变频器实现分条机张力控制的原理及应用

合集下载

应用变频器中心卷绕功能精确控制张力

应用变频器中心卷绕功能精确控制张力

应用变频器中心卷绕功能精确控制张力文章链接:中国纺织服装机械网/news/Detail/9910.html纺织生产过程中的半成品或成品,如纱线、布匹需要卷绕在轴或辊上,例如:分批整经机将成片纱卷绕在经轴上;浆纱机和浆染联合机将成片浆过的纱卷绕在织轴上;卷染机和轧卷染色机将布卷绕在收放辊上。

这些设备在卷绕过程中都有一个共性问题,即需要恒张力控制,卷绕直径从最小直径到最大直径,要求纱和布的张力保持不变。

利用变频器或交流伺服的中心卷绕功能可以较好解决卷绕恒张力控制。

常见的卷绕方式有两种,即摩擦卷绕和中心卷绕。

摩擦卷绕的效果受摩擦辊的影响很大,如:分批整经机的经轴卷绕,传统的机构采用摩擦辊卷绕方式,由于摩擦传动易使纱线增加毛羽,影响产品质量,且不利于后道工序生产,特别是在升速和降速过程,影响会更大,也限制了整经机向高速发展。

所以新型的高速整经机多数采用中心卷绕方式。

浆纱机和染浆联合机的织轴卷绕,传统的机构采用机械式无级变速器(PIV)作为中心卷绕方式。

经过长期生产实践,PIV机械故障频繁,维修保养复杂,同时随着无梭织机的发展,要求织轴大卷装,PIV很难满足大卷装织轴恒张力卷绕的要求。

卷染机和轧卷染色机的织物卷绕,传统的卷绕机构较多采用直流电动机控制系统,作为中心卷绕方式,直流控制系统技术成熟,控制方便,能较好地满足生产要求。

但直流电动机有整流子和碳刷,需经常维护,特别在印染企业环境恶劣,直流电动机故障率高,企业不大欢迎。

自从变频器技术问世以来,人们考虑将变频调速技术应用到中心卷绕机构,可以发挥交流电动机固有的优点,结构简单、坚固耐用、经济可靠。

经过多年的实践证明,变频调速技术可以满足中心卷绕的要求,国内外的整经机、浆纱机、卷染机等同类设备已大量采用变频器中心卷绕技术。

在张力控制要求更高的场合,采用交流伺服中心卷绕技术。

经轴卷绕、织轴卷绕、布辊卷绕采用中心卷绕方式,当卷绕直径从小直径向大直径变化时(浆纱机织轴最小卷径为100mm,最大卷径为1000mm;卷染机卷布辊最小卷径为200mm,最大卷径为1500mm)为了使纱或布的表面张力保持不变,必须保证转速的变化与卷径成反比,转矩的变化与卷径成正比,若没有转矩补偿,随着卷径的增大,则纱或布的张力会逐渐减少。

第二章张力控制原理介绍

第二章张力控制原理介绍

第二章 张力控制原理介绍 2.1 典型收卷张力控制示意图22.2 张力控制方案介绍对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。

1、开环转矩控制模式开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。

转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。

根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。

MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。

2、与开环转矩模式有关的功能模块:1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。

张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。

2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。

3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。

摩3擦补偿可以克服系统阻力对张力产生的影响。

3、闭环速度控制模式闭环是指需要张力(位置)检测反馈信号构成闭环调节,速度控制模式是指变频器根据反馈信号调节输出频率,而达到控制目的,速度模式变频器可工作在无速度传感器矢量控制、有速度传感器矢量控制和V/F控制三种方式中的任何一种。

