初中数学总复习知识点_2
2022年青岛版七年级数学上册知识点总汇2

2022年青岛版七年级数学上册知识点总汇21、大于0的数叫做正数(positive number)。
2、在正数前面加上负号“-”的数叫做负数(negative number)。
3、整数和分数泛称为有理数(rational number)。
4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
5、在直线就任挑一个点则表示数0,这个点叫作原点(origin)。
6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
7、由绝对值的定义所述:一个正数的绝对值就是它本身;一个负数的绝对值就是它的相反数;0的绝对值就是0。
8、正数大于0,0大于负数,正数大于负数。
9、两个负数,绝对值小的反而大。
10、有理数加法法则(1)同号两数相乘,挑相同的符号,并把绝对值相乘。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相乘,仍得这个数。
11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12、有理数的乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,和维持不变。
13、有理数减法法则乘以一个数,等同于加之这个数的相反数。
14、有理数乘法法则两数相加,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
15、有理数中仍然存有:乘积就是1的两个数互为倒数。
16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17、三个数相加,先把前两个数相加,或者先把后两个数相加,内积成正比。
18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19、有理数乘法法则除以一个不等于0的数,等于乘这个数的倒数。
20、两数相乘,同号得正,异号得负,并把绝对值相乘。
0除以任何一个不等同于0的数,都得0。
21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。
最新初中数学—分式的知识点总复习含答案(2)

一、选择题1.分式(a ,b 均为正数),字母的值都扩大为原来的2倍,则分式的值( )A .扩大为原来2倍B .缩小为原来倍C .不变D .缩小为原来的 2.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .B .C .D .3.已知(x ﹣y )(2x ﹣y )=0(xy ≠0),则+的值是( )A .2B .﹣2C .﹣2或﹣2D .2或24.下列分式变形中,正确的是( ). A . b a b a b a +=++22 B .1-=++-y x y xC . ()()m n n m m n -=--23D .bm am b a = 5.若分式12+-x x 的值为0,则x 的值为( ) A .2或-1 B .0 C .-1 D . 26.下列运算正确的是( )A .(2a 2)3=6a 6B .-a 2b 2•3ab 3=-3a 2b 5C .D .7.若分式的值为零,则x 的值为( )A .0B .﹣2C .2D .﹣2或28.分式 (a 、b 均为正数),字母的值都扩大为原来的2倍,则分式的值( )A .扩大为原来的2倍B .缩小为原来的C .不变D .缩小为原来的9.若分式23x x --有意义,则x 满足的条件是( ) A .x ≠0 B .x ≠2 C .x ≠3 D .x ≥310.若分式的值为0,则x 的值为( )A .0B .2C .﹣2D .2或﹣211.若分式211x x -+的值为零,则x 的值为( )A .0B .1C .1-D .±112.计算23x 11x +--的结果是A .1x 1-B .11x - C .5x 1- D .51x -13.下列各式变形正确的是( )A .B .C .D .14.如果为整数,那么使分式22221m m m +++的值为整数的的值有( )A .2个B .3个C .4个D .5个15.下列代数式y2、x 、13π、11a -中,是分式的是A .y 2B .11a - C .x D .13π16.H7N9禽流感病毒的直径大约是0.000 000 076米,用科学记数法可表示为( )米.A .7.6×10﹣11B .7.6×10﹣8C .7.6×10﹣9D .7.6×10﹣517.若式子212x x m -+不论x 取任何数总有意义,则m 的取值范围是( )A .m≥1B .m>1C .m≤1D .m<118.若分式的值为0,则x 的值是( )A .3B -3C .4D .-419.化简﹣的结果是( )m+3 B .m-3 C .D . 20.已知115ab a b =+,117bc b c =+,116ca c a =+,则abc ab bc ca ++的值是( ) A .121 B .122 C .123 D .124 21.(2015秋•郴州校级期中)下列计算正确的是( ) A .B .•C .x÷y•D .22.下列分式中是最简分式的是( ) A . B . C . D .23.在式子x y 3,πa ,13+x ,31+x ,a a 2中,分式有 A .1个 B .2个 C .3个 D .4个24.下列变形正确的是( )A .x y y x x y y x--=++ B .222()x y x y y x x y +-=-- C .2a a a ab b+= D .0.250.25a b a b a b a b ++=++ 25.12⎛⎫- ⎪⎝⎭-2的正确结果是( ) A .14 B .14- C .4 D .-4【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:当a 和b 都扩大2倍时,原式=,即分式的值缩小为原来的. 考点:分式的值2.A解析:A【解析】试题分析:因为轮船在静水中的最大航速为30千米/时,江水的流速为x 千米/时,所以轮船在顺流航行中的航速为(30+x )千米/时,轮船在逆流航行的航速为(30-x )千米/时,根据以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,可得:,故选A .考点:列分式方程. 3.D解析:D【解析】试题分析:根据题意可得:x-y=0或2x-y=0,则x=y 或2x=y ,当x=y 时,原式=1+1=2;当2x=y 时,原式=21+2=221. 考点:(1)、分式的计算;(2)、分类讨论思想4.C解析:C【解析】试题分析:分式的约分首先将分子和分母进行因式分解,然后约去公共的因式.A 、B 无法进行约分,C 正确;D 需要保证m 不能为零.考点:分式的约分5.D解析:D【解析】试题分析:当分式的分子为零,分母不为零时,则分式的值为零,根据题意可得:x-2=0,解得:x=2.考点:分式的意义6.D解析:D【解析】试题解析:A 、原式=8a 6,错误;B 、原式=-3a 3b 5,错误;C 、原式=,错误; D 、原式=,正确;故选D . 考点:1.分式的乘除法;2.幂的乘方与积的乘方;.3.单项式乘单项式;4.分式的加减法. 7.B解析:B【解析】试题分析:要使分式的值为0,必须分式分子的值为0并且分母的值不为0. 解:由分子x 2﹣4=0解得:x=±2. 当x=2时分母x 2﹣2x=4﹣4=0,分式没有意义; 当x=﹣2时分母x 2﹣2x=4+4=8≠0. 所以x=﹣2.故选B .8.B解析:B 【解析】 ,分式的值缩小为原来的 .故选B .9.C解析:C【解析】试题分析:根据分式有意义的条件,分母不等于0,可得x-3≠0,解得x≠3. 故选:C.10.B解析:B【解析】根据分式的值为0,分子为0,分母不为0可得 且x+2≠0,解得x=2,故选B.11.B解析:B【解析】由题意得:101x x -=⇒= ,故选B.12.B解析:B【解析】试题分析:先通分,再根据同分母的分式相加减的法则进行计算伯出判断:2323231x 11x 1x 1x 1x 1x-++=-+==------.故选B . 13.D解析:D【解析】试题分析:因为x y x yx y x y-+-=--+,所以A错误;因为2a bc d-+不能再化简,所以B错误;因为0.20.032030.40.05405a b a bc d c d--=++,所以C错误;因为,所以D正确;故选:D.考点:分式的性质. 14.C解析:C【解析】原式=()()()2111mm m+++=21m+,当m=-3时,原式=-1;当m=-2时,原式=-2;当m=0时,原式=2;当m=1时,原式=1.m的值有4个.故选C.15.B解析:B【解析】试题解析:由于11a-中,分母含有字母,故选B.16.B解析:B【解析】0.000 000 076用科学记数法可表示为7.6×10﹣8.故选B.17.B解析:B【解析】试题解析:分式21 2x x m-+不论x取何值总有意义,则其分母必不等于0,即把分母整理成(a+b)2+k(k>0)的形式为(x2-2x+1)+m-1=(x-1)2+(m-1),因为论x取何值(x2-2x+1)+m-1=(x-1)2+(m-1)都不等于0,所以m-1>0,即m>1.故选B.18.A解析:A【解析】试题分析:当x-3=0时,分式的值为0,所以x=3,故选:A.考点:分式的值为0的条件.19.A解析:A【解析】试题分析:因为2299(3)(3)33333m m m mmm m m m-+--===+----,所以选:A.考点:分式的减法.20.D解析:D【解析】试题解析:由已知得:1115a b+=,1117b c+=,1116c a+=,∴11124 a b c++=,∴原式=11 11124a b c=++,故选D.考点:分式的运算.21.B解析:B【解析】试题分析:原式各项计算得到结果,即可做出判断.解:A、原式=•=,错误;B、原式=,正确;C、原式=,错误;D、原式==,错误,故选B.考点:分式的乘除法.22.A解析:A【解析】选项A ,的分子、分母都不能再分解,且不能约分,是最简分式;选项B,原式=2x;选项C,原式=11x+;选项D,原式=-1.故选A.23.C解析:C【解析】试题分析:分式是指分母含有字母的代数式.考点:分式的定义24.D解析:D【解析】A选项错误,x yx y-+=-y xy x-+;B选项错误,x yy x+-=x y y xy x y x+---()()()()=()222y xx y--;C选项错误,2a aab+=1a aab+()=1ab+;D选项正确.故选D.点睛:分式的性质:分式的分子分母乘以或者除以同一个不为零的整式,分式的值不变. 25.C解析:C【解析】试题分析:根据负整指数幂的性质1(0)ppa aa-=≠计算,可得12⎛⎫-⎪⎝⎭2141()2==-.故选C。
最新初中数学实数知识点总复习含答案(2)

