≥a即可,∴a max=1.。
高中数学(人教版选修4-5)配套课件第一讲 1.1.2 基本不等式

不等式和绝对值不等式 1.1 不 等 式
1.1.2 基本不等式
栏 目 链 接
1.会用基本不等式证明一些简单问题.
2.能够利用两项的平均值不等式求一些特定函数
的最值,从而学会解决简单的应用问题.
栏 目 链 接
栏 目 链 接
1.定理 1. 如果 a, b∈R, 那么 a2+b2≥2ab(当且仅当 a=b 时取“=”). 思考 1
2 2
栏 目 链 接
3 2 也即 x= ,y= 时, 2 2 x 答案: 1+y2取得最大值 3 2 4 3 2 . 4
题型二
利用基本不等式证明不等式
2 2
1 例2 已知 a,b∈(0,+∞)且 a+b=1,求证:(1)a +b ≥ ; 2 1 1 (2) 2+ 2≥8.
a
b
≥ ab, 2 证明:由 a+b=1, a,b ,+
栏 目 链 接
∴x 1+y2= x21+y2=
变 式 训 练
2 2 1 + y y 1 x2+ x2+ + 2 2 2 3 2 2 = 2 = , 2 2 4
1+y2 3 2 当且仅当 x = ,即 x= ,y= 时, 2 2 2
2
3 2 x 1+y 取得最大值 . 4
2
栏 目 链 接
方法二 则x
6x 利用定理 1 有:x2+32≥________,其中等号成立的
栏 目 链 接
3 条件是:x=________.
2.定理 2. 如果 a , b 是正数,那么 “=”). 思考 2 如果 x,y 是正数,那么
a+b
2
≥ ab ( 当且仅当 a = b 时取
x2+ y2
2
≥ ________ xy(当且
高中数学人教a版高二选修4-5_第一讲_不等式和绝对值不等式_学业分层测评2 有答案

高中数学人教a 版高二选修4-5_第一讲_不等式和绝对值不等式_学业分层测评2 有答案(建议用时:45分钟)[学业达标]一、选择题1.函数f (x )=x x +1的最大值为( ) A.25 B.12 C.22D .1 【解析】 显然x ≥0.当x =0时,f (x )=0;当x >0时,x +1≥2x ,∴f (x )≤12, 当且仅当x =1时,等号成立,∴f (x )max =12. 【答案】 B2.设0<a <b ,则下列不等式中正确的是( )A .a <b <ab <a +b 2B .a <ab <a +b 2<b C .a <ab <b <a +b 2D.ab <a <a +b 2<b 【解析】 取特殊值法.取a =2,b =8,则ab =4,a +b 2=5,所以a <ab <a +b 2<b .故选B.【答案】 B3.已知x ≥52,则f (x )=x 2-4x +52x -4有( )A.最大值为54B.最小值为54C.最大值为1 D.最小值为1【解析】∵x≥52,∴x-2≥12,∴f(x)=(x-2)2+12(x-2)=12(x-2)+12(x-2)≥2x-22·12(x-2)=1,当且仅当x-22=12(x-2),即x=3时,等号成立,∴f(x)min=1.【答案】 D4.已知x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则(a+b)2 cd的最小值是()A.0 B.1C.2 D.4【解析】由题意知a+b=x+y,cd=xy,∴(a+b)2=(x+y)2≥4xy=4cd,∴(a+b)2cd≥4,当且仅当x=y时,取等号.【答案】 D5.已知a,b是不相等的正数,x=a+b2,y=a+b,则x,y的关系是()A.x>y B.y>x C.x>2y D.y>2x【解析】因为a,b是不相等的正数,所以x2=a+b2+ab<a+b2+a+b2=a+b=y2,即x2<y2,故x<y.【答案】 B二、填空题6.若实数x,y满足x2+y2+xy=1,则x+y的最大值是________.【解析】 x 2+y 2+xy =(x +y )2-xy ≥(x +y )2-(x +y )24=34(x +y )2,∴(x +y )2≤43,∴|x +y |≤233,即x +y 的最大值为233. 【答案】 233 7.已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为________. 