张力调节机构在分切机中的作用

张力调节机构在分切机中的作用

张力调节机构在分切机中的作用
《张力调节机构在分切机中的作用》
分切机是一种用于将连续材料切割成所需尺寸的机械设备,常见于纸张、塑料薄膜等行业中。

在分切机的操作过程中,材料的张力是一个非常重要的因素,而张力调节机构在其中起着至关重要的作用。

张力调节机构可以帮助控制材料在分切机中的张力,从而确保在切割过程中材料不会出现松弛或过紧的情况。

这对于保证切割的准确性和材料的质量都非常重要。

通过调节张力,可以避免在切割过程中材料因为张力不均衡而出现扭曲或形变的情况,同时还可以减轻刀具磨损,提高切割效率。

另外,张力调节机构还可以根据不同材料的特性和要求进行调整,以满足不同的生产需求。

一些材料可能需要更大的张力才能确保切割的准确性,而另一些材料可能需要更小的张力以避免因过紧的张力而导致断裂。

总而言之,张力调节机构在分切机中的作用至关重要,它不仅可以帮助控制材料的张力,确保切割过程的准确性和质量,还可以根据不同材料的需求进行调整,满足不同的生产需求。

因此,在选择分切机时,应该重视张力调节机构的性能和稳定性。

张力控制原理教程

张力控制原理教程

10本文从应用的角度阐述了当前技术条件下,矢量变频技术在卷取传动中运用和设计的方法和思路。

有较强的实用性和理论指导性。

关键词:张力变频矢量转矩卷径引言:在工业生产的很多行业,都要进行精确的张力控制,保持张力的恒定,以提高产品的质量。

诸如造纸、印刷印染、包装、电线电缆、光纤电缆、纺织、皮革、金属箔加工、纤维、橡胶、冶金等行业都被广泛应用。

在变频技术还没有成熟以前,通常采用直流控制,以获得良好的控制性能。

随着变频技术的日趋成熟,出现了矢量控制变频器、张力控制专用变频器等一些高性能的变频器。

其控制性能已能和直流控制性能相媲美。

由于交流电动机的结构、性价比、使用、维护等很多方面都优于直流电动机,矢量变频控制正在这些行业被越来越广泛的应用,有取代直流控制的趋势。

张力控制的目的就是保持线材或带材上的张力恒定,矢量控制变频器可以通过两种途径达到目的:一、通过控制电机的转速来实现;另一种是通过控制电机输出转矩来实现。

速度模式下的张力闭环控制速度模式下的张力闭环控制是通过调节电机转速达到张力恒定的。

首先由带(线)的线速度和卷筒的卷径实时计算出同步匹配频率指令,然后通过张力检测装置反馈的张力信号与张力设定值构成PID闭环,调整变频器的频率指令。

同步匹配频率指令的公式如下:F=(V×p×i)/(π×D)其中:F 变频器同步匹配频率指令V 材料线速度p 电机极对数(变频器根据电机参数自动获得)i 机械传动比D 卷筒的卷径变频器的品牌不同、设计者的用法不同,获得以上各变量的途径也不同,特别是材料的线速度(V)和卷筒的卷径(D),计算方法多种多样,在此不一一列举。

这种控制模式下要求变频器的PID调节性能要好,同步匹配频率指令要准确,这样系统更容易稳定,否则系统就会震荡、不稳定。

这种模式多用在拉丝机的连拉和轧机的连轧传动控制中。

若采用转矩控制模式,当材料的机械性能出现波动,就会出现拉丝困难,轧机轧不动等不正常情况。

张力控制——精选推荐

张力控制——精选推荐

张力控制系统往往是张力传感器和张力控制器的一种系统集成,目前主要应用于冶金,造纸,薄膜,染整,织布,塑胶,线材等设备上,是一种实现恒张力或者锥度张力控制的自动控制系统,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。

这种控制对机器的任何运行速度都必须保持有效,包括机器的加速、减速和匀速。

即使在紧急停车情况下,也应有能力保证被分切物不破损。

张力控制的稳定与否直接关系到分切产品的质量。

若张力不足,原料在运行中产生漂移,会出现分切复卷后成品纸起皱现象;若张力过大,原料又易被拉断,使分切复卷后成品纸断头增多。

一、标准变频器与收放卷变频器型号介绍尤尼康收放卷行业专用变频器,可以进行卷径计算。

AF201仅仅支持速度控制模式,AF202不仅支持速度控制模式,还支持转矩控制模式。

AF200标准产品不能进行卷径计算,收放卷行业专用变频器系列包括了标准产品的主要功能,还有行业特定的功能,可以进行卷径计算,有相应卷径计算功能码做相关设置,比如H0.00、H1.00、H1.24等等功能码。

AF201标准产品仅仅能做一个无速度编码器反馈的矢量控制,比如木工机械、音乐喷泉、扶梯、陶瓷机械、离心机、塑料吹塑机、细微拉丝机、磨床、雕铣机、跑步机、大圆机等等行业应用中。