最新初中数学实数知识点总复习含答案(2)一、选择题1.下列说法正确的是( )A .任何数的平方根有两个B .只有正数才有平方根C .负数既没有平方根,也没有立方根D .一个非负数的平方根的平方就是它本身【答案】D【解析】A 、O 的平方根只有一个即0,故A 错误;B 、0也有平方根,故B 错误;C 、负数是有立方根的,比如-1的立方根为-1,故C 错误;D 、非负数的平方根的平方即为本身,故D 正确;故选D .2.在整数范围内,有被除数=除数⨯商+余数,即a bq r a b =+≥(且)00b r b ≠≤<,,若被除数a 和除数b 确定,则商q 和余数r 也唯一确定,如:11,2a b ==,则11251=⨯+此时51q r ==,.在实数范围中,也有 (a bq r a b =+≥且0b ≠,商q 为整数,余数r 满足:0)r b ≤<,若被除数是,除数是2,则q 与r 的和( )A .4B .6C .4D .4 【答案】A【解析】【分析】根据2=q 即可先求出q 的值,再将a 、q 、b 的值代入a =bq +r 中即可求出r 的值,从而作答.【详解】∵2=7=45,的整数部分是4, ∴商q =4,∴余数r =a ﹣bq =2×4=8,∴q +r =4+8=4.故选:A .【点睛】本题考查了整式的除法、估算无理数的大小,解答本题的关键理解q即2的整数部分.3的平方根是( )A.2 B C.±2 D.【答案】D【解析】【分析】,然后再根据平方根的定义求解即可.【详解】,2的平方根是,.故选D.【点睛】正确化简是解题的关键,本题比较容易出错.4.把-( )A B.C.D【答案】A【解析】【分析】由二次根式-a是负数,根据平方根的定义将a移到根号内是2a,再化简根号内的因式即可.【详解】∵1a-≥,且0a≠,∴a<0,∴-,∴-=故选:A.【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a 的取值范围是解题的关键.5.估计65的立方根大小在( )A .8与9之间B .3与4之间C .4与5之间D .5与6之间 【答案】C【解析】【分析】先确定65介于64、125这两个立方数之间,从而可以得到34655<<,即可求得答案. 【详解】 解:∵3464=,35125=∴6465125<< ∴34655<<.故选:C【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与65临界的两个立方数是解决问题的关键.6.如图,数轴上的点P 表示的数可能是( )A 5B .5C .-3.8D .10-【答案】B【解析】【分析】【详解】5 2.2≈,所以P 点表示的数是5-7.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;3a -=﹣3a ;④0.01的立方根是0.00001,其中正确的个数是( )A .1个B .2个C .3个D .4个 【答案】A【解析】【分析】利用平方根和立方根的定义解答即可.【详解】①﹣0.064的立方根是﹣0.4,故原说法错误;②﹣9没有平方根,故原说法错误;④0.000001的立方根是0.01,故原说法错误,其中正确的个数是1个,故选:A.【点睛】此题考查平方根和立方根的定义,熟记定义是解题的关键.8.下列各组数中互为相反数的是()A.5B.-和(-C.D.﹣5和1 5【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A、5,两数相等,故此选项错误;B、和-()互为相反数,故此选项正确;C、=-2,两数相等,故此选项错误;D、-5和15,不互为相反数,故此选项错误.故选B.【点睛】本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.9.下列说法正确的是()A.﹣81的平方根是±9 B.7C.127的立方根是±13D.(﹣1)2的立方根是﹣1【答案】B【解析】【分析】由平方根、算术平方根及立方根的定义依次判定各项即可解答.【详解】选项A,﹣81没有平方根,选项A错误;选项B,7B正确;选项C,127的立方根是13,选项C错误;选项D,(﹣1)2的立方根是1,选项D错误.故选B.【点睛】本题考查了平方根、算术平方根及立方根的应用,熟知平方根、算术平方根及立方根的定义是解决问题的关键.10.如图,数轴上A,B两点表示的数分别为-1和3,点B关于点A的对称点为C,则点C所表示的数为()A.3B.3C.3D.3【答案】A【解析】【分析】由于A,B两点表示的数分别为-13OC的长度,根据C在原点的左侧,进而可求出C的坐标.【详解】∵对称的两点到对称中心的距离相等,∴CA=AB,33,∴3C点在原点左侧,∴C表示的数为:3故选A.【点睛】本题主要考查了求数轴上两点之间的距离,同时也利用对称点的性质及利用数形结合思想解决问题.11.25的算数平方根是A5B.±5 C.5D.5【答案】D【解析】【分析】一个正数的平方根有2个,且这两个互为相反数,而算数平方根只有一个且必须是正数,特别地,我们规定0的算术平方根是0 负数没有算术平方根,但i的平方是-1,i是一个虚数,是复数的基本单位.【详解】=,255∴25的算术平方根是:5.故答案为:5.【点睛】本题考查了算术平方根,熟练掌握该知识点是本题解题的关键.12.如图,数轴上表示实数3的点可能是( )A .点PB .点QC .点RD .点S【答案】A【解析】【分析】 33的点可能是哪个.【详解】∵132, 3的点可能是点P .故选A .【点睛】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.13.若一个正数的平方根是2a ﹣1和﹣a+2,则这个正数是( )A .1B .3C .4D .9【答案】D【解析】∵一正数的两个平方根分别是2a −1与−a +2,∴(2a −1)+(−a +2)=0,解得a =−1.∴−a +2=1+2=3,∴这个正数为32=9.故选:D.14.已知:[]x 表示不超过x 的最大整数.例:[]3.93=,[]1.82-=-.记1()44k k f k +⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦(k 是正整数).例:3133144()f ⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦.则下列结论正确的个数是( )(1)()10f =;(2)()()4f k f k +=;(3)()()1f k f k +≥;(4)()0f k =或1.A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 根据题中所给的定义,依次作出判断即可.【详解】 解:111(1)00044f +⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,正确; 41411(4)11()444444k k k k k k f k f k +++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-=+-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,正确; 当k=3时,414(31)11044f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,而(3)1f =,错误; 当k=3+4n (n 为自然数)时,f (k )=1,当k 为其它的正整数时,f (k )=0,正确; 正确的有3个,故选:C .【点睛】本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.15.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣,将线段PQ 向右平移a 个单位长度,其扫过的面积为20,那么a+b+c 的值为( )A .12B .15C .17D .20【答案】C【解析】【分析】由非负数的性质得到a =c ,b =7,P (a ,7),故有PQ ∥y 轴,PQ =7-3=4,由于其扫过的图形是矩形可求得a ,代入即可求得结论.【详解】∵且|a -c =0,∴a =c ,b =7,∴P (a ,7),PQ ∥y 轴,∴PQ =7-3=4,∴将线段PQ 向右平移a 个单位长度,其扫过的图形是边长为a 和4的矩形,∴4a =20,∴a=5,∴c =5,∴a +b +c =5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ ∥y 轴,进而求得PQ 是解题的关键.16.若225a =,3b =,且a >b ,则a b +=( )A .±8或±2B .±8C .±2D .8或2【答案】D【解析】【分析】结合已知条件,根据平方根、绝对值的含义,求出a ,b 的值,又因为a >b ,可以分为两种情况:①a=5,b=3;②a=5,b=-3,分别将a 、b 的值代入代数式求出两种情况下的值即可.【详解】∵225a =,|b|=3,∴a=±5,b=±3,∵a >b ,∴a=5,a=-5(舍去) ,当a=5,b=3时,a+b=8;当a=5,b=-3时,a+b=2,故选:D .【点睛】本题主要考查了代数式的求值,本题用到了分类讨论的思想,关键在于熟练掌握平方根、绝对值的含义.17.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x =的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C.【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.18.估计值应在()2A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】=解:2<<∵91216<<∴34<<∴估计值应在3到4之间.2故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.19.下列命题中,真命题的个数有()①带根号的数都是无理数;②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根;④有且只有一条直线与已知直线垂直A.0个B.1个C.2个D.3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;20.25的平方根是()A.±5 B.5 C.﹣5 D.±25【答案】A【解析】【分析】如果一个数 x的平方是a,则x是a的平方根,根据此定义求解即可.【详解】∵(±5)2=25,∴25的立方根是±5,故选A.【点睛】本题考查了求一个数的平方根,解题的关键是掌握一个正数的平方根有两个,这两个互为相反数.。
2020-2021初中数学命题与证明的知识点总复习有答案解析(2)

