精炼贝叶斯均衡例题

合集下载

贝叶斯公式经典例题讲解

贝叶斯公式经典例题讲解

贝叶斯公式经典例题讲解
《贝叶斯公式经典例题讲解》
贝叶斯公式是一种概率公式,它可以在条件概率中派上用场。

贝叶斯公式可以用来计算在已知事实的情况下,某个事件发生的可能性。

一、贝叶斯公式
贝叶斯公式可以表示为:P(A|B)= P(B|A)* P(A)/ P(B)其中,P(A|B)是条件概率,即事件A在B已发生的情况下发生的概率;P(B|A)是反条件概率,表示事件B在A已发生的情况下发生的概率;P(A)表示事件A发生的概率;P(B)表示事件B发生的概率。

二、经典例题讲解
以下是贝叶斯公式的一个典型例题:
假设在一个学校中,有1000名学生,其中90%的学生爱看书,80%的学生爱看电视,另外有30%的学生同时喜欢看书和看电视。

现在随机抽取一名学生,问这位学生是否同时喜欢看书和看电视?
解:P(同时喜欢看书和看电视|随机抽取一名学生)= P(随机
抽取一名学生|同时喜欢看书和看电视)* P(同时喜欢看书和看电视)/ P(随机抽取一名学生)
= 0.3*0.3/1
=0.09
因此,这位学生同时喜欢看书和看电视的概率为0.09。

- 1 -。

不完全信息库洛特模型中,贝叶斯均衡例题

不完全信息库洛特模型中,贝叶斯均衡例题

不完全信息库洛特模型中,贝叶斯均衡例题在不完全信息库洛特模型中,贝叶斯均衡是指每个玩家根据自己拥有的信息和对其他玩家的判断,做出的最优策略选择。

下面是一个贝叶斯均衡的例题及解析:假设有两名玩家A和B参与一个拍卖活动,拍卖品的真实价值为100元。

玩家A对拍卖品的价值有两种可能性,要么为50元,要么为150元,每种可能性的概率均为0.5。

玩家B对拍卖品的价值没有信息,他只知道拍卖品的真实价值是50元或150元的概率各为0.5。

现在,A选择一个报价x,B选择一个报价y,拍卖规则为:如果x > y,则A以x的价格购买拍卖品;如果x ≤y,则A不购买。

解析:首先,我们需要计算A在不同情况下的最优策略。

当A的价值为50元时,他会选择一个报价x来使得他的期望收益最大化。

假设A 选择报价x1,那么他购买拍卖品的期望收益为:E1 = 0.5 * (100 - x1) + 0.5 * 0 = 50 - 0.5x1。

同样地,当A的价值为150元时,他的期望收益为:E2 = 0.5 * (100 - x2) + 0.5 * 0 = 50 - 0.5x2。

玩家B在没有信息的情况下,他会选择一个报价y来使得他的期望收益最大化。

无论B的报价是多少,他购买拍卖品的期望收益都为:E3 = 0.5 * (150 - y) + 0.5 * (50 - y) = 100 - 0.5y。

现在我们来求解贝叶斯均衡。

在贝叶斯均衡下,每个玩家的报价都是最优的,即他们的期望收益都最大化。

对于玩家A,他会选择一个报价x使得E1和E2中的较大值最大化。

由于E1和E2都是关于x的线性函数,因此他会选择使E1和E2中的较大值等于50的x值。

也就是说,无论A的价值是50元还是150元,他都会选择报价50。

对于玩家B,他会选择一个报价y使得E3最大化。

由于E3是关于y的线性函数,因此他会选择y值使得E3的斜率等于0,也就是y=100。

因此,在这个不完全信息库洛特模型中,贝叶斯均衡下的最优策略是,玩家A选择报价50,玩家B选择报价100。

贝叶斯公式典型例题

贝叶斯公式典型例题

贝叶斯公式典型例题
贝叶斯公式是一种计算条件概率的公式,常用于根据已知条件更新某个事件发生的概率。

下面是一个贝叶斯公式的典型例题:
例:假设有两种类型的围棋棋手,分别是专业棋手和业余棋手。

专业棋手在比赛中获胜的概率为0.9,而业余棋手获胜的概率为0.3。

已知在所有棋手中,专业棋手占70%,业余棋手占30%。

现在有一场比赛,我们只知道其中一位棋手获胜了,那么这位棋手是专业棋手的概率是多少?
解:首先,我们定义以下事件:
•A:棋手是专业的
•B:棋手获胜
根据题意,我们知道:
•P(A) = 0.7(专业棋手占比)
•P(¬A) = 0.3(业余棋手占比)
•P(B|A) = 0.9(专业棋手获胜的概率)
•P(B|¬A) = 0.3(业余棋手获胜的概率)
我们要找的是P(A|B),即在已知棋手获胜的条件下,棋手是专业的概率。