AF202可以做有速度编码器反馈的闭环矢量速度控制,还能做转矩控制,设置PD.00=1变频器由速度控制模式变为转矩控制模式,这里可以设置P6.21作转矩给定或者张力给定及速度限定。

主要应用有:替换力矩电机、皮革机、鱼网编织机、浸胶机等等。

AF201收放卷行业专用变频器只能实现有位置摆杆或者浮动辊的速度控制,比较典型的行业应用是拉丝机速度控制。

AF201收放卷行业专用变频器可实现卷径计算、进行PID调节的复合控制模式实现恒定线速度收放卷控制。

应用行业主要有:双变频拉丝机、直进式拉丝机、层绕机、动力放线架、复卷机等等。

AF202收放卷行业专用变频器包含了AF201收放卷行业专用变频器的主要功能,不仅能做速度控制,还能做转矩控制,可以实现恒定转矩控制或者恒定张力控制。

张力控制原理介绍

张力控制原理介绍

第二章张力控制原理介绍2.1 典型收卷张力控制示意图浮动辊F牵引辊收卷图2 带浮动辊张力反馈收卷F牵引辊图1 无张力反馈32.2 张力控制方案介绍对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330 设计了两种张力控制模式。

1、开环转矩控制模式开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。

转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。

根据公式F=T/R(其中F 为材料张力,T 为收卷轴的扭矩,R 为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。

MD 系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG 卡)。

2、与开环转矩模式有关的功能模块:1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。

张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。

2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。

3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。

摩4擦补偿可以克服系统阻力对张力产生的影响。

3、闭环速度控制模式闭环是指需要张力(位置)检测反馈信号构成闭环调节,速度控制模式是指变频器根据反馈信号调节输出频率,而达到控制目的,速度模式变频器可工作在无速度传感器矢量控制、有速度传感器矢量控制和V/F 控制三种方式中的任何一种。

汇川张力变频器说明书

汇川张力变频器说明书第一章引言汇川张力变频器是一种用于控制电动机转速和扭矩的设备。

它采用先进的变频技术,能够实现对电机的精确控制,提高电机的运行效率,降低能耗。

本说明书将详细介绍汇川张力变频器的特点、工作原理、安装方法、操作步骤和维护要点,帮助用户正确使用和维护该设备。

第二章特点1. 高性能:汇川张力变频器采用先进的控制算法和电路设计,具有良好的性能指标,能够满足各种应用需求。

2. 稳定可靠:采用优质的元器件和可靠的电路设计,确保设备的稳定运行和长寿命。

3. 能效优化:通过精确的转速控制和变频技术,可以降低电机的能耗,提高系统的能效。

4. 易于安装:汇川张力变频器采用模块化设计,安装简便,方便用户进行操作。

5. 多种保护功能:具备过载保护、过热保护、短路保护等多种保护功能,有效保护设备和电机的安全运行。

第三章工作原理汇川张力变频器主要由电源模块、控制模块和输出模块组成。

电源模块为整个系统提供稳定的电源;控制模块采集输入信号,并通过控制算法进行处理,输出控制信号;输出模块将控制信号转换为电机的供电信号,实现对电机的精确控制。

第四章安装方法1. 确保供电电源符合设备要求,并具备良好的接地条件。

2. 按照设备标识将电源线和电机连接正确,确保接线牢固可靠。

3. 将控制线连接到对应的控制接口,确保信号传输畅通。

4. 安装完毕后,进行设备的初次调试和功能测试,确保设备正常运行。

第五章操作步骤1. 按下电源开关,设备开始供电,显示屏上会显示设备的基本信息。

2. 根据需要设置转速和扭矩等参数,可通过键盘输入或旋钮调节。

3. 按下启动按钮,设备开始工作,电机按照设定的转速和扭矩运行。

4. 在设备运行过程中,可以通过监控设备的运行状态和参数,及时调整设备工作状态。

第六章维护要点1. 定期检查设备的电源和接线,确保供电正常,接线可靠。

2. 定期清洁设备的外壳和散热器,保持设备的良好散热条件。

3. 定期检查设备的保护功能是否正常,如过载保护、过热保护等。

张力控制原理介绍

第二章张力控制原理介绍2.1 典型收卷张力控制示意图浮动辊F牵引辊收卷图2带浮动辊张力反馈收卷F牵引辊图1无张力反馈32.2 张力控制方案介绍对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330 设计了两种张力控制模式。