2020-2021初中数学命题与证明的知识点总复习有答案解析(2)一、选择题1.下列语句中不正确的是( )A .同一平面内,不相交的两条直线叫做平行线B .在同一平面内,过一点有且只有一条直线与己知直线垂直C .如果两个三角形,两条对应边及其夹角相等,那么这两个三角形全等D .角是轴对称图形,它的角平分线是对称轴【答案】D【解析】【分析】利用平行线的定义、垂直的定义、三角形的全等和轴对称图形分别判断后即可确定正确的选项.【详解】A 、在同一平面内不相交的两条直线叫做平行线,正确;B 、同一平面内,过一点有且只有一条直线与已知直线垂直,故正确;C 、如果两个三角形,两条对应边及其夹角相等,那么这两个三角形全等,正确;D 、角是轴对称图形,它的平分线所在直线是它的对称轴,故错误;故选:D .【点睛】此题考查命题与定理的知识,解题的关键是了解平行线的定义、垂直的定义、三角形的全等和轴对称图形,难度不大.2.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合; ③若ABC V 与'''A B C V 成轴对称,则ABC V 一定与'''A B C V 全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是( )A .2B .3C .4D .5【答案】A【解析】【分析】利用轴对称的性质、等腰三角形的性质、等边三角形的判定等知识分别判断后即可确定正确的选项.【详解】解:①等腰三角形底边的中点到两腰的距离相等;正确; ②等腰三角形的底边上的高、底边上的中线、顶角的平分线互相重合;不正确: ③若ABC V 与'''A B C V 成轴对称,则ABC V 一定与'''A B C V 全等;正确; ④有一个角是60度的等腰三角形是等边三角形;不正确;⑤等腰三角形的对称轴是顶角的平分线所在的直线,不正确.①③,个;正确命题为:2故选:A【点睛】本题考查了命题与定理的知识,解题的关键是了解轴对称的性质、等腰三角形的性质、等边三角形的判定等知识,属于基础知识,难度不大.3.下列语句正确的个数是()①两个五次单项式的和是五次多项式②两点之间,线段最短③两点之间的距离是连接两点的线段④延长射线AB,交直线CD于点P⑤若小明家在小丽家的南偏东35︒方向,则小丽家在小明家的北偏西35︒方向A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质对各项进行分析即可.【详解】①两个五次单项式的和可能为零、五次单项式或五次多项式,错误;②两点之间,线段最短,正确;③两点之间的距离是连接两点的线段的长度,错误;④延长射线AB,交直线CD于点P,正确;⑤若小明家在小丽家的南偏东35︒方向,则小丽家在小明家的北偏西35︒方向,正确;故语句正确的个数有3个故答案为:C.【点睛】本题考查语句是否正确的问题,掌握单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质是解题的关键.4.下列命题中真命题是()A2一定成立B.位似图形不可能全等C.正多边形都是轴对称图形D.圆锥的主视图一定是等边三角形【答案】C【解析】【分析】根据二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念逐一判断即可得.【详解】A )2,当a <0时不成立,假命题;B 、位似图形在位似比为1时全等,假命题;C 、正多边形都是轴对称图形,真命题;D 、圆锥的主视图不一定是等边三角形,假命题,故选C .【点睛】本题考查了真命题与假命题,涉及到二次根式的性质、位似图形、正多边形、视图等知识,熟练掌握相关知识是解题的关键.5.下列命题中正确的是( ).A .所有等腰三角形都相似B .两边成比例的两个等腰三角形相似C .有一个角相等的两个等腰三角形相似D .有一个角是100°的两个等腰三角形相似【答案】D【解析】【分析】根据相似三角形进行判断即可.【详解】解:A 、所有等腰三角形不一定都相似,原命题是假命题;B 、两边成比例的两个等腰三角形不一定相似,原命题是假命题;C 、有一个角相等的两个等腰三角形不一定相似,原命题是假命题;D 、有一个角是100°的两个等腰三角形相似,是真命题;故选:D .【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.6.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )A .③④②①B .③④①②C .①②③④D .④③①②【答案】B【解析】【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC 中,AB=AC ,求证:∠B <90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B<90°,原题正确顺序为:③④①②,故选B.【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.7.下列语句中真命题有( )①点到直线的垂线段叫做点到直线的距离;②内错角相等;③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,则这两条直线互相平行.A.5个B.4个C.3个D.2个【答案】D【解析】【分析】利用点到直线的距离的定义、平行线的性质、线段公理等知识分别判断后即可确定正确的选项.【详解】解:①点到直线的垂线段的长度叫做点到直线的距离,故错误,是假命题;②两直线平行,内错角相等,故错误,是假命题;③两点之间线段最短,正确,是真命题;④过直线外一点有且只有一条直线与已知直线平行,错误,是假命题;⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行,正确,是真命题.真命题有2个,故选D.【点睛】本题主要考查了命题与定理的知识,解决本题的关键是要熟练掌握点到直线的距离的定义、平行线的性质、线段公理等知识.8.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设()A.三角形的三个外角都是锐角B.三角形的三个外角中至少有两个锐角C.三角形的三个外角中没有锐角D.三角形的三个外角中至少有一个锐角【答案】B【解析】【分析】反证法的步骤中,第一步是假设结论不成立,反面成立.【详解】解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,故选B.【点睛】.在假设结论不成立时要注意考虑结考查了反证法,解此题关键要懂得反证法的意义及步骤论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.9.下列命题是真命题的是()A.若两个数的平方相等,则这两个数相等B.同位角相等C.同一平面内,垂直于同一直线的两条直线平行D.相等的角是对顶角【答案】C【解析】【分析】根据平方的意义,同位角的概念,平行线的判定,对顶角的概念逐一进行判断即可得.【详解】A.若两个数的平方相等,则这两个数不一定相等,如22=(-2)2,但2≠-2,故A选项错误;B.只有两直线平行的情况下,才有同位角相等,故B选项错误;C.同一平面内,垂直于同一直线的两条直线平行,真命题,符合题意;D.相等的角不一定是对顶角,如图,∠1=∠2,但这两个角不符合对顶角的概念,故D选项错误,故选C.【点睛】本题考查了命题真假的判定,涉及了乘方、同位角、对顶角、平行线的判定等知识,熟练掌握相关知识是解题的关键.10.下列命题是真命题的是()A.方程2--=的二次项系数为3,一次项系数为-23240x xB.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D .对角线相等的四边形是矩形【答案】A【解析】【分析】根据所学的公理以及定理,一元二次方程的定义,概率等知识,对各小题进行分析判断,然后再计算真命题的个数.【详解】A 、正确.B 、错误,对应边不一定成比例.C 、错误,不一定中奖.D 、错误,对角线相等的四边形不一定是矩形.故选:A .【点睛】此题考查命题与定理,熟练掌握基础知识是解题关键.11.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x 的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.12.下列说法正确的是( )A .两锐角分别相等的两个直角三角形全等B .两条直角边分别相等的两直角三角形全等C .一个命题是真命题,它的逆命题一定也是真命题D .经过旋转,对应线段平行且相等【答案】B【解析】【分析】A,B 利用斜边和一条直角边对应相等的两个直角三角形全等,判定直角三角形全等时,也可以运用其它的方法.C 利用命题与定理进行分析即可,D.利用旋转的性质即可解答;【详解】A 、两个锐角分别相等的两个直角三角形不一定全等,故A 选项错误;B 、根据SAS 可得,两条直角边分别相等的两个直角三角形全等,故B 选项正确;C 、一个命题是真命题,它的逆命题不一定是真命题.故C 选项错误;D 、经过旋转,对应线段相等,故D 选项错误;故选:B .【点睛】此题考查命题与定理,解题关键在于掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.13.下列命题的逆命题是真命题的是( )A .若a b =,则a b =B .ABC ∆中,若222AC BC AB +=,则ABC ∆是Rt ∆C .若0a =,则0ab =D .四边相等的四边形是菱形【答案】D【解析】【分析】先根据逆命题的定义分别写出各命题的逆命题,然后根据绝对值的意义和有理数的乘法、菱形的性质及勾股定理进行判断.【详解】解:A 、该命题的逆命题为:若|a|=|b|,则a=b ,此命题为假命题;B 、该命题的逆命题为:若△ABC 是Rt △,则AC 2+BC 2=AB 2,此命题为假命题;C 、该命题的逆命题为:若ab=0,则a=0,此命题为假命题;D 、该命题的逆命题为:菱形的四边相等,此命题为真命题;故选:D .【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.14.39.下列命题中,是假命题的是( )A .同旁内角互补B .对顶角相等C .直角的补角仍然是直角D .两点之间,线段最短【答案】A【解析】同旁内角不一定互补,同旁内角互补的条件是两直线平行,故选A.15.下列命题中,假命题是( )A .同旁内角互补,两直线平行B .如果a b =,则22a b =C .对应角相等的两个三角形全等D .两边及夹角对应相等的两个三角形全等【答案】C【解析】【分析】根据平行线的判定、等式的性质、三角形的全等的判定判断即可.【详解】A 、同旁内角互补,两直线平行,是真命题;B 、如果a b =,则22a b =,是真命题;C 、对应角相等的两个三角形不一定全等,原命题是假命题;D 、两边及夹角对应相等的两个三角形全等,是真命题;故选:C .【点睛】此题考查命题与定理,解题关键在于掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯那么⋯”形式. 2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.16.下列选项中,能说明命题“若22a b >,则a b >”是假命题的反例是( )A .1a =-,2b =B .2a =,1b =-C .1a =,2b =-D .2a =-,1b =【答案】D【解析】【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题,作答本题直接利用选项中数据代入求出答案.【详解】A. 当1a =-,2b =时,2a <2b ,a <b ,则此选项不是假命题的反例;B. 当2a =,1b =-时,2a >2b ,a >b ,则此选项不是假命题的反例;C. 当1a =,2b =-时,2a <2b ,a >b ,则此选项不是假命题的反例;D. 当2a =-,1b =时,2a >2b ,a <b ,则此选项是假命题的反例,故选:D .【点睛】本题考查真命题与假命题.要说明数学命题的错误,只需举出一个反例即可,反例就是符合已知条件但不满足结论的例子.17.下列命题是真命题的是( )A .一组对边平行且有一组对角相等的四边形是平行四边形B .对角线相等的四边形是矩形C .一组对边平行且另一组对边相等的四边形是平行四边形D .对角线互相垂直且相等的四边形是正方形【答案】A【解析】【分析】根据平行四边形的判定定理以及矩形、正方形的判定即可逐一判断.