根据贝叶斯公式,我们有:
P(A|B) = \frac{P(A) \times P(B|A)}{P(A) \times P(B|A) + P(¬A) \times P(B|¬A)}将已知的概率值代入公式中,我们得到:
P(A|B) = \frac{0.7 \times 0.9}{0.7 \times 0.9 + 0.3 \times 0.3} = \frac{0.63}{0.63
+ 0.09} = \frac{0.63}{0.72} = 0.875
所以,在已知棋手获胜的条件下,这位棋手是专业棋手的概率为0.875。

这个例题展示了贝叶斯公式在更新条件概率方面的应用。

通过已知的概率值和贝叶斯公式,我们可以计算出在给定条件下的未知概率。

贝叶斯推理例子

贝叶斯推理例子

贝叶斯推理例子
1. 嘿,你想想看啊,比如说你去买彩票,你觉得中奖的概率有多大呢?这就可以用贝叶斯推理呀!你先根据以往的开奖情况大概估计一个基础概率,然后每次开奖后根据新的结果来调整你的概率判断,这多有意思啊!
2. 来,咱说个生活中的例子。

你判断今天会不会下雨,你会先根据天气预报和以往的经验来有个初步想法吧,但如果突然天空变得阴沉沉的,你不得赶紧调整你觉得下雨的概率呀,这就是贝叶斯推理在起作用呀,你说是不是?
3. 你知道怎么猜别人手里的牌吗?这也能用贝叶斯推理呢!看他的表情动作,先有个初步判断,然后随着每一轮出牌,不断更新你对他手里牌的估计,哎呀,多带劲啊!
4. 你想想,你找工作的时候,对拿到某个 offer 的概率判断不也是这样嘛!开始根据公司的要求和自己的情况有个想法,然后面试过程中根据各种表现来调整,这可真是贝叶斯推理的活用呀!
5. 就像你猜你喜欢的人对你有没有意思,一开始你有个感觉,然后通过他跟你的每次互动,你不就会调整那个可能性嘛,这就是贝叶斯推理呀,神奇吧!
6. 好比你玩猜数字游戏,你先乱猜一个,然后根据提示不断缩小范围,调整你的猜测,这不就是活脱脱的贝叶斯推理嘛,多好玩呀!
7. 哎呀,你看医生诊断病情也是这样的呀!根据症状先有个初步判断,然后做各种检查,根据检查结果不断改变对病情的推测,贝叶斯推理真的无处不在呢!
8. 再比如你预测一场比赛的结果,先有个大概想法,比赛过程中根据双方的表现来不断调整胜败的概率,这不是贝叶斯推理在帮忙嘛,多有用啊!总之,贝叶斯推理在我们生活中可太常见啦,好多事情都能靠它来让我们的判断更准确呢!。

贝叶斯博弈例子

贝叶斯博弈例子

贝叶斯博弈例子
以下是 8 条关于贝叶斯博弈例子:
1. 你想想在牌桌上呀,就像咱打牌的时候,你先根据对手前面出的牌来判断他手里大概有啥牌,这不就是贝叶斯博弈嘛!比如说你看到对手老是出小牌,那是不是大概率他手里大牌不多呀!
2. 去商场买东西砍价也有点这个感觉呢!你看商家报价,然后根据他的态度和表情猜测他的底线,这也是一种贝叶斯博弈嘞!要是他看起来很犹豫,那是不是代表咱还能往下砍砍价呀!
3. 在求职面试的时候呀,你得根据面试官的提问和反应来调整自己的回答策略,这难道不是贝叶斯博弈吗?好比面试官一直追问某个问题,那就得想着更深入地回答呀!
4. 学生时代考试猜答案也能算呢!当你不确定一个题目的答案时,根据以往对这类题目的了解去猜测,这不是贝叶斯博弈是啥呀!哎呀,要是以前做过类似的,那猜对的几率不就大多啦!
5. 谈恋爱的时候其实也有哦!你通过对方平时的言行举止来判断他的喜好和想法,这算不算是在进行贝叶斯博弈呢?比如说他总提到某个东西,那是不是表示他可能很喜欢呀!
6. 参加比赛的时候呀,观察对手的表现来调整自己的战术,这就是活生生的贝叶斯博弈呀!要是看到对手有个弱点,那不就得抓住机会嘛!
7. 玩游戏抢地盘的时候呢,根据其他玩家的行动来决定自己该怎么行动,不也是贝叶斯博弈嘛!他们都往左边去了,那右边是不是咱的机会就来了呀!
8. 去市场买菜的时候呀,看着菜的品质和价格,还有老板的态度,来决定要不要买,这就是一种贝叶斯博弈嘛!要是老板很热情,菜看着也不错,那咱肯定更愿意买啦!
我觉得贝叶斯博弈在我们生活中可太常见了,很多时候我们都在不知不觉中运用着它呢!。

