数字黑洞
数字黑洞

数字黑洞——1(角谷游戏)
任取一个正整数,如果它是偶数,就除以2, 如果它是奇数,就用它乘3再加1。将所得到的结 果不断地重复上述运算,最后的结果总是1。
如:正整数10。 10÷2=5 5×3+1=16 16÷2=8 8÷2=4 4÷2=2 2÷2=1
看来,最简单的 数字1也蕴含着 不简单。
Байду номын сангаас
知识链接
这个问题大约是在二十世纪五十年代被提出来的。在西方 它常被称为西拉古斯 (Syracuse) 猜想,因为据说这个问题首先 是在美国的西拉古斯大学被研究的;而在东方,这个问题由将 它带到日本的日本数学家角谷静夫的名字命名,被称作角谷猜 想。除此之外它还有着一大堆其他各种各样的名字,大概都和 研究和传播它的数学家或者地点有关的:克拉兹 (Collatz)问题, 哈斯(Hasse)算法问题,乌拉姆(Ulam)问题等等。在数学文献里, 大家就简单地把它称作“ 3x+1 问题”。角谷静夫在谈到这个猜 想的历史时讲:“一个月里,耶鲁大学的所有人都着力于解决 这个问题,毫无结果。同样的事情好象也在芝加哥大学发生了。 有人猜想,这个问题是苏联克格勃的阴谋,目的是要阻碍美国 数学的发展。” 这是一个至今未能解决的问题。
数学与比喻
社会上流行这样一道算式:8-1>8。这在数 学上是不成立的,但在生活中却饱含哲理。它告 诉人们:在每天八小时中拿出一小时锻炼身体, 其效果要比八个小时全用来学习、工作还好。
美哉,数学! 数学,美哉!
1955年,卡普耶卡发现,无论多大的 四位数,只要四个数字不全相同,最多 进行7次上述变换,就会出现四位数 6174.
知识链接
1、数字黑洞153 2、数字黑洞123 3、角谷猜想
任取一个自然数,对它作一个变换:如 果是偶数,就除以2;如果是奇数,就乘 3再加1。反复进行如上变换,最后都能 得到1
五年级上册数学教案-9.1 神奇的数字黑洞丨苏教版

五年级上册数学教案-9.1 神奇的数字黑洞丨苏教版
一、教学目标
1.了解数字黑洞的概念和特征;
2.能够使用数字黑洞加减法求解问题。
二、教学重难点
教学重点
1.数字黑洞的概念和特征;
2.数字黑洞加减法的运算方法。
教学难点
1.认识数字黑洞,理解数字黑洞的特征;
2.熟练掌握数字黑洞加减法的求解方法。
三、教学准备
1.教师准备数字黑洞示意图;
2.学生准备笔、纸。
四、教学过程
1. 导入新知
教师出示数字黑洞示意图,问学生是否知道数字黑洞是什么,如何识别数字黑洞。
2. 概念解释
教师简单解释数字黑洞是一个由四个数字组成的算式,这四个数字中有两个数字相加等于第三个数字,再将结果减去另外一个数字,最终的结果始终是一个相同的数字。
例如,数字黑洞“6 8 2 4”可以组成算式“6 + 2 = 8,8 - 4 = 4”;同样,“3 6 9 0”也可以组成数字黑洞,“3 + 6 = 9,9 + 0 = 9”。
3. 识别数字黑洞
教师让学生自己尝试找出一些数字黑洞,并询问学生如何识别数字黑洞,并对学生给出的回答做一些简单的讲解。
4. 数字黑洞加减法
针对数字黑洞加减法的求解方法,教师首先使用示意图演示,并讲解具体步骤和注意事项,再让学生通过练习加深理解。
5. 练习
让学生分组并练习数字黑洞加减法的运算方法,教师可以在课堂上给予指导和帮助,及时纠正学生的错误。
五、教学总结
通过本节课的学习,我们学习了数字黑洞的概念和特征,及数字黑洞加减法的运算方法。
希望同学们能够在后续的学习中,继续加深对数字黑洞的理解,掌握数字黑洞加减法的运用方法。
数字黑洞123原理

数字黑洞123原理
数字黑洞是一种数字游戏形式,以一个三位数作为起点,按照特定的规则进行数字运算,直到最后得到一个指定的结果。
具体原理如下:
1. 选择一个三位数作为起点,可以是任意一个不含有零的数字。