【详解】解:如下图,若四边形ABCD ,AD ∥BC ,∠A=∠C ,∵AD ∥BC ,∴∠A+∠B=180°,∵∠A=∠C ,∴∠C+∠B=180°,∴AB ∥CD ,∴四边形ABCD 是平行四边形,故A 正确;B 、对角线相等的四边形也可能为等腰梯形,故B 错误;C 、一组对边平行且另一组对边相等的四边形也可能为等腰梯形,故C 错误;D 、对角线互相垂直平分且相等的四边形是正方形,故D 错误.故选:A .【点睛】本题考查了平行四边形、矩形、正方形的判定定理,是基础知识要熟练掌握.18.下列命题的逆命题不正确...的是( ) A .相等的角是对顶角B .两直线平行,同旁内角互补C .矩形的对角线相等D .平行四边形的对角线互相平分【答案】C【解析】【分析】首先写出各个命题的逆命题,然后进行判断即可.【详解】A、逆命题是:对顶角相等.正确;B、逆命题是:同旁内角互补,两直线平行,正确;C、逆命题是:对角线相等的四边形是矩形,错误;D、逆命题是:对角线互相平分的四边形是平行四边形,正确.故选:C.【点睛】本题主要考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.19.交换下列命题的题设和结论,得到的新命题是假命题的是()A.两直线平行,同位角相等B.相等的角是对顶角C.所有的直角都是相等的D.若a=b,则a﹣3=b﹣3【答案】C【解析】【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A的题设和结论,得到的新命题是同位角相等,两直线平行是真命题;交换命题B的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C的题设和结论,得到的新命题是所有的相等的角都是直角是假命题;交换命题D的题设和结论,得到的新命题是若a-3=b-3,则a=b是真命题,故选C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.20.下列命题中,是真命题的是()A.将函数y=12x+1向右平移2个单位后所得函数的解析式为y=12xB.若一个数的平方根等于其本身,则这个数是0和1C.对函数y=2x,其函数值y随自变量x的增大而增大D.直线y=3x+1与直线y=﹣3x+2一定互相平行【答案】A【解析】【分析】利用一次函数的性质、平方根的定义、反比例函数的性质等知识分别判断后即可确定正确的选项.【详解】解:A、将函数y=12x+1向右平移2个单位后所得函数的解析式为y=12x,正确,符合题意;B、若一个数的平方根等于其本身,则这个数是0,故错误,是假命题,不符合题意;C、对函数y=2x,其函数值在每个象限内y随自变量x的增大而增大,故错误,是假命题,不符合题意;D、直线y=3x+1与直线y=﹣3x+2因比例系数不相等,故一定不互相平行,故错误,是假命题,故选:A.【点睛】本题考查了判断命题真假的问题,掌握一次函数的性质、平方根的定义、反比例函数的性质等知识是解题的关键.。
初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳初三数学复习五大方法初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
初三数学知识点总结归纳(二)1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
初中数学总复习知识点整理(最全)

初中数学总复习知识点整理(最全)知识点分类
1. 整数
1.1 整数的概念
1.2 整数的进位与退位
1.3 整数的加减法
1.4 整数的乘法
1.5 整数的除法
2.分数
2.1 几个基本概念
2.2 分数的基本性质2.3 分数的加减法
2.4 分数的乘法
2.5 分数的除法
3. 小数
3.1 小数的概念
3.2 小数与分数的转化3.3 小数的加减法
3.4 小数的乘法
3.5 小数的除法
4.代数
4.1 代数式的概念和性质4.2 代数式的加减法
4.3 代数式的乘法
4.4 公式和方程
4.5 解一元一次方程
5. 轴对称与余弦定理5.1 轴对称的基本概念5.2 轴对称的性质
5.3 用轴对称解题
5.4 余弦定理的概念和性质
5.5 用余弦定理解题
6.勾股定理与三角函数
6.1 勾股定理的概念和性质
6.2 在平面直角坐标系中应用勾股定理6.3 用勾股定理解决实际问题
6.4 三角函数的定义和性质
6.5 用三角函数解决实际问题
知识点重点
- 整数的进位与退位
- 分数的加减法
- 代数式的乘法
- 解一元一次方程
- 用轴对称解题
- 用余弦定理解题
- 用勾股定理解决实际问题- 用三角函数解决实际问题知识点易错点
- 乘方与加减混淆
- 分数的错位相乘
- 代数式乘法计算错误
- 方程解错
- 三角函数概念混淆
- 勾股定理和余弦定理运用错误
- 计算精度不足
以上是初中数学的总复习知识点整理,祝您考试顺利!。
新初中数学二次函数知识点总复习附解析(2)
新初中数学二次函数知识点总复习附解析(2)一、选择题1.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个【答案】B【解析】【分析】【详解】 解:∵抛物线和x 轴有两个交点,∴b 2﹣4ac >0,∴4ac ﹣b 2<0,∴①正确;∵对称轴是直线x ﹣1,和x 轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x 轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a ﹣2b+c >0,∴4a+c >2b ,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c <0,∴2a+2b+2c <0,∵b=2a ,∴3b ,2c <0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a ﹣b+c 的值最大,即把(m ,0)(m≠0)代入得:y=am 2+bm+c <a ﹣b+c ,∴am 2+bm+b <a ,即m (am+b )+b <a ,∴④正确;即正确的有3个,故选B .考点:二次函数图象与系数的关系2.如图是函数223(04)y x x x =--≤≤的图象,直线//l x 轴且过点(0,)m ,将该函数在直线l 上方的图象沿直线l 向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )A .m 1≥B .0m ≤C .01m ≤≤D .m 1≥或0m ≤【答案】C【解析】【分析】 找到最大值和最小值差刚好等于5的时刻,则M 的范围可知.【详解】解:如图1所示,当t 等于0时,∵2(1)4y x =--,∴顶点坐标为(1,4)-,当0x =时,3y =-,∴(0,3)A -,当4x =时,5y =,∴(4,5)C ,∴当0m =时, (4,5)D -,∴此时最大值为0,最小值为5-;如图2所示,当1m =时,此时最小值为4-,最大值为1.综上所述:01m ≤≤,故选:C .【点睛】此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m 的值为解题关键.3.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b+=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【答案】D【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线的开口向下,则a <0;抛物线的对称轴为x=1,则-2b a=1,b=-2a ∴b>0,2a+b=0 ② 抛物线交y 轴于正半轴,则c >0;由图像知x=1时 y=a+b+c 是抛物线顶点的纵坐标,是最大值,当m≠1 y=2am bm ++c 不是顶点纵坐标,不是最大值∴+a b >2am bm +(故③正确):b >0,b+2a=0;(故②正确) 又由①②③得:abc <0 (故①错误)由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故④错误)⑤若211ax bx +=222ax bx +得211ax bx +-(222ax bx +)=211ax bx +-ax 22-bx 2=a(x 12-x 22)+b(x 1-x 2)=a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)= (x 1-x 2)[a(x 1+x 2)+b]= 0∵1x ≠2x∴a(x 1+x 2)+b=0∴x 1+x 2=2b a a a-=-=2 (故⑤正确) 故选D .考点:二次函数图像与系数的关系.4.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列4个结论:①abc <0;②2a +b =0;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论的个数是( )A.1 B.2 C.3 D.4【答案】D【解析】【分析】根据二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定解答.【详解】①由抛物线的对称轴可知:﹣>0,∴ab<0,∵抛物线与y轴的交点在正半轴上,∴c>0,∴abc<0,故①正确;②∵﹣=1,∴b=﹣2a,∴2a+b=0,故②正确.③∵(0,c)关于直线x=1的对称点为(2,c),而x=0时,y=c>0,∴x=2时,y=c>0,∴y=4a+2b+c>0,故③正确;④由图象可知:△>0,∴b2﹣4ac>0,故②正确;故选:D.【点睛】本题考查二次函数的图象与系数的关系,解题的关键是熟练运用二次函数的图象与性质,属于中考常考题型.5.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点是(1,n),且与x的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是()A .1B .2C .3D .4【答案】C【解析】【分析】 利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2b a=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a-=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y >0,即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2b a=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误;∵抛物线的顶点坐标为(1,n ), ∴244ac b a-=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确;∵抛物线与直线y=n 有一个公共点,∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确.故选C .【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.6.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A.B.C.D.