【解析】 因为x >0,y >0,所以x 3+y 4≥2x 3·y 4=xy 3,即xy 3≤1,解得xy ≤3,所以其最大值为3. 【答案】 38.已知a ,b ,m ,n 均为正数,且a +b =1,mn =2,则(am +bn )(bm +an )的最小值为________.【解析】 ∵a ,b ,m ,n ∈R +,且a +b =1,mn =2,∴(am +bn )(bm +an )=abm 2+a 2mn +b 2mn +abn 2=ab (m 2+n 2)+2(a 2+b 2)≥2ab ·mn +2(a 2+b 2)=4ab +2(a 2+b 2)=2(a 2+b 2+2ab )=2(a +b )2=2,当且仅当m =n =2时,取“=”,∴所求最小值为2.【答案】 2三、解答题9.已知a ,b ,x ,y ∈R +,x ,y 为变量,a ,b 为常数,且a +b =10,a x +b y=1,x +y 的最小值为18,求a ,b .【解】 ∵x +y =(x +y )⎝ ⎛⎭⎪⎫a x +b y=a +b +bx y +ay x≥a +b +2ab =(a +b )2, 当且仅当bx y =ay x时取等号. 又(x +y )min =(a +b )2=18,即a +b +2ab =18.① 又a +b =10, ②由①②可得⎩⎨⎧ a =2,b =8或⎩⎨⎧a =8,b =2.10.已知x 1,x 2,x 3为正实数,若x 1+x 2+x 3=1,求证:x 22x 1+x 23x 2+x 21x 3≥1. 【证明】 ∵x 22x 1+x 1+x 23x 2+x 2+x 21x 3+x 3≥2x 22+2x 23+2x 21=2(x 1+x 2+x 3)=2, ∴x 22x 1+x 23x 2+x 21x 3≥1. [能力提升]1.设x ,y ∈R +,且满足x +4y =40,则lg x +lg y 的最大值是( )A .40B .10C .4 D.2【解析】 因为x ,y ∈R +,∴4xy ≤x +4y 2, ∴xy ≤x +4y 4=10,∴xy ≤100. ∴lg x +lg y =lg xy ≤lg 100=2.【答案】 D2.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与仓库到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站( )A .5千米处B .4千米处C .3千米处 D.2千米处【解析】 由已知:y 1=20x, y 2=0.8x (x 为仓库到车站的距离).费用之和y =y 1+y 2=0.8x +20x≥20.8x ·20x=8. 当且仅当0.8x =20x , 即x =5时等号成立.【答案】 A3.y =3+x +x 2x +1(x >0)的最小值是________. 【解析】 ∵x >0,∴y =3+x +x 2x +1=3x +1+x +1-1≥23-1. 当且仅当x +1=3时取等号.【答案】 23-14.若对任意x >0,x x 2+3x +1≤a 恒成立,求实数a 的取值范围.【解】 由x >0,知原不等式等价于0<1a ≤x 2+3x +1x =x +1x+3恒成立. 又x >0时,x +1x ≥2x ·1x=2, ∴x +1x+3≥5,当且仅当x =1时,取等号. 因此⎝ ⎛⎭⎪⎫x +1x +3min =5, 从而0<1a ≤5,解得a ≥15. 故实数a 的取值范围为⎣⎢⎡⎭⎪⎫15,+∞.。
(word完整版)人教A版高中数学选修4-5_《不等式选讲》全册教案,推荐文档

选修4--5 不等式选讲一、课程目标解读选修系列4-5专题不等式选讲,内容包括:不等式的基本性质、含有绝对值的不等式、不等式的证明、几个著名的不等式、利用不等式求最大(小)值、数学归纳法与不等式。
通过本专题的教学,使学生理解在自然界中存在着大量的不等量关系和等量关系,不等关系和相等关系都是基本的数学关系,它们在数学研究和数学应用中起着重要的作用;使学生了解不等式及其证明的几何意义与背景,以加深对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析问题解决问题的能力。