1、开环转矩控制模式开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。

转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。

根据公式F=T/R(其中F 为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。

MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG 卡)。

2、与开环转矩模式有关的功能模块:1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。

张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。

2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。

3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。

摩4擦补偿可以克服系统阻力对张力产生的影响。

3、闭环速度控制模式闭环是指需要张力(位置)检测反馈信号构成闭环调节,速度控制模式是指变频器根据反馈信号调节输出频率,而达到控制目的,速度模式变频器可工作在无速度传感器矢量控制、有速度传感器矢量控制和V/F 控制三种方式中的任何一种。

张力控制器在变频器中的应用

张力控制器在变频器中的应用在丙纶纺粘无纺布后处理联合机中,无纺布首先经过扩散风道牵伸,然后在铺网机上成网以后,用预压辊进行第一次成型,再用热轧机进行第二次成型,第二次成型热轧机可以根据用户的要求轧出不同的花纹,来满足市场的需要,第二次成型的无纺布再通过几道扩幅辊,冷却辊,张力辊等等,最后用收卷机收卷。

收卷效果的好坏,往往处决于热轧机和收卷机之间的张力的恒定,张力控制的稳定,收卷的效果肯定令人满意。

在传统的张力控制方案中,一般都是使用张力控制器,把张力传感器接到张力控器上,作为张力反馈;在张力控制器上设定工艺所需要的张力,作为张力给定;然后张力控制器把给定的张力和反馈过来的张力进行PID运算,最后输出模拟量信号给变频器作为主令信号去驱动负载。

在这种张力控制系统中,不但张力控制器要求相当高,而且对变频器的要求也很高,变频器不仅要有很快的响应时间,还要对模拟量有很好调节的滤波时间。

因此控制成本不但偏高,而且在现场调试时很不方便,所以提出一种用变频器来取代张力控制器对此进行张力控制的方案。

变频器做张力控制方案时比较常见而成熟的有两种选择方式:一是开环张力控制转矩模式;二是闭环张力控制速度模式。

开环张力控制模式不需要张力反馈,系统配置少,但张力控制精度略低,加减速时张力控制效果没有稳速时好。

闭环张力控制模式需要张力反馈,但在整个加减速及稳速运行中都能够保持张力恒定。

鉴于此,我们决定采用张力控制变频器的闭环张力控制模式。

变频器闭环张力控制速度模式时,变频器参数中必须先择F3.06=1。

变频器有三个模拟量输入端子,且每个端子都有各自独立的滤波时间,同时还可以通过功能码设置端子接收的信号类型(电压,电流等)。

张力传感器检测出来的实际张力信号,接在一个张力显示表上,张力表可以把传感器信号转换成不同类型的模拟量信号(0-5V,0-10V,±10V等),然后送给变频器作为张力反馈信号。

假定收卷机实际运行的频率设为F,实际的运行中F=F1+ FPID,F1:为同步频率,在此方案中来源于热轧机变频器的模拟量输出,经过机械传动比,前后压辊,卷筒等参数计算后作为同步频率;FPID 是变频器经过PID运算后得到的计算频率。

张力控制典型应用

张力控制典型应用一、张力控制对于张力控制精度要求较高的场合,可以构成直接张力闭环控制系统。

采用艾默生TD3300变频器的张力闭环速度模式,这种控制方式要求主拉引电机的线速度与收卷电机在空卷时刻(此时转速最高)基本保持一致。

这样可以大大减少PID的调节器节量,对系统的高速稳定非常有利。

二、张力闭环控制方案:由系统的线速度和卷筒的卷径实时计算出同步转速作为变频器的主设定指令,通过张力检测装置反馈张力信号构成PID闭环,在主设定的基础上调整变频器的输出频率。

此方案中,保证比较准确的主设定指令可以减少PID的调节量,使系统在速度变化时仍然张力平稳。

张力摆杆的问题。

对配重的理解仅仅认为配重可以改变收取的松紧程度,对控制的影响认识不足。

但是,当张力摆杆上配重比较轻时,开机的时候因为摆杆在下限位置,此进主给定与PID共同作用使卷绕电机加速,纸张张紧,摆杆上移比较快,移动到平衡位置以上时,PID 运算的结果使得卷绕电机减速,摆杆又下坠。