【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a,b,c的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax2+bx+c的图象开口向下,∴a<0,∵二次函数y=ax2+bx+c的图象经过原点,∴c=0,∵二次函数y=ax2+bx+c的图象对称轴在y轴左侧,∴a,b同号,∴b<0,∴一次函数y=ax+c,图象经过第二、四象限,反比例函数y=bx图象分布在第二、四象限,故选D.【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.7.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论,其中不正确的是()A.当m=-3时,函数图象的顶点坐标是(13,83)B.当m>0时,函数图象截x轴所得的线段长度大于3 2C.当m≠0时,函数图象经过同一个点D .当m<0时,函数在x>14时,y 随x 的增大而减小 【答案】D【解析】 分析:A 、把m=-3代入[2m ,1-m ,-1-m],求得[a ,b ,c],求得解析式,利用顶点坐标公式解答即可;B 、令函数值为0,求得与x 轴交点坐标,利用两点间距离公式解决问题;C 、首先求得对称轴,利用二次函数的性质解答即可;D 、根据特征数的特点,直接得出x 的值,进一步验证即可解答.详解:因为函数y=ax 2+bx+c 的特征数为[2m ,1﹣m ,﹣1﹣m];A 、当m=﹣3时,y=﹣6x 2+4x+2=﹣6(x ﹣13)2+83,顶点坐标是(13,83);此结论正确;B 、当m >0时,令y=0,有2mx 2+(1﹣m )x+(﹣1﹣m )=0,解得:x 1=1,x 2=﹣12﹣12m, |x 2﹣x 1|=32+12m >32,所以当m >0时,函数图象截x 轴所得的线段长度大于32,此结论正确; C 、当x=1时,y=2mx 2+(1﹣m )x+(﹣1﹣m )=2m+(1﹣m )+(﹣1﹣m )=0 即对任意m ,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x 轴上一个定点此结论正确.D 、当m <0时,y=2mx 2+(1﹣m )x+(﹣1﹣m ) 是一个开口向下的抛物线,其对称轴是:直线x=14m m-,在对称轴的右边y 随x 的增大而减小.因为当m <0时,11114444m m m -=->,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选D .点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.8.如图,二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,给出以下结论:①abc <0;②3a +c =0;③ax 2+bx ≤a +b ;④若M (﹣0.5,y 1)、N (2.5,y 2)为函数图象上的两点,则y 1<y 2.其中正确的是( )A .①③④B .①②3④C .①②③D .②③④【答案】C【解析】【分析】 根据二次函数的图象与性质即可求出答案.【详解】解:①由图象可知:a <0,c >0, 由对称轴可知:2b a ->0, ∴b >0,∴abc <0,故①正确;②由对称轴可知:2b a -=1, ∴b =﹣2a ,∵抛物线过点(3,0),∴0=9a+3b+c ,∴9a ﹣6a+c =0,∴3a+c =0,故②正确;③当x =1时,y 取最大值,y 的最大值为a+b+c ,当x 取全体实数时,ax 2+bx+c≤a+b+c ,即ax 2+bx≤a+b ,故③正确;④(﹣0.5,y 1)关于对称轴x =1的对称点为(2.5,y 1):∴y 1=y 2,故④错误;故选:C .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.9.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m ,设新数与原数的差为y 则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.10.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .【答案】B【解析】根据题意可知点P从点A运动到点B时以及从点C运动到点A时是一条线段,故可排除选项C与D;点P从点B运动到点C时,y是x的二次函数,并且有最小值,故选项B符合题意,选项A不合题意.【详解】根据题意得,点P从点A运动到点B时以及从点C运动到点A时是一条线段,故选项C 与选项D不合题意;点P从点B运动到点C时,y是x的二次函数,并且有最小值,∴选项B符合题意,选项A不合题意.故选B.【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.11.已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有()①c>0;②b2-4ac<0;③ a-b+c>0;④当x>-1时,y随x的增大而减小.A.4个B.3个C.2个D.1个【答案】C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.12.如图,抛物线y=ax2+bx+c(a>0)过原点O,与x轴另一交点为A,顶点为B,若△AOB为等边三角形,则b的值为()A3B.﹣3C.﹣3D.﹣3【答案】B【解析】【分析】根据已知求出B(﹣2,24b ba a-),由△AOB为等边三角形,得到2b4a=tan60°×(﹣2ba),即可求解;【详解】解:抛物线y=ax2+bx+c(a>0)过原点O,∴c=0,B(﹣2,24b ba a-),∵△AOB为等边三角形,∴2b4a=tan60°×(﹣2ba),∴b=﹣3故选B.【点睛】本题考查二次函数图象及性质,等边三角形性质;能够将抛物线上点的关系转化为等边三角形的边关系是解题的关键.13.如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x-1 2x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是( )A .斜坡的坡度为1: 2B .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .当小球抛出高度达到7.5m 时,小球距O 点水平距离为3m 【答案】D 【解析】 【分析】求出抛物线与直线的交点,判断A 、C ;根据二次函数的性质求出对称轴,根据二次函数性质判断B ;求出当7.5y =时,x 的值,判定D . 【详解】解:214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩,解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩,72∶7=1∶2,∴A 正确; 小球落地点距O 点水平距离为7米,C 正确;2142y x x =-21(4)82x =--+, 则抛物线的对称轴为4x =,∴当4x >时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,当7.5y =时,217.542x x =-,整理得28150x x -+=, 解得,13x =,25x =,∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5m ,D 错误,符合题意;故选:D【点睛】本题考查的是解直角三角形的 坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.14.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=5【答案】D【解析】【分析】根据题目中所给的运算法则列出不等式,解不等式即可判定选项A;根据题目中所给的运算法则求得函数解析式,由此即可判定选项B;根据题目中所给的运算法则可得a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+12)2+34>0,由此即可判定选项C;根据题目中所给的运算法则列出方程,解方程即可判定选项D.【详解】∵a*b=ab﹣a+b,∴(﹣2)*(3﹣x)=(﹣2)×(3﹣x)﹣(﹣2)+(3﹣x)=x﹣1,∵(﹣2)*(3﹣x)<2,∴x﹣1<2,解得x<3,故选项A正确;∵y=(x+2)*x=(x+2)x﹣(x+2)+x=x2+2x﹣2,∴当y=0时,x2+2x﹣2=0,解得,x1=﹣x2=﹣1B正确;∵a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+12)2+34>0,∴在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数,故选项C正确;∵(x﹣2)*3=5,∴(x﹣2)×3﹣(x﹣2)+3=5,解得,x=3,故选项D错误;故选D.【点睛】本题是阅读理解题,根据题目中所给的运算法则得到相应的运算式子是解决问题的关键. 15.二次函数y=ax2+bx+c(a≠0)中的x与y的部分对应值如下表:给出以下结论:(1)二次函数y =ax 2+bx +c 有最小值,最小值为﹣3;(2)当﹣12<x <2时,y <0;(3)已知点A (x 1,y 1)、B (x 2,y 2)在函数的图象上,则当﹣1<x 1<0,3<x 2<4时,y 1>y 2.上述结论中正确的结论个数为( ) A .0 B .1C .2D .3【答案】B 【解析】 【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断. 【详解】解:(1)函数的对称轴为:x =1,最小值为﹣4,故错误,不符合题意; (2)从表格可以看出,当﹣12<x <2时,y <0,符合题意; (3)﹣1<x 1<0,3<x 2<4时,x 2离对称轴远,故错误,不符合题意; 故选择:B . 【点睛】本题考查了二次函数的最值,抛物线与x 轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.16.已知抛物线224y x x c =-+与直线2y =有两个不同的交点.下列结论:①4c <;②当1x =时,y 有最小值2c -;③方程22420x x c -+-=有两个不等实根;④若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则52c =;其中正确的结论的个数是( ) A .4 B .3 C .2D .1【答案】B 【解析】 【分析】根据“抛物线224y x x c =-+与直线2y =有两个不同的交点”即可判断①③;根据抛物线的对称轴为直线x=1即可判断②;根据等腰直角三角形的性质,用c 表达出两个交点,代入抛物线解析式计算即可判断④. 【详解】解:∵抛物线224y x x c =-+与直线2y =有两个不同的交点,∴2242x x c -+=有两个不相等的实数根,即22420x x c -+-=有两个不相等的实数根,故③正确,∴1642(2)0c ∆=-⨯⨯->,解得:4c <,故①正确; ∵抛物线的对称轴为直线x=1,且抛物线开口向上, ∴当x=1时,2y c =-为最小值,故②正确;若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形, 则顶点(1,c-2)到直线y=2的距离等于两交点距离的一半, ∵顶点(1,c-2)到直线y=2的距离为2-(c-2)=4-c , ∴两交点的横坐标分别为1-(4-c )=c-3与1+(4-c )=5-c ∴两交点坐标为(c-3,2)与(5-c,2),将(c-3,2)代入224y x x c =-+中得:22(3)4(3)2c c c ---+=解得:72c =或4c = ∵4c <,∴72c =,故④错误, ∴正确的有①②③, 故选:B . 