二、教材内容分析作为一个选修专题,虽然学生已经学习了高中必修课程的5个模块和三个选修模块,教材内容仍以初中知识为起点,在内容的呈现上保持了相对的完整性.整个专题内容分为四讲,结构如下图所示:第一讲是“不等式和绝对值不等式”,为了保持专题内容的完整性,教材回顾了已学过的不等式6个基本性质,从“数与运算”的思想出发,强调了比较大小的基本方法。
回顾了二元基本不等式,突出几何背景和实际应用,同时推广到n个正数的情形,但教学中只要求理解掌握并会应用二个和三个正数的均值不等式。
对于绝对值不等式,借助几何意义,从“运算”角度,探究归纳了绝对值三角不等式,并用代数方法给出证明。
通过讨论两种特殊类型不等式的解法,学习解含有绝对值不等式的一般思想和方法,而不是系统研究。
第二讲是“证明不等式的基本方法”,教材通过一些简单问题,回顾介绍了证明不等式的比较法、综合法、分析法,反证法、放缩法。
其中,用反证法和放缩法证明不等式是新的课程标准才引入到中学数学教学中的内容。
这些方法大多在选修2-2“推理与证明”已经学过,此处再现也是为了专题的完整性,对于新增的放缩法,应通过实际实际例子,使学生明确不等式放缩的几个简单途径和方法,比如舍掉或加进一些项,在分式中放大或缩小分子或分母,应用基本不等式进行放缩等(见分节教学设计)。
本讲内容也是本专题的一个基础内容。
第三讲是“柯西不等式和排序不等式”。
2017-2018学年高中数学人教A版选修4-5:第一讲 一 2.基本不等式

由题意,生产x万件化妆品正好销完, 由年利润=年销售收入-年生产成本-促销费, -t2+98t+35 得年利润y= (t≥0). 2t+1
t+1 -t2+98t+35 32 (2)y= =50- 2 + t+1 2t+1
≤50-2
t+1 32 × =50-2 2 t+1
a2 b2 c2 ∴( b +b)+( c +c)+( a +a)≥2(a+b+c). a2 b2 c2 a2 b2 c2 即 b + c + a ≥a+b+c.当且仅当 b =b, c =c, a =a, 即a=b=c时取等号.
利用基本不等式求最值
2x [例2] (1)求当x>0时,f(x)= 2 的值域; x +1 3 (2)设0<x< ,求函数y=4x(3-2x)的最大值; 2 1 9 (3)已知x>0,y>0,且x+y =1,求x+y的最小值. [思路点拨] 根据题设条件,合理变形,创造能用基本 不等式的条件,求最值.
理解教材 新知 考点一
一 第 一 讲 不 等 式 2.基 本不等 式
把握热点 考向
考点二 考点三
应用创新 演练
一
不等式
2.基本不等式
1.基本不等式的理解 a+b 重要不等式a +b ≥2ab和基本不等式 ≥ ab ,成立的条件 2
2 2
是不同的.前者成立的条件是
a与b都为实数,并且a与b都为实数
y 9x 1 9 当且仅当x= y ,又x+ y=1, 即x=4,y=12时,上式取等号. 故当x=4,y=12时, 有(x+y)min=16.
在应用基本不等式求最值时, 分以下三步进行: (1)首先看式子能否出现和 (或积)的定值,若不具备,需 对式子变形,凑出需要的定值; (2)其次,看所用的两项是否同正,若不满足,通过分类 解决,同负时,可提取 (-1)变为同正; (3)利用已知条件对取等号的情况进行验证.若满足,则 可取最值,若不满足,则可通过函数单调性或导数解决.
1新人教A版高中数学(选修4-5)《不等式》ppt课件]
![1新人教A版高中数学(选修4-5)《不等式》ppt课件]](https://img.taocdn.com/s3/m/a9281a5677232f60ddcca14c.png)
由a 0及性质4 , 得
a d
a c
0.
由a b 0,
1 c
0及性质4 , 得
a d b c
a d b c .
a c
b c
0.
由性质2 , 得
0.
根据性质6, 有
从上述基本事实可知要比 , 较两个实数的大小 可以转 , 化为比较它们的差与的大 0 小.这是研究不等关系的一 个出发点 .
例1
比较 x 3 x 7 和 x 4 x 6
的大小 .
分析 通过考察它们的差与 的大小关系 0 , 得出这两个多项式的大 小关系.
解
因为 x 3 x 7 x 4 x 6
:
这个基本事实可以表示 ab ab 0; a b ab 0; a b a b 0.
上面的符号 相推出 .