这样在启动过程中,摆杆将不易平衡。

合适的配重对系统的正常运行是极其重要的。

而且生产不同的产品时,要移动配重到合适的位置,以保证合适的张力。

收卷变频器的加减速。

TD3300变频器的加减速度时间设置的较小为好,最好不要大于3S,而且要配置刹车电阻。

如果卷筒变化率比较小的话(满卷与空卷比小于1.2),也可以不加刹车电阻,但要适当延长加减速时间。

三、TD3300张力控制变频器具有以下特点:1. 多样的张力控制方式,满足用户各种工艺要求。

2.具有收卷模式/放卷模式切换功能。

3.可数字设定张力锥度,实现卷取过程中张力的精确控制。

4. 丰富的卷径计算功能。

a.由模拟量输入端口直接输入卷径。

适用于具有卷径传感器(超声波传感器、摆杆)的应用场合。

b.由输入的线速度计算卷径。

线速度可以是外部模拟输入,也可以通过X8端子输入的脉冲计算。

c.厚度累积法计算卷径。

通过输入卷取材料的厚度,卷绕次数等参数自动计算卷径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变频器实现分条机张力控制的原理及应用
作者:佚名转贴自:NET/DXZM 点击数:569
摘要:本文主要介绍了分条机的用途、工艺要求、控制方式、控制难点以及实现的方法、调试过程。

重点介绍了如何用台达V系列的变频器实现张力控制。

应用V系列变频器实现转矩控制时应该注意的调试步骤、过程及参数的设定。

关键字:台达机电分条机张力控制变频器
1引言
胶带、保护膜生产设备主要包括各种胶粘制品及无胶纸类、布类、皮革类、多种塑料制品类物料的上胶、多层贴合、分条、复卷、分切、冲型机械等。

其中分条机在生产过程中根据不同需要对材料进行切边、分切等。

其中分条机(图1)主要用于将宽幅卷材分切成窄幅卷材。

分条工艺包括放卷和收卷两个过程。

放卷和收卷的张力控制是分条机的关键自动化环节。

本案例的方案特点是在原有电控系统的基础上选用变频器实现收放卷转矩控制,达到了理想的效果,在原来的基础上提高了机器工作性能,使机器在高速运转中更趋稳定,操作方便,安全可靠,耐用性强,减轻了劳动强度。

2.2系统分析
收放卷工艺要求恒张力控制。

张力的给定通过张力控制器。

张力控制器控制的原理是通过检测收卷的线速度计算卷径,负载转距=F*D/2(F为设定张力,D为当前卷径),因此当设定了张力的大小,因为当前卷径通过计算已得知,所以负载转矩就可以算出来了。

张力控制器能够输出标准的0~10V的模拟量信号,对应异步电机的额定转矩。

所以我们用该模拟量信号接入变频器,选择转矩给定。

这样在整个收卷的动态过程中,能够保证张力的恒定。

在变频器转矩模式下,对速度进行限制。

在张力控制模式下,不论直流电机、交流电机
还是伺服电机都要进行速度的限制,否则当电机产生的转距能够克服负载转矩而运行时,会产生转动加速
度,而使转速不断的增加,最终升速到最高速,就是所谓的飞车。

如图2中所示,收放卷的速度是通过主轴B系列变频器的模拟量输出AFM而进行限定的。

也就是将主轴B系列的变频器上3-05(模拟信号输出选择)参数设定为03(频率指令输出),如图3所示。

将该信号分别接到收放卷变频器的模拟量输入端口上,作为频率给定和上限频率的设定信号。

零速张力控制要求。

当收放卷以0Hz运行时,电机的输出轴上有一定的张力输出,且可调。

该要求主要是防止当收放卷运转当中停车,再启动时能够保证收放卷的盘头不会松掉。

在该控制系统中,可以通过调整张力控制器上的初始张力设定而达到要求。

2.3分条机恒张力原理设计
1.恒张力控制的原理。

对于收放卷过程中恒张力控制的实质是需要知道负载在运行当中卷径的变化,因为卷径的变化,导致为了维持负载的运行,需要电机的输出转矩要跟随着卷径的变化而变化。

对与V系列变频器而言,因为能够做转矩控制,因此能够完成收卷恒张力的控制。

V系列变频器提供了三路模拟量输入端口,AUI、AVI、ACI。

这三路模拟量输入口能够定义为多种功能,因此,可以任选一路作为转矩给定,另外一路作为速度限制。

0~10V对应变频器输出0~电机额定转矩,这样通过调整0~10V的电压就能够完成恒张力的控制。

而对于分条机,计算卷径的部分是通过张力控制器来计算的,当然用PLC架构来实现也是没有问题的。

也就是说,可以通过在人机或文本上设定张力,通过PLC计算卷径,T=F*D/2,所以可以算出需要电机输出的转矩大小,通过模拟量输出接到V系列变频器的转矩给定端就可以了。