2. 将这个数字的各位数从大到小排列得到一个新的三位数,并用这个新数减去原来的数,得到一个新的差值。
3. 重复以上步骤,将得到的差值进行同样的运算,直到最后得到的差值为6174。
4. 如果无法获得6174,将得到的差值进行逆序排列得到一个
新的差值,然后再次重复运算,直到获得6174为止。
例如:
以数字123为起点,按照以上规则进行运算:
1. 将数字123的各位数从大到小排列得到321,再用321减去123得到差值198。
2. 将数字198的各位数从大到小排列得到981,再用981减去198得到差值783。
3. 将数字783的各位数从大到小排列得到873,再用873减去378得到差值495。
4. 将数字495的各位数从大到小排列得到954,再用954减去459得到差值495。
此时差值仍然为495,即无法获得6174。
5. 将数字495进行逆序排列得到594,再用594减去495得到
差值99。
6. 将数字99进行逆序排列得到99,再用99减去99得到差值0。
此时差值为0,即获得了6174。
可以发现,无论选择哪个初始数字,经过有限步骤后都可以得到6174,这是因为6174是一种“吸引”其他数字的特殊数值,所有数字最后都会收敛到6174。
这种原理称为“卡普雷卡尔数”。
数字黑洞

一、卡普雷卡尔黑洞(重排求差黑洞)三位数黑洞495只要你输入一个三位数,要求个,十,百位数字不相同,如不允许输入111,222等。
那么你把这个三位数的三个数字按大小重新排列,得出最大数和最小数,两者相减得到一个新数,再按照上述方式重新排列,再相减,最后总会得到495这个数字,人称:卡普雷卡尔黑洞。
举例:输入352,排列得最大数位532,最小数为235,相减得297;再排列得972和279,相减得693;接着排列得963和369,相减得594;最后排列得到954和459,相减得495。
四位数黑洞6174把一个四位数的四个数字由小至大排列,组成一个新数,又由大至小排列排列组成一个新数,这两个数相减,之后重复这个步骤,只要四位数的四个数字不重复,数字最终便会变成6174。
例如3109,9310 - 0139 = 9171,9711 - 1179 = 8532,8532 - 2358 = 6174。
而6174 这个数也会变成6174,7641 - 1467 = 6174。
任取一个四位数,只要四个数字不全相同,按数字递减顺序排列,构成最大数作为被减数;按数字递增顺序排列,构成最小数作为减数,其差就会得6174;如不是6174,则按上述方法再作减法,至多不过10步就必然得到6174。
如取四位数5679,按以上方法作运算如下:9765-5679=4086 8640-4068=4572 7542-2457=50858550-5058=3492 9432-2349=7083 8730-3078=56526552-2556=3996 9963-3699=6264 6642-2466=41767641-1467=6174那么,出现6174的结果究竟有什么科学依据呢?二、水仙花数黑洞数字黑洞153任意找一个3的倍数的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方、求和,......,重复运算下去,就能得到一个固定的数——153,我们称它为数字“黑洞”。
数学黑洞例子

数学黑洞例子
1. 嘿,你知道不,卡布列克常数就是个超有趣的数学黑洞例子呀!就像495 这个数,把它随意拆分,比如拆成 4 和 95,或者 49 和 5,然后大数
减小数,再反复这样操作,最后总会得到 495 呢!神奇吧!
2. 哇塞,还有 123 数字黑洞啊!比如随便一个三位数,像 321,把它的数
字按从大到小排是 321,从小到大排是 123,用大的减小的,一直这样下去,最后就会陷进去,总是得到 495 这个结果呢,你说奇妙不奇妙!