为
" " 表示 " 等价于 " , 即可以互
0是正数 与负数 的 分界 点 , 它为 实数 比 较大小 提 供了 " 标杆".
思考
从上述基本事实出发 比较
,
你认为可以用什么方法 两个实数的大小 ?
2 2
x 10 x 21 x 10 x 24 3 0
所以 x 3 x 7 x 4 x 6 .
探究
我们知道 , 等式有 " 等式两边同 " "等
加 或减 一个 数 , 等式仍然成立 式两边 同乘
或除于 一个数
6 如果 a b 0, 那么n
人教版高中数学选修4-5课件:1.1不等式.1
【解析】(1)因为a>b>0,所以a>b两边同乘以1
ab
得 a
1
>b得1
> ,
,1故正1 确.
(2)因ab为c-aab>0,c-bb>0a ,且c-a<c-b
所以
>0,
又a>bc 1>a0>,所c 1以b
,正确.
a>b ca cb
(3)由 a >,所b 以 >a0,b
cd
cd
即即aaddcd>bcb>c0且,c所d以>0ac或dd>a0bd,c><0b,或c且accddd<<0b.c0<, 0,
超级记忆法-记忆 规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影 响,更容易储存记忆信息,由短时记忆转变为长时记忆。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
TIP3:另外,还有研究表明,记忆在我们的睡眠过程中也并未停止,我们的大 脑 会归纳、整理、编码、储存我们刚接收的信息。所以,睡前的这段时间可是 非常 宝贵的,不要全部用来玩手机哦~
3.不等式的单向性和双向性 性质(1)和(3)是双向的,其余的在一般情况下是不可逆 的.
4.注意不等式成立的前提条件 不可强化或弱化成立的条件.要克服“想当然”“显然 成立”的思维定式.如传递性是有条件的;可乘性中c的 正负,乘方、开方性质中的“正数”及“n∈N,且n≥2” 都需要注意.
类型一 作差法比较大小 【典例】设m≠n,x=m4-m3n,y=n3m-n4,比较x与y的大小. 【解题探究】比较两个多项式的大小常用的方法是什 么? 提示:常用作差比较法.
2017-2018学年高中数学第一讲不等式和绝对值不等式第1节第2课时基本不等式创新应用新人教A选修4-5
[核心必知]
1.定理 1
如果 a,b∈R,那么 a2+b2 ≥ 当 a=b 时,等号成立.
2ab,当且仅
2.定理 2(基本不等式)
如果 a,b>0,那么a+2 b ≥ ab,当且仅当 a=b 时,
等号成立.即:两个
正数
的算术平
均 不小于(即大于或等于)
它们的几何平均.
3.算术平均与几何平均
∴当 x=35 时,f(x)有最小值,此时 y2≈10 069.7<10 989.
∴该厂应接受此优惠条件.
本课时经常考查基本不等式在求函数最值中的
应用,其中,建立函数模型,利用基本不等式求解最
值问题是高考的热点.
[考题印证]
(陕西高考)小王从甲地到乙地往返的时速分别
为 a 和 b(a<b),其全程的平均时速为 v,则( )
a+b
如果 a,b 都是正数,我们就称 2
为 a,b
的算术平均, ab 为 a,b 的几何平均.
4.利用基本不等式求最值
对两个正实数 x,y,(1)如果它们的和 S 是定值,则 当且仅当 x=y 时,它们的积 P 取得最 大 值;
(2)如果它们的积 P 是定值,则当且仅当 x=y 时,
它们的和 S 取得最 小 值.
结构和条件,然后合理地选择基本不等式或其变 形形式进行证明.
(2)本题证明过程中多次用到基本不等式,然后利 用同向不等式的可加性或可乘性得出所证的不等式, 要注意不等式性质的使用条件,对“当且仅当……时 取等号”这句话要搞清楚.
1.设 a,b,c∈R+,求证: a2+b2+ b2+c2+ c2+a2≥ 2(a+b+c).
则 f(x1)-f(x2)=x1+1x010-x2+1x020 =(x2-x1)x(1x1200-x1x2). ∵x2>x1≥35,∴x2-x1>0,x1x2>0,100-x1x2<0,
人教数学选修4-5全册精品课件:第一讲一2.基本不等式第一课时
即:a4+b4+c4≥a2b2+a2c2+b2c2.