【点睛】本题考查了二次函数与一元二次方程的关系以及二次函数的性质,解题的关键是熟练掌握函数与方程之间的联系.17.抛物线2y ax bx c =++(,,a b c 是常数),0a >,顶点坐标为1(,)2m .给出下列结论:①若点1(,)n y 与点23(2)2n y -,在该抛物线上,当12n <时,则12y y <;②关于x 的一元二次方程210ax bx c m -+-+=无实数解,那么( )A .①正确,②正确B .①正确,②错误C .①错误,②正确D .①错误,②错误 【答案】A 【解析】 【分析】①根据二次函数的增减性进行判断便可;②先把顶点坐标代入抛物线的解析式,求得m ,再把m 代入一元二次方程ax 2-bx+c-m+1=0的根的判别式中计算,判断其正负便可判断正误. 【详解】解:①∵顶点坐标为1,2m ⎛⎫⎪⎝⎭,12n <∴点(n ,y 1)关于抛物线的对称轴x=12的对称点为(1-n ,y 1),∴点(1-n ,y 1)与2322n y ⎛⎫-⎪⎝⎭,在该抛物线的对称轴的右侧图像上, 31(1)2022n n n ⎛⎫---=-< ⎪⎝⎭Q3122n n ∴-<- ∵a >0,∴当x >12时,y 随x 的增大而增大, ∴y 1<y 2,故此小题结论正确;②把1,2m ⎛⎫⎪⎝⎭代入y=ax 2+bx+c 中,得1142m a b c =++,∴一元二次方程ax 2-bx+c-m+1=0中, △=b 2-4ac+4am-4a 2211444()4042b ac a a b c a a b a ⎛⎫=-+++-=+-<⎪⎝⎭∴一元二次方程ax 2-bx+c-m+1=0无实数解,故此小题正确; 故选A . 【点睛】本题主要考查了二次函数图象与二次函数的系数的关系,第①小题,关键是通过抛物线的对称性把两点坐标变换到对称轴的一边来,再通过二次函数的增减性进行比较,第②小题关键是判断一元二次方程根的判别式的正负.18.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论:(1)4a +2b +c <0;(2)方程ax 2+bx +c =0两根都大于零;(3)y 随x 的增大而增大;(4)一次函数y =x +bc 的图象一定不过第二象限.其中正确的个数是( )A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】由图可知,x=2时函数值小于0,故(1)正确,函数与x 轴的交点为x=1.x=3,都大于0,故(2)正确 ,由图像知(3)错误,由图象开口向上,a >0,与y 轴交于正半轴,c >0,对称轴x=﹣=1,故b <0,bc <0,即可判断一次函数y =x +bc 的图象.【详解】①由x =2时,y =4a +2b +c ,由图象知:y =4a +2b +c <0,故正确;②方程ax 2+bx +c =0两根分别为1,3,都大于0,故正确; ③当x <2时,由图象知:y 随x 的增大而减小,故错误; ④由图象开口向上,a >0,与y 轴交于正半轴,c >0,x=﹣=1>0,∴b <0,∴bc <0,∴一次函数y =x +bc 的图象一定过第一、三、四象限,故正确; 故正确的共有3个, 故选:C . 【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义.19.如图所示,二次函数y=ax 2+bx+c (a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x 1、x 2,其中﹣2<x 1<﹣1,0<x 2<1.下列结论: ①4a ﹣2b+c <0;②2a ﹣b <0;③abc <0;④b 2+8a <4ac . 其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】首先根据抛物线的开口方向可得到a <0,抛物线交y 轴于正半轴,则c >0,而抛物线与x 轴的交点中,﹣2<x 1<﹣1、0<x 2<1说明抛物线的对称轴在﹣1~0之间,即x =﹣2b a>﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断 【详解】由图知:抛物线的开口向下,则a <0;抛物线的对称轴x=﹣2ba>﹣1,且c >0; ①由图可得:当x=﹣2时,y <0,即4a ﹣2b+c <0,故①正确;②已知x=﹣2ba>﹣1,且a <0,所以2a ﹣b <0,故②正确; ③抛物线对称轴位于y 轴的左侧,则a 、b 同号,又c >0,故abc >0,所以③不正确; ④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:244ac b a>2,由于a <0,所以4ac ﹣b2<8a ,即b 2+8a >4ac ,故④正确; 因此正确的结论是①②④. 故选:C .【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.20.平移抛物线y=﹣(x﹣1)(x+3),下列哪种平移方法不能使平移后的抛物线经过原点()A.向左平移1个单位B.向上平移3个单位C.向右平移3个单位D.向下平移3个单位【答案】B【解析】【分析】先将抛物线解析式转化为顶点式,然后根据顶点坐标的平移规律即可解答.【详解】解:y=﹣(x﹣1)(x+3)=-(x+1)2+4A、向左平移1个单位后的解析式为:y=-(x+2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意;B、向上平移3个单位后的解析式为:y=-(x+1)2+7,当x=0时,y=3,即该抛物线不经过原点,故本选项符合题意;C、向右平移3个单位后的解析式为:y=-(x-2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.;D、向下平移3个单位后的解析式为:y=-(x+1)2+1,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.【点睛】本题考查了二次函数图像的平移,函数图像平移规律:上移加,下移减,左移加,右移减.。
中考数学总复习知识点总结:第二章 代数式
第二章代数式考点一、整式的有关概念(3分)1.代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2.单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如,这种表示就是错误的,应写成。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如是6次单项式。
考点二、多项式(11分)1.多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数, 叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母, 按照代数式指明的运算, 计算出结果, 叫做代数式的值。
注意: (1)求代数式的值, 一般是先将代数式化简, 然后再将字母的取值代入。
(2)求代数式的值, 有时求不出其字母的值, 需要利用技巧, “整体”代入。
2.同类项所有字母相同, 并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
3.去括号法则(1)括号前是“+”, 把括号和它前面的“+”号一起去掉, 括号里各项都不变号。
(2)括号前是“﹣”, 把括号和它前面的“﹣”号一起去掉, 括号里各项都变号。
4.整式的运算法则整式的加减法: (1)去括号;(2)合并同类项。
整式的乘法:),(都是正整数)(n m a a mn n m = )()(都是正整数n b a ab n n n =22))((b a b a b a -=-+2222)(b ab a b a ++=+2222)(b ab a b a +-=-整式的除法:注意: (1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘, 结果是一个多项式, 其项数与因式中多项式的项数相同。
(3)计算时要注意符号问题, 多项式的每一项都包括它前面的符号, 同时还要注意单项式的符号。
(4)多项式与多项式相乘的展开式中, 有同类项的要合并同类项。
2020-2021初中数学命题与证明的知识点总复习有解析(2)
2020-2021初中数学命题与证明的知识点总复习有解析(2)一、选择题1.下列命题中是真命题的是( )A .两个锐角的和是锐角B .两条直线被第三条直线所截,同位角相等C .点(3,2)-到x 轴的距离是2D .若a b >,则a b ->-【答案】C【解析】【分析】根据角的定义、平行线的性质、点的坐标及不等式的性质对各选项进行分析判断,即可得解.【详解】A. 两个锐角的和是锐角是假命题,例如80°+80°=160°,是钝角,不是锐角,故本选项错误;B. 两条直线被第三条直线所截,同位角相等是假命题,两条平行线被第三条直线所截,同位角才相等,故本选项错误;C. 点(3,2)-到x 轴的距离是2是真命题,故本选项正确;D. 若a b >,则a b ->-是假命题,正确结果应为a b -<-,故本选项错误.故选:C .【点睛】本题考查真假命题的判断,解题关键是认真判断由条件是否能推出结论,如果能举出一个反例,或由条件推出的结论与题干结论不一致,则为假命题.2.“两条直线相交只有一个交点”的题设是( )A .两条直线B .相交C .只有一个交点D .两条直线相交【答案】D【解析】【分析】任何一个命题,都由题设和结论两部分组成.题设,是命题中的已知事项,结论,是由已知事项推出的事项.【详解】“两条直线相交只有一个交点”的题设是两条直线相交.故选D .【点睛】本题考查的知识点是命题和定理,解题关键是理解题设和结论的关系.3.下列命题中真命题是( )A 2一定成立B.位似图形不可能全等C.正多边形都是轴对称图形D.圆锥的主视图一定是等边三角形【答案】C【解析】【分析】根据二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念逐一判断即可得.【详解】A)2,当a<0时不成立,假命题;B、位似图形在位似比为1时全等,假命题;C、正多边形都是轴对称图形,真命题;D、圆锥的主视图不一定是等边三角形,假命题,故选C.【点睛】本题考查了真命题与假命题,涉及到二次根式的性质、位似图形、正多边形、视图等知识,熟练掌握相关知识是解题的关键.4.下列命题是假命题的是()A.有一个角为60︒的等腰三角形是等边三角形B.等角的余角相等C.钝角三角形一定有一个角大于90︒D.同位角相等【答案】D【解析】【分析】【详解】解:选项A、B、C都是真命题;选项D,两直线平行,同位角相等,选项D错误,是假命题,故选:D.5.下列命题中是真命题的是()A.多边形的内角和为180°B.矩形的对角线平分每一组对角C.全等三角形的对应边相等D.两条直线被第三条直线所截,同位角相等【答案】C【解析】【分析】根据多边形内角和公式可对A进行判定;根据矩形的性质可对B进行判定;根据全等三角形的性质可对C进行判定;根据平行线的性质可对D进行判定.【详解】A.多边形的内角和为(n-2)·180°(n≥3),故该选项是假命题,B.矩形的对角线不一定平分每一组对角,故该选项是假命题,C.