3. 嘿呀,153 也是个特别的数学黑洞例子哟!像它不管怎么折腾,最后都能回到它本身呢,这多有意思呀,就像一个怎么也逃不出去的小圈圈!
4. 哎呀,回文数也是呢!比如 121,正反都一样,这就像一个调皮的小精灵,在数学世界里蹦来蹦去的,真好玩!
5. 你想想,6174 这个数呀,也是个数学黑洞!把它弄来弄去,最后还是会
被它吸进去,这难道不比魔术还神奇吗?
6. 还有还有,3 这个数字,在很多地方都很特别哦,就好像一个小小的主角在数学舞台上表演呢,这算不算一种特殊的数学黑洞例子呢?
7. 哇哦,圆周率也是相当神奇的呀!那无穷无尽的数字,就像一个巨大的宝藏库,里面说不定也藏着数学黑洞呢,是不是很让人期待呀!
8. 嘿嘿,其实生活中到处都有数学黑洞的影子呢,只要我们细心去发现!它们就像一个个神秘的小盒子,等待我们去打开,去探索其中的奇妙!我觉得数学黑洞真的是太神奇啦,让人忍不住一直去研究呢!。
数学手抄报文字内容

数学手抄报文字内容
一、数字黑洞
黑洞495
三位数里也有这样的数字黑洞:495。
随便找个数,如297,三个位上的数从小到大和从大到小各排一次,为972和279,相减(972-279)得693 。
按上面做法再做一次,963-369得到594,再做一次,954-459得到495 。
此外,还有其他的数字黑洞:
5位黑洞数53955,599994
6位黑洞数631764,549945
8位黑洞数97508421,63317664
9位黑洞数9753086421
在数学中由有很多有趣,有意义的规律等待我们去探索和研究,让我们在数学中得到更多的乐趣。
二、数学名言
“在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要.”---- 康扥尔(Cantor)
“数学是无穷的科学”----赫尔曼外尔
"问题是数学的心脏”---- P.R.Halmos
“只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰亡.” ----Hilbert
“数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深.”---- 高斯
“时间是个常数,但对勤奋者来说,是个‘变数’。
用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍。
” ----雷巴柯夫
“在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。
” ----华罗庚
“天才=1%的灵感+99%的血汗。
”----爱迪生
三、面积公式
正方形、长方形、梯形、三角形、面积公式。
数字黑洞
奇妙的数字黑洞黑洞原是天文学中的概念,表示这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。
数学中借用这个词,指的是某种运算,这种运算一般限定从某些整数出发,经过某种规定的运算后,结果必然落入某个“数字黑洞”。
1、黑洞6174请大家看一看下面的这几道算式:9863-3689=6174;8532-2358=6174;7311-1137=6174;6640-0466=6174;6200-0026=6174;7421-1247=6174;9973-3799=6174;……发现它们的神奇之处了吗?请随便写出一个四位数,这个数的四个数字有相同的也不要紧,但这四个数不准完全相同或有完全相同趋向,例如 3333、7777、7337等都应该排除。
写出四位数后,把数中的各位数字按大到小的顺序和小到大的顺序重新排列,将得到由这四个数字组成的四位数中的最大者和最小者,两者相减,就得到另一个四位数。
将组成这个四位数的四个数字施行同样的变换,又得到一个最大的数和最小的数,两者相减……这样循环下去,一定在经过若干次(最多7次)变换之后,得到6174。
这是偶然的吗?我们再随便举一个数1331,按上面的方法连续去做:3311-1133=2178 8721-1278=7443 7443-3447=39969963-3699=6264 6642-2466=4176 7641-1467=6174好啦!6174的“幽灵”又出现了,大家不妨试一试,对于任何一个数字不完全的四位数,最多运算7步,必然落入陷阱中。