2.同步转速计算。

因为我们知道变频器工作在低频时,交流异步电机的特性不好,激活转矩低而且非线性因此在收卷的整个过
程中要尽量避免收卷电机工作在2HZ以下。

因此收卷电机有个最低速度的限制。

对于四极电机而言其同步转速计算如下:
n1=60f1/p=>n1=1500r/min=>2HZ/50HZ=N/1500=>n=60rpm/min
(f1-为额定频率、p-为极对数、n1-同步转速)
3.限速运行。

当达到最大卷径时,可以求出收卷整个过程中运行的最低速:
V=π*D*n/i=>Vmin=3.14*1.2*60/9=25.12m/min
张力控制时,要对速度进行限制,否则会出现飞车,因此要限速运行。

4.张力及转矩的计算。

如果F*D/2=T/i(F--张力、D--卷径、T--转距、i--减速
比),=>F=2*T*i/D对于3.7KW的交流电机,其额定转矩的计算如下:
T=9550*P/n=>T=24.88N.m所以Fmax=2*24.88*9/0.6=74.64N
(T-电机的额定转距、P-电机的额定功率、n-为电机的额定转速)
3调试过程及参数设定
3.1 V系列变频器电机参数的自整定
1将驱动器的所有参数恢复成出厂值。

2将电机轴与负载脱开。

3将电机额定电压01-02、电机额定频率参数01-01、分别正确填入数值。

4将参数05-00设定为1,然后按Keypad RUN的命令,此时立即执行电机的自动整定。

执行约2min的时间(功率越大,要将加减速时间设定长一些)。

5执行后检查05-02、05-06~05-09、05-12、05-16~19参数是否已自动将测量的数据填入,若没有请再次设定05-00参数,RUN一次。

3.2 V系列变频器闭环矢量试运行
将运行方式设定为面板启动,频率给定方式为面板给定。

运行方式为V/F+PG将频率设
定成10Hz,然后运行,观察变频器是否会报PG报警,如果报PG报警,则将10-01设定为1(原来为0,反之设定为0),然后断电重新上电。

再次按运行按钮,确保变频器不再报警,同时按Mode键,切换置显示运行频率,观察运行频率是否在10Hz上下波动,确保闭环矢量运行调试完成。

3.3V系列变频器转距控制参数设定
1主轴VFD037B43A参数设定。

01-00-----------50 最大操作频率
01-01-----------50 最大电压频率
02-00-----------1 第一频率来源(AVI)
02-01-----------1 第一运转指令来源(外部端子启动)
03-05-----------3 频率指令输出
2收放卷VFD037V43A参数设定。

00-04----------40 观察上限频率
00-20----------2 频率指令来源(外部模拟量输入)
00-21----------1 运转指令来源(外部端子启动)
01-00----------50 最大操作频率
01-01----------50 最大电压频率
00-12----------1 第一加速时间
00-13----------1 第一减速时间
03-00----------4 AVI上限频率限定
03-02----------1 转距给定
03-09----------110 模拟量输入增益(AVI)
03-11----------200 模拟量输入增益(AUI)
10-00----------1024 编码器线数
10-01----------1 编码器方向
4结束语
当应用V系列变频器做张力控制时,一定要考量控制介质能承受的张力范围。

保证张力控制的范围不能太小,一般张力范围在几百牛顿甚至更大时,用变频器做张力控制是能够满足客户的需要的。

如果张力范围太小,是无法用变频器进行张力控制的。

因为低转距、小负载时,V系列变频器的性能还是不是非常好,将转距调到非常小时,电机运转不是很平稳。

所以在做类似的应用时还是要了解清楚客户的要求,以免无法达到客户的要求。

相关文档
最新文档