(2)∵当 a>0,b>0 时 a+b≥2 ab, bc ac ∴ + ≥2 a b bc ac · =2c. a b bc ab · =2b. a c
bc ab 同理: + ≥2 a c ac ab + ≥2 b c
ac ab · =2a. b c
2.基本不等式
第一课时
学习目标
第 一 课 时
课前自主学案
课堂互动讲练
知能优化训练
学习目标 1.理解并掌握基本不等式的结构和成立的条
件,及它的几种变形形式和公式的逆运用;
2.利用基本不等式比较大小,证明不等式.
课前自主学案
1.对于任意实数a都有a2≥ __0;当且仅当a= __时等号成立; 0
2.对于任意实数a,b都有a2+b2__2ab,当 ≥ 且仅当____时等号成立; a=b
2
2
3 3
【错因】 审题出错,a,b,c不全相等与a, b,c各不相等混淆.三式相乘的条件不充 分.
【自我校正】 ∵a,b,c 是不全相等 的三个正数, ∴a2b+b2a≥2 a3b3>0; a2c+c2a≥2 a3c3>0; b2c+c2b≥2 b3c3>0. 在以上三个不等式中至少有一个不取等 号. ∴将以上三个不等式相乘可得 (a2b+b2a)(a2c+c2a)(b2c+c2b)>8a3b3c3.
课堂互动讲练
考点突破 利用基本不等式比较大小
例1 若 0<a<1,0<b<1,且 a≠b,则 a+
b,2 ab,2ab,a +b 中最大的是( A.a2+b2 C.2ab B.2 ab D.a+b
2
人教课标版高中数学选修4-5第一讲 不等式和绝对值不等式二 绝对值不等式
② 解不等式│x│< 2 -2 0 ③ 解不等式│x│> 2 -2 0
含 绝 对 值 的 不 等 式 解 法
一、知识回顾
│x│=a(a>0)
其几何意义:数轴上表示实数x的点到原点的距离等于a.
① 解方程
│x│=a
-2 0
解集为{x│x=2, x=-2} 2 解集为{x│-2 < x < 2 } 2 解集为{x│x > 2或x<-2 } 2
(x+3)(x-1)>0
-3
1
-5<x<3
x<-3或x>1
-5
-3
1
3
-5< x< -3或1<x<3 ∴原不等式的解集是{x|-5< x< -3或1<x<3}
常规法解不等式的关键 1去绝对值 2交集与并集的取法
f(x) 分析二 A B C D y=6
解二 ∴ |x² +2x-9|=6 ∴x² +2x-9=6 或 ∴ x² +2x-15=0 (x+5)(x-3) =0
X-500≤5
-(X-500)≤5
由绝对值得意义,这个结果也可以表示成
│X-500│≤5
含 绝 对 值 的 不 等 式 解 法
一、知识回顾
│x│=a(a>0)
其几何意义:数轴上表示实数x的点到原点的距离等于a.