这个黑洞数已经由印度数学家证明了。
6174这个神奇的数字,就是产生在数字里的黑洞,它好像有一种神奇的魔力,只要通过一种运算,这些数字都会被6174吸进去。
我们称这样的数字为黑洞数。
2、黑洞495三位数里也有这样的数字黑洞:495。
随便找个数,如297,三个位上的数从小到大和从大到小各排一次,为972和279,相减(972-279)得693 。
奇妙的数学文化有趣的数字黑洞有趣的数学黑洞阅读笔记五年级
奇妙的数学文化有趣的数字黑洞有趣的数学黑洞阅读笔记五年级摘要:一、引言1.数学文化的奇妙之处2.数字黑洞和数学黑洞的概念二、有趣的数字黑洞1.数字黑洞的定义和特点2.一些著名的数字黑洞现象3.数字黑洞在实际生活中的应用三、有趣的数学黑洞1.数学黑洞的定义和特点2.一些著名的数学黑洞现象3.数学黑洞在实际生活中的应用四、阅读笔记1.阅读数学黑洞相关书籍的感悟2.学习数学黑洞对自己的启发和帮助五、结论1.数学黑洞对个人成长的意义2.鼓励大家去探索数学文化的奇妙世界正文:一、引言数学,是一门充满奇妙和神秘的学科。
它不仅拥有严密的逻辑体系,还蕴含着丰富的文化内涵。
在数学的世界里,存在着一种叫做“数字黑洞”和“数学黑洞”的现象,它们以一种神秘的方式吸引着人们去探索和发现。
二、有趣的数字黑洞1.数字黑洞的定义和特点数字黑洞,是指在一定条件下,数字按照特定的规律进行排列,形成一种类似于黑洞的现象。
数字黑洞的特点是,无论多大的数字,最终都会被“吞噬”到一个固定的数字。
2.一些著名的数字黑洞现象(1)卡普雷卡尔常数卡普雷卡尔常数,也被称为“卡普雷卡尔数”,是一个著名的数字黑洞。
它的特点是,任何数字与它相乘后,都会得到一个固定的数字。
例如,6174乘以6174等于4086209227,而4086209227除以6174又等于67108864,这个数字又可以被6174整除,形成了数字黑洞的现象。
(2)数学家哈代的“魔法数”英国数学家哈代发现了一个有趣的数字黑洞,被称为“魔法数”。
它的特点是,将一个正整数n,用n个不同的正整数相乘,得到的结果总是等于一个固定的数。
例如,将1234567890乘以自己,得到121932631112635269,这个数字可以被9整除,形成了一个数字黑洞。
3.数字黑洞在实际生活中的应用数字黑洞现象在实际生活中有着广泛的应用,例如密码学、数据压缩、信号处理等领域。
通过研究数字黑洞,人们可以更好地理解和掌握这些领域的知识。
数字黑洞的微课件
黑洞数又称陷阱数,是具 有奇特转换特性的整数。 卡普雷卡尔黑洞 需要任何一个数字且不全 相同的整数,经有限“重排求 差”操作,总会得某一个或一 些数,这些数即为黑洞数。
整数、 不全相同的数
124 529
× 5、2、9
111
重排求差
952 ─ 259 =693 6、9、3
重排求差、……
总会是一个数、一些数
……
卡普雷卡尔黑洞(重排求差黑洞) 四位数黑洞6174 三位数黑洞495
例如:输入352,
排列得最大数位532,最小数为235, 532─235=297; 再排列得972和279, 972─279=693;
例如:输入712,
排列得最大数位721,最小数为127, 721─127=594; 再排列得954和459,
954─459=495;来自接着排列得963和369,
963─369=594; 最后排列得到954和459, 954─459=495。
水仙花数黑洞__(数字黑洞153)
探 索 ……
神奇的数字黑洞
神奇的数字黑洞神奇的数字黑洞人教版小学数学五年级上册第31页的“你知道吗?”谈到了数字黑洞6174。
这个数字黑洞是印度数学家卡普耶卡于1949年发现的。
类似的数字黑洞还有许多。
黑洞原本是天文学中的概念,表示这样一种天体:它的引力场非常强,任何物质甚至是光,一旦被它吸入就再也休想逃脱出来。
数学中借用这个词,正像文中所说的那样,“数学黑洞是指自然数经过某种数学运算之后陷入一种循环的境况。
”下面再介绍几个有趣的数字黑洞。
1、数字黑洞153任意取一个是3的倍数的数。