全等三角形的对应边相等,故该选项是真命题,D.两条平行线被第三条直线所截,同位角相等,故该选项是假命题,故选:C .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.熟练掌握矩形的性质、平行线的性质、全等三角形的性质及多边形的内角和公式是解题关键.6.下列说法中,正确..的是( ) A .图形的平移是指把图形沿水平方向移动.B .平移前后图形的形状和大小都没有发生改变.C .“相等的角是对顶角”是一个真命题D .“直角都相等”是一个假命题【答案】B【解析】图形的平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移,平移前后图形的形状和大小都没有发生改变.而相等的角不一定是对顶角,C 是一个假命题,直角都相等是真命题.故选B7.下列命题中,是假命题的是( )A .若a>b ,则-a<-bB .若a>b ,则a+3>b+3C .若a>b ,则44a b > D .若a>b ,则a 2>b 2【答案】D【解析】【分析】 利用不等式的性质分别判断后即可确定正确的选项.【详解】A 、若a >b ,则-a <-b ,正确,是真命题;B 、若a >b ,则a+3>b+3,正确,是真命题;C 、若a >b ,则44a b >,正确,是真命题; D 、若a >b ,则a 2>b 2,错误,是假命题;故选:D .【点睛】 此题考查命题与定理的知识,解题的关键是了解不等式的性质,难度不大.8.下列命题正确的是( )A.在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的. B.两个全等的图形之间必有平移关系.C.三角形经过旋转,对应线段平行且相等.D.将一个封闭图形旋转,旋转中心只能在图形内部.【答案】A【解析】【分析】根据平移的性质:平移后图形的大小、方向、形状均不发生改变结合选项即可得出答案.【详解】解:A、经过旋转后的图形两个图形的大小和形状也不变,半径相等的两个圆是等圆,圆还具有旋转不变性,故本选项正确;B、两个全等的图形位置关系不明确,不能准确判定是否具有平移关系,错误;C、三角形经过旋转,对应线段相等但不一定平行,所以本选项错误;D、旋转中心可能在图形内部,也可能在图形边上或者图形外面,所以本选项错误.故选:A.【点睛】本题考查平移、旋转的基本性质,注意掌握①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.9.下列命题是假命题的是()A.同角(或等角)的余角相等B.三角形的任意两边之和大于第三边C.三角形的内角和为180°D.两直线平行,同旁内角相等【答案】D【解析】【分析】利用余角的定义、三角形的三边关系、三角形的内角和及平行线的性质分别判断后即可确定正确的选项.【详解】A、同角(或等角)的余角相等,正确,是真命题;B、三角形的任意两边之和大于第三边,正确,是真命题;C、三角形的内角和为180°,正确,是真命题;D、两直线平行,同旁内角互补,故错误,是假命题,故选D.【点睛】考查了命题与定理的知识,解题的关键是了解余角的定义、三角形的三边关系、三角形的内角和及平行线的性质,难度不大.10.下列命题:①直角三角形的两个锐角互余;②同旁内角互补;③如果直线12l l P ,直线23l l P ,那 么13l l P .其中真命题的序号是( ) A .①②B .①③C .②③D .①②③【答案】B【解析】【分析】利用直角三角形的性质、平行线的性质等知识分别判断后即可确定正确的选项.【详解】解:①直角三角形的两个锐角互余,正确,是真命题;②两直线平行,同旁内角互补,故错误,是假命题; ③如果直线12l l P ,直线23l l P ,那 么13 l l P ,正确,是真命题; 故选:B .【点睛】本题主要考查了命题与定理,掌握命题与定理是解题的关键.11.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数, 进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B .【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.12.用三个不等式,0,a b ab a b >>>中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A .0B .1C .2D .3 【答案】A【解析】【分析】由题意得出三个命题,根据不等式的性质判断命题的真假.【详解】若,0a b ab >>,则a b >为假命题.反例:a=-1,b=-2 若,a b a b >>,则0ab >为假命题.反例:a=2,b=-1 若0,ab a b >>,则a b >为假命题.反例:a=-2,b=-1 故选:A【点睛】本题考查了命题与不等式的性质,解题的关键在于根据题意得出命题,根据不等式的性质判断真假.13.下列命题是真命题的是( )A .若x >y ,则x 2>y 2B .若|a|=|b|,则a=bC .若a >|b|,则a 2>b 2D .若a <1,则a >1a【答案】C【解析】【分析】根据实数的乘方,绝对值的性质和倒数的意义等,对各选项举反例分析判断后利用排除法求解.【详解】A. x >y ,如x=0,y=-1,02<(-1)2,此时x 2<y 2 ,故A 选项错误;B. |a|=|b|,如a=2,b=-2,此时a≠b ,故B 选项错误;C. 若a >|b|,则a 2>b 2 ,正确;D. a <1,如a=-1,此时a=1a,故D 选项错误, 故选C.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题主要利用了实数的性质.14.用三个不等式a >b ,ab >0,1a >1b中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0 B.1 C.2 D.3【答案】A【解析】【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【详解】解:①若a>b,ab>0,则1a>1b;假命题:理由:∵a>b,ab>0,∴a>b>0,∴1a<1b;②若ab>0,1a>1b,则a>b,假命题;理由:∵ab>0,∴a、b同号,∵1a>1b,∴a<b;③若a>b,1a>1b,则ab>0,假命题;理由:∵a>b,1a>1b,∴a、b异号,∴ab<0.∴组成真命题的个数为0个;故选:A.【点睛】本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.15.下列命题中,其中真命题的个数是()①平面直角坐标系内的点与实数对一一对应;②内错角相等;③平行于同一条直线的两条直线互相平行;④对顶角相等A.1个B.2个C.3个D.4个【答案】B【解析】【分析】正确的命题是真命题,根据真命题的定义依次进行判断.【详解】①平面直角坐标系内的点与有序实数对一一对应,是假命题;②两直线平行,内错角相等,是假命题;③平行于同一条直线的两条直线不一定相互平行,是真命题;④对顶角相等,是真命题;故选:B.【点睛】此题考查真命题的定义,正确掌握坐标与图形,平行线的性质,平行公理,对顶角性质是解题的关键.16.39.下列命题中,是假命题的是()A.同旁内角互补B.对顶角相等C.直角的补角仍然是直角D.两点之间,线段最短【答案】A【解析】同旁内角不一定互补,同旁内角互补的条件是两直线平行,故选A.17.下列命题的逆命题不正确的是()A.全等三角形的对应边相等B.两直线平行,同位角相等C.等腰三角形的两个底角相等D.矩形的对角线相等.【答案】D【解析】【分析】根据求逆命题的原则,把原命题的结论作为条件,原命题的条件作为结论得到的命题是原命题的逆命题,逐一判断逆命题的正误即可.【详解】解:A的逆命题是:对应边相等的三角形是全等三角形,正确;B的逆命题是:同位角相等,两直线平行,正确;C的逆命题是:两底角相等的三角形是等腰三角形,正确;D的逆命题是:对角线相等的四边形是矩形,错误故选:D【点睛】本题考查逆命题、全等三角形的判定、平行线的判定、等腰三角形的判定、矩形的判定,解题的关键是正确找出各选项的逆命题.18.下列选项中,能说明命题“若22a b >,则a b >”是假命题的反例是( )A .1a =-,2b =B .2a =,1b =-C .1a =,2b =-D .2a =-,1b =【答案】D【解析】【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题,作答本题直接利用选项中数据代入求出答案.【详解】A. 当1a =-,2b =时,2a <2b ,a <b ,则此选项不是假命题的反例;B. 当2a =,1b =-时,2a >2b ,a >b ,则此选项不是假命题的反例;C. 当1a =,2b =-时,2a <2b ,a >b ,则此选项不是假命题的反例;D. 当2a =-,1b =时,2a >2b ,a <b ,则此选项是假命题的反例,故选:D .【点睛】本题考查真命题与假命题.要说明数学命题的错误,只需举出一个反例即可,反例就是符合已知条件但不满足结论的例子.19.对于命题“若a 2>b 2,则a >b ”,下面四组关于a ,b 的值中,能说明这个命题是假命题的是( )A .a =3,b =2B .a =﹣3,b =2C .a =3,b =﹣1D .a =﹣1,b =3【答案】B【解析】试题解析:在A 中,a 2=9,b 2=4,且3>2,满足“若a 2>b 2,则a >b”,故A 选项中a 、b 的值不能说明命题为假命题;在B 中,a 2=9,b 2=4,且﹣3<2,此时虽然满足a 2>b 2,但a >b 不成立,故B 选项中a 、b 的值可以说明命题为假命题;在C 中,a 2=9,b 2=1,且3>﹣1,满足“若a 2>b 2,则a >b”,故C 选项中a 、b 的值不能说明命题为假命题;在D 中,a 2=1,b 2=9,且﹣1<3,此时满足a 2<b 2,得出a <b ,即意味着命题“若a 2>b 2,则a >b”成立,故D 选项中a 、b 的值不能说明命题为假命题;故选B .考点:命题与定理.20.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设( )A .三角形的三个外角都是锐角B .三角形的三个外角中至少有两个锐角C .三角形的三个外角中没有锐角D.三角形的三个外角中至少有一个锐角【答案】B【解析】【分析】反证法的步骤中,第一步是假设结论不成立,反面成立.【详解】解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,故选B.【点睛】.在假设结论不成立时要注意考虑结考查了反证法,解此题关键要懂得反证法的意义及步骤论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.。
八年级上册数学-第二章-知识点复习总结
第二章:实数本章的知识网络结构:知识梳理: 知识点一:平方根如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即,当)0(2≥=a a x 时,我们称x 是a 的平方根,记做:)0(≥±=a a x 。
因此:当a=0时,它的平方根只有一个,也就是0本身;当a >0时,也就是a 为正数时,它有两个平方根,且它们是互为相反数,通常记做:a x ±=。
当a <0时,也即a 为负数时,它不存在平方根。
例1.(1) 的平方是64,所以64的平方根是 ; (2) 的平方根是它本身。
(3)若x 的平方根是±2,则x= ;16的平方根是 (4)当x 时,x 23-有意义。