① 解方程
│x│=2 -2 0
解集为{x│x=2, x=-2} 2 解集为{x│-2 < x < 2 } 2 解集为{x│x > 2或x<-2 } 2
(2)不等式x² -5x + 4 < 0的解集是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一不等式1.不等式的基本性质1.理解实数大小与实数运算性质间的关系.2.理解不等式的性质,能用不等式的性质比较大小和证明简单的不等式.(重点、难点)教材整理1 两实数的大小比较阅读教材P2~P3“探究”以上部分,完成下列问题.a>b⇔a-b>0;a=b⇔a-b=0;a<b⇔a-b<0.已知数轴上两点A,B对应的实数分别为x,y,若x<y<0,则|x|与|y|对应的点P,Q 的位置关系是( )A.P在Q的左边B.P在Q的右边C.P,Q两点重合 D.不能确定【解析】∵x<y<0,∴|x|>|y|>0.故P在Q的右边.【答案】 B教材整理2 不等式的基本性质阅读教材P3~P5第一行,完成下列问题.已知a ,b ,c ∈R ,且ab >0,则下面推理中正确的是( )【导学号:32750000】A .a >b ⇒am 2>bm 2B.a c >b c⇒a >b C .a 3>b 3⇒1a <1bD.a 2>b 2⇒a >b【解析】 对于A ,若m =0,则不成立;对于B ,若c <0,则不成立;对于C ,a 3-b 3>0⇒(a -b )(a 2+ab +b 2)>0,∵a 2+ab +b 2=⎝ ⎛⎭⎪⎫a +b 22+34b 2>0恒成立, ∴a -b >0,∴a >b .又∵ab >0,∴1a <1b.∴C 成立;对于D ,a 2>b 2⇒(a -b )(a +b )>0,不能说a >b .【答案】 C预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:设A =x 3+3 【精彩点拨】 转化为考察“两者之差与0”的大小关系. 【自主解答】 A -B =x 3+3-3x 2-x =x 2(x -3)-(x -3)=(x -3)(x +1)(x -1). ∵x >3,∴(x -3)(x +1)(x -1)>0, ∴x 3+3>3x 2+x .故A >B .1.本题的思维过程:直接判断(无法做到)――→转化考查差的符号(难以确定)――→转化考查积的符号――→转化考查积中各因式的符号.其中变形是关键,定号是目的.2.在变形中,一般是变形变得越彻底越有利于下一步的判断.变形的常用技巧有:因式分解、配方、通分、分母有理化等.1.若例1中改为“A =y 2+1x 2+1,B =yx,其中x >y >0”,试比较A 与B 的大小. 【解】 因为A 2-B 2=y 2+1x 2+1-y 2x 2=x 2y 2+-y 2x 2+x 2x 2+=x 2-y 2x 2x 2+=x -y x +yx 2x 2+,且x >y >0,所以x -y >0,x +y >0,x 2>0,x 2+1>1, 所以x -y x +yx 2x 2+>0.所以A 2>B 2,又A >0,B >0,故有A >B .已知-2≤α<β≤2,求2,2的范围.【精彩点拨】 由-π2≤α<β≤π2可确定α2,β2的范围,进而确定α+β2,α-β2的范围.【自主解答】 ∵-π2≤α<β≤π2,∴-π4≤α2<π4,-π4<β2≤π4,∴-π2<α+β2<π2.又-π4<β2≤π4,∴-π4≤-β2<π4,∴-π2≤α-β2<π2.又∵α<β,∴α-β2<0,∴-π2≤α-β2<0,即α+β2∈⎝ ⎛⎭⎪⎫-π2,π2,α-β2∈⎣⎢⎡⎭⎪⎫-π2,0.1.本例中由α2,β2的范围求其差α-β2的范围,一定不能直接作差,而应转化为同向不等式后作和求解.2.求代数式的取值范围是不等式性质应用的一个重要方面,严格依据不等式的性质和运算法则进行运算,是解答此类问题的基础.2.已知-6<a <8,2<b <3,分别求a -b ,a b的取值范围.【导学号:32750001】【解】 ∵-6<a <8,2<b <3. ∴-3<-b <-2,∴-9<a -b <6, 则a -b 的取值范围是(-9,6). 又13<1b <12, (1)当0≤a <8时,0≤a b<4; (2)当-6<a <0时,-3<a b<0. 由(1)(2)得-3<a b<4. 因此a b的取值范围是(-3,4).已知c >a >b >0,求证:c -a >c -b.【精彩点拨】 构造分母关系→构造分子关系→证明不等式 【自主解答】 ∵a >b ,∴-a <-b . 又c >a >b >0,∴0<c -a <c -b ,∴1c -a >1c -b >0. 又∵a >b >0,∴a c -a >bc -b.1.