求出这个数各个数位上数字的立方和,得到一个新数,然后再求出这个新数各个数位上数字的立方和,又得到一个新数,如此重复运算下去,最后一定落入数字黑洞“153”。
如,取63。
63+33=216+27=243, 23+43+33=8+64+27=99,93+93=729+729=1458, 13+43+53+83=1+64+125+512=702,73+03+23=243+0+8=351, 33+53+13=153, 13+53+33=153,……再如,取219。
23+13+93=8+1+729=738,73+33+83=343+27+512=882,83+83+23=512+512+8=1032,13+03+33+23=1+0+27+8=36,33+63=27+216=243,23+43+33=8+64+27=99,93+93=729+729=1458,13+43+53+83=1+64+125+512=702,73+03+23=343+0+8=351,33+53+13=27+125+1=153,13+53+33=153,……数字黑洞153又叫“圣经数”,这个奇妙的数“153”是一位叫科恩的以色列人发现的。
科恩是一位基督徒。
一次,他在读圣经《新约全书》的“约翰福音”第21章时,当他读到:耶稣对他们说:“把刚才打的鱼拿几条来。
”西门·彼得就去把网拉到岸上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、数字黑洞495
只要你输入一个三位数,要求个,十,百位数字不相同,如不允许输入111,222等。
那么
你把这三个数字按大小重新排列,得出最大数和最小数。
再两者相减,得到一个新数,再重新排列,再相减,最后总会得到495这个数字,人称:数字黑洞。
(学生试做)
举例:输入352,排列得532和235,相减得297;再排列得972和279,相减得693;排列得963和369,相减得594;再排列得954和459,相减得495。
二、黑洞6174
像这样的数字规律还有狠多,比如四位数的数字黑洞6174:
把一个四位数的四个数字由小至大排列,组成一个新数,又由大至小排列排列组成一个新数,这两个数相减,之后重复这个步骤,只要四位数的四个数字不重复,数字最终便会变成6174。
任取一个四位数,只要四个数字不全相同,按数字递减顺序排列,构成最大数作为被减数;按数字递增顺序排列,构成最小数作为减数,其差就会得6174;如不是6174,则按上述方法再作减法,至多不过10步就必然得到6174。
有的人用10步
如取四位数5679,按以上方法作运算如下:
9765-5679=4086 8640-4068=4572 7542-2457=5085
8550-5058=3492 9432-2349=7083 8730-3078=5652
6552-2556=3996 9963-3699=6264 6642-2466=4176
7641-1467=6174
有的人用7步
9765-5679=4086 8640-0468=8172 8721-1278=7443
7443-3447=3996 9963-3699=6264 6642-2466=4176
7641-1467=6174
为什么呢?
(学生说)
三、数字黑洞153
任意找一个3的倍数的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方、求和,......,重复运算下去,就能得到一个固定的数——153,我们称它为数字“黑洞”。
举例
例如:63是3的倍数,按上面的规律运算如下:
6^3+3^3=216+27=243,
2^3+4^3+3^3=8+64+27=99,
9^3+9^3=729+729=1458,
1^3+4^3+5^3+8^3=1+64+125+512=702
7^3+0^3+2^3=351,
3^3+5^3+1^3=153,
1^3+5^3+3^3=153,
...
现在继续运算下去,结果都为153,如果换另一个3的倍数,试一试,仍然可以得到同样的结论,因此153被称为一个数字"黑洞".
那么,出现这些结果究竟有没有科学依据呢?答案当然是肯定的,这个规律等同学们的知识再丰富些,上了初中高中以后就可以继续探究其根源了。