(5)一个正数的平方根分别是m 和m-4,则m 的值是多少?这个正数是多少?知识点二:算术平方根(1)如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根号a ”,其中,a 称为被开方数。
特别规定:0的算术平方根仍然为0。
(2)算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。
(3) 算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。
因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。
例2.(1)下列说法正确的是 ( )A .1的立方根是1±;B .24±=; C.81的平方根是3±; D.0没有平方根; (2)下列各式正确的是 ( )A 、981±=B 、14.314.3-=-ππC 、3927-=-D 、235=- (3)2)3(-的算术平方根是 。
(4)若x x -+有意义,则=+1x ___________。
(5)已知△ABC 的三边分别是,,,c b a 且b a ,满足0)4(32=-+-b a ,求c 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学总复习知识点一、代数1.数的分类及概念:整数和分数统称有理数(有限小数和无限循环小数),像3,π,0.101001∙∙∙叫无理数;有理数和无理数统称实数。
下列各数2π,0,39,0.3·,tan45°,227,0.030030003……,0)12(-中无理数有___________2.自然数(0和正整数);奇数2n-1、偶数2n 、质数、合数。
科学记数法:na 10⨯(1≤a <10,n 是整数),有效数字。
用科学计数法表示:0.000005486=_____________ 356800000000=_______________0.040879≈___________(精确到十分位) ,77890000≈___________(精确到百万位)-0.0506689≈__________(保留两个有效数字),37984000000≈___________(保留三个有效数字) 近似数4.38万是精确到______位,有_______个有效数字 3.(1)倒数积为1(0没有倒数);(2)相反数和为0,商为-1;(3)绝对值是距离,非负数。
21-的相反数是________, 21-的倒数是__________ 4.数轴:(1)①定义(“三要素”);②点与实数的一一对应关系。
5非负数:正实数与零的统称。
(表为:x ≥0) (1)常见的非负数有:(2)性质:若干个非负数的和为0,则每个非负数均为0。
0)2y (y x 42=+++则y x =________6.去绝对值法则:正数的绝对值是它本身,零的绝对值是零;负数的绝对值是它的相反数。
2)23(-=________, 数轴上的点A 到原点的距离是6,则点A 表示的数为________7.实数的运算:加、减、乘、除、乘方、开方;运算法则,定律,顺序要熟悉。
计算:(1)022060cos 8|32|)23()2()13(+-⋅++-÷--(2)先化简:)212(112aa a a a a +-+÷--,再在-2,-1,0,1,2中选取一个数作为a 的值代入求值: 8.代数式,单项式,多项式。
整式,分式。
根式单项式8z y x 3232的次数是____,系数是____, 若11x 2x 2+-+有意义,则x 的取值范围是______9. 同类项。
合并同类项(系数相加,字母及字母的指数不变)。
下列运算中正确的是( )A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+ 10. 算术平方根:)0a (a ≥ (正数a 的正的平方根); 平方根:)0a (a ≥± 64的平方根为_________,64-的立方根为_________11. (1)最简二次根式:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式;(2)同类二次根式:化为最简二次根式以后,被开方数相同的二次根式; (3)分母有理化:化去分母中的根号。
下列运算正确的是( ).去分母 分式方程 整式方程A.=B.-= C.a =D=12.因式分解方法:把一个多项式化成几个整式的积的形式A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法。
(1)y y x 92-=__________, 322363x x y xy -+=_______________, 6x 5x 2+-=_________ 13.指数:n 个a 连乘的式子记为na 。
(其中a 称底数,n 称指数, na 称作幂。
) 正数的任何次幂为正数;负数的奇次幂为负数,负数的偶次幂为正数。
14. 幂的运算性质:①a m a n =a m+n ; ②a m ÷a n =a m-n ; ③(a m )n =a mn ;④( ab )n=a n b n; ⑤n nn ba )b a (=下列计算正确的是( ). A.632a a a =⋅ B.()832a a = C.326a a a =÷ D.()6223b a ab =下列运算正确的是( )A .(3xy 2)2=6x 2y 4B .24122x x =- C .(-x )7÷(-x )2=-x 5 D .(6xy 2)2÷3xy =2xy 3=÷-⋅-543a )a ()a (______, ===-n 3m 2m n x ,3x ,2x 则________15.分式的基本性质:16.乘法公式:用于化简:(a+b )(a-b )=a 2-b 2; (a+ b)2= a 2+2ab+b 2;用于因式分解:a 2-b 2=(a+b )(a-b ); a 2+2ab+b 2 = (a+ b)2 17.算术平方根的性质:①a a 2=;② )0a (a )a (2≥= ;③b a ab ⋅= (a ≥0,b ≥0); ④ba ba= (a ≥0,b >0)18.方程基本概念:方程、方程的解(根)、方程组的解、解方程组 1.一元一次方程:最简方程ax=b(a ≠0);解法。
2.二元一次方程的解有无数多对。
3.二元一次方程组:①代入消元法;②加减消元法。
4.一元二次方程:(1)一般形式:)0a (0c bx ax 2≠=++的求根公式)0ac 4b (a2ac 4b b x 222,1≥--±-=(2)常用方法①直接开平方法; ②配方法; ③公式法; ④因式分解法。
(3)根的判别式:ac 4b 2-=∆当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根; 当△<0,方程没有实数根。
(4)根与系数的关系:a b x x -=+21 , ac x x =⋅21 例:方程0122=-+x kx 无实根,则k 的取值范围是______ 若1x 、2x 是方程0132=--x x 的两根, 则1221x x x x +=_____________=-+1222132x x x __________ (5)分式方程: ; 分式方程有增根,必须要检验。
应用题也不例外。
解方程:(1)2660x x --=(配方法) (2)01322=--x x (公式法) (3)211=-++xx x x 19.不等式:(1)一元一次不等式的解、解一元一次不等式。
(乘除负数要变方向) (2)一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)20.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系; 1.坐标平面内的点与一个有序实数对之间是一一对应的。
2.点的坐标的特征:(1)各象限内点的坐标特征:(2)x 轴上的点y=0;y 轴上的点x=0;一、三象限角平分线:y=x ;二、四象限角平分线:y=-x 。
(3)P(a, b)关于x 轴对称P ’(a, -b); 关于y 轴对称P ’’(a, -b);关于原点对称P ’’’(-a, -b).3.坐标系内的距离:(1)点到坐标轴的距离: (2)两点之间的距离:)y ,x (A 11 ),(22y x B 则AB=221221)y y ()x x (-+-4.中点坐标:)y ,x (A 11 )y ,x (B 22则线段AB 的中点M (2y y ,2x x 2121++) 21. 函数1、 二次函数)0(2≠++=a c bx ax y(1) 顶点)44,2(2ab ac a b --(2)对称轴a b x 2-=(2) 最值:当x=a 2b -时a4b ac 4y 2-=最值(5)增减性2、 平移原则:把解析式化为顶点式,“左+右-;上+下-”。
3、 二次函数与二次方程:△>0一元二次方程有两个不相等实根抛物线与x 轴有两个交点 △=0 一元二次方程有两个相等实根 抛物线与x 轴有一个交点 △>0 一元二次方程无实根 抛物线与x 轴没有交点4、①a ~开口方向,大小;②b ~对称轴与y 轴,左同右异;③c ~与y 轴的交点上正下负;④b 2-4ab ~与x 轴的交点个数;⑤b a ±2~对称轴与常数1±比;⑥a+b+c ~点看(1, a+b+c );a-b+c ~点看(-1, a-b+c )。
(1) 直线2++=k kx y 不经过第三象限,则k 的取值范围是__________________(2) 如图,一次函数y 1=k 1x+b 1与y 2=k 2x+b 2的图象相交于A(2,1),则不等式(k 2-k 1)x+b 2-b 1>0的解集为_____________________(3) △AOB 的面积为2,则此双曲线的解析式为___________________(4) 将抛物线5)1(22++-=x y 上3右2平移后所得到的抛物线为________________ (5) 抛物线3522-+=x x y 的对称轴为________,顶点坐标为_________与x 轴的交点坐标为___________________(6) 抛物线c bx ax y ++=2的对称轴为直线x=2,与x 轴的一个交点坐标为(–1,0)则一元二次方程02=++c bx ax 的解为_______________________若a>0,则一元二次不等式02>++c bx ax 的解为______________________(7) 抛物线322--=x x y ,当-4≤x ≤2时,y 最大=_______y 最小=____________(8)如图所示,二次函数y=ax 2+bx+c 的图象开口向上,图象经过点(-1,2)和(1,0)且与y 轴交于负半轴,下列所给出结论:①a>0;②b>0;③c>0;④a+b+c=0,⑤ abc<0;⑥ 2a+b>0; ⑦a+c=1; ⑧a>1其中正确的结论的序号是二、几何22.(1)两点之间,线段最短(两点之间线段的长度,叫做这两点之间的距离);(2)点到直线之间,垂线段最短(点到直线的垂线段的长度叫做点到直线之间的距离); (3)两平行线之间的垂线段处处相等(这条垂线段的长度叫做两平行线之间的距离); (4)同平行于一条直线的两条直线平行(传递性); (5)同垂直于一条直线的两条直线平行。
23.中垂线:性质:在垂直平分线上的点到该线段两端点的距离相等;判定:到线段两端点距离相等的点在这线段的垂直平分线上。
24.角平分线:性质定理:角平分线上的点到该角两边的距离相等;判定定理:到角的两边距离相等的点在该角的角平分线上。