在证明本例时,连续用到不等式的三个性质,一是不等式的乘法性质:a >b ,则-a <-b ;二是不等式的加法性质:c >a >b >0,又-a <-b ,则0<c -a <c -b ;三是倒数性质.最后再次用到不等式的乘法性质.2.进行简单的不等式的证明,一定要建立在记准、记熟不等式性质的基础之上,并仔细分析要证明不等式的结构,灵活运用性质,对不等式进行变换.3.已知a >b >0,c >d >0,求证:aca +c >bd b +d.【导学号:32750002】【证明】 ∵a >b >0,c >d >0, ∴1b >1a>0,① 1d >1c>0,②①+②得1b +1d >1a +1c>0,即b +d bd >a +c ac >0,∴ac a +c >bdb +d.探究1 甲同学认为a >b ⇔a <b ,乙同学认为a >b >0⇔a <b ,丙同学认为a >b ,ab >0⇔1a <1b,请你思考一下,他们谁说的正确?【提示】 他们说的都不正确.探究2 不等式两边同乘以(或除以)同一个数时,要注意什么?【提示】 要先判断这个数是否为零,决定是否可以乘以(或除以)这个数,再判断是正还是负,决定不等号的方向是否改变,特别注意不等式两边同乘以(或除以)同一个负数时,不等号方向改变.判断下列命题是否正确,并说明理由. (1)若a >b ,则ac 2>bc 2;(2)若a c 2>b c2,则a >b ; (3)若a >b ,ab ≠0,则1a <1b;(4)若a >b ,c >d ,则ac >bd .【精彩点拨】 主要是根据不等式的性质判定,其实质就是看是否满足性质所需要的条件.【自主解答】 (1)错误.当c =0时不成立. (2)正确.∵c 2≠0且c 2>0,在a c 2>b c2两边同乘以c 2, ∴a >b .(3)错误.a >b ⇒1a <1b成立的条件是ab >0.(4)错误.a >b ,c >d ⇒ac >bd ,当a ,b ,c ,d 为正数时成立.1.在利用不等式的性质判断命题真假时,关键是依据题设条件,正确恰当地选取使用不等式的性质.有时往往举反例,否定命题的结论.但要注意取值一定要遵循两个原则:一是满足题设条件;二是取值要简单,便于验证计算.2.运用不等式的性质判断时,要注意不等式成立的条件,不要弱化条件,尤其是不能凭空想象随意捏造性质.4.判断下列命题的真假. (1)若a <b <0,则1a >1b;(2)若|a |>b ,则a 2>b 2; (3)若a >b >c ,则a |c |>b |c |.【解】 (1)∵a <b <0,∴ab >0,∴1ab>0,∴a ·1ab <b ·1ab ,∴1b <1a,∴(1)是真命题.(2)∵|a |>b ,取a =1,b =-3,但a 2<b 2,∴(2)是假命题. (3)取a >b ,c =0,有a |c |=b |c |=0,∴(3)是假命题.1.设a ∈R ,则下面式子正确的是( ) A .3a >2ª B .a 2<2a C.1a<aD.3-2a >1-2a【答案】 D2.已知m ,n ∈R ,则1m >1n成立的一个充要条件是( )A .m >0>nB .n >m >0C .m <n <0D.mn (m -n )<0【解析】 ∵1m >1n ⇔1m -1n >0⇔n -mmn>0⇔mn (n -m )>0⇔mn (m -n )<0.【答案】 D3.已知a ,b ,c 均为实数,下面四个命题中正确命题的个数是( ) ①a <b <0⇒a 2<b 2;②ab<c ⇒a <bc ; ③ac 2>bc 2⇒a >b ;④a <b <0⇒b a<1.A .0B .1C .2D .3【解析】 ①不正确.∵a <b <0,∴-a >-b >0, ∴(-a )2>(-b )2,即a 2>b 2.②不正确.∵a b<c ,若b <0,则a >bc . ③正确.∵ac 2>bc 2,∴c ≠0,∴a >b .④正确.∵a <b <0,∴-a >-b >0,∴1>b a>0. 【答案】 C4.若1<a <3,-4<b <2,那么a -|b |的取值范围是________.【导学号:32750003】【解析】 ∵-4<b <2, ∴0≤|b |<4, ∴-4<-|b |≤0. 又1<a <3, ∴-3<a -|b |<3. 【答案】 (-3,3)5.若a ,b ,c 满足b +c =3a 2-4a +6,b -c =a 2-4a +4,比较a ,b ,c 的大小. 【解】 b -c =a 2-4a +4=(a -2)2≥0,∴b ≥c .由题意可得方程组⎩⎪⎨⎪⎧b +c =3a 2-4a +6,b -c =a 2-4a +4,解得b =2a 2-4a +5,c =a 2+1. ∴c -a =a 2+1-a =⎝ ⎛⎭⎪⎫a -122+34>0, ∴c >a ,∴b ≥c >a .我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)。