不完全信息博弈求解方法

不完全信息博弈求解方法

不完全信息博弈求解方法1. 嘿,大家想想看,贝叶斯法则不就是个超级厉害的办法嘛!就好像你去猜一个盒子里有啥,先根据经验猜一下,然后随着新信息的出现不断调整猜测,这多妙啊!比如玩猜数字游戏,一开始你可能瞎猜个 50,然后别人说大了,你不就赶紧调整范围往小了猜嘛!贝叶斯法则就是这样帮我们在不完全信息下越来越接近真相。

2. 还有呢,最大期望策略也是超有用的呀!这不就像你在走路,会选择那条看起来最有可能带你到目的地的路嘛!比如说你在商场找一家店,你会根据之前的经验和现在看到的指示牌,选择那个最有可能找到店的方向走,这就是最大期望策略在起作用呢!3. 哎呀呀,精炼贝叶斯均衡也是很关键的哦!就好像两个人跳舞,要配合得特别好才行!比如在谈判的时候,双方都要根据对方的表现和可能的反应来调整自己的策略,达到一种平衡,这就是精炼贝叶斯均衡的魔力呀!4. 大家别忘了信号传递呀!这就如同黑夜中的灯塔,给你指引方向呢!举个例子,公司面试时,候选人展示各种证书和经历,就是在给公司传递信号,让公司更好地了解自己呀!5. 那逆向归纳法也是不能小瞧的呢!就像是你倒着推理一个事情的过程。

好比下棋,你会想如果我走这一步,对方可能怎么回应,然后依次往前推,这不就是逆向归纳法嘛!6. 重复博弈也很有意思呀!是不是像和老朋友一次又一次的互动呀?就像你和邻居经常打交道,慢慢就知道对方的脾气和习惯了,然后根据这些来调整自己的行为,多有意思呀!7. 动态规划也得重视起来呀!这就好像你在规划一个漫长的旅程,一步一步地安排。

比如说在项目管理中,根据不同阶段的情况,合理安排资源和时间,不就是动态规划嘛!8. 信息甄别也超重要的啦!这就像在一堆石头里找宝石,得有方法去分辨呀!像在招聘中设置不同的考核环节,就是为了甄别出真正适合的人才呢!9. 最后呀,策略性行动可不能忽略哦!这就如同下棋时的布局,要有长远眼光呢!比如企业在市场上做出一些行动来影响竞争对手的判断,这就是策略性行动的威力呀!总之,这些不完全信息博弈求解方法都很有用,大家要好好掌握呀!。

纯策略贝叶斯纳什均衡例题

纯策略贝叶斯纳什均衡例题

纯策略贝叶斯纳什均衡例题引言:纯策略贝叶斯纳什均衡是博弈论中常用的概念之一,它可以用于分析多方参与的决策问题。

本文将通过一个例题来解释纯策略贝叶斯纳什均衡的概念及应用。

例题背景:假设有两家咖啡店,分别是A店和B店。

每天早晨,两家咖啡店都需要决定自己的咖啡价格。

同时,消费者也需要决定去哪家咖啡店购买。

假设消费者根据市场情况作出购买决策。

A店和B店的利润与消费者选择有关。

情景一:A店设置较高的价格,B店设置较低的价格。

这种情况下,消费者更愿意选择购买B店的咖啡。

B店的利润将最大化,而A店的利润将最小化。

情景二:A店和B店都设置较低的价格。

这种情况下,消费者会更加倾向于选择购买A店的咖啡。

A店的利润将最大化,而B店的利润将最小化。

情景三:A店和B店都设置较高的价格。

这种情况下,消费者没有购买的动力,两家咖啡店的利润都会很低。

分析与求解:我们可以将上述情景转化为一个博弈论的模型,其中A店和B店是两个决策者,他们需要根据对方的策略来决定自己的策略。

消费者的选择将影响两家咖啡店的利润。

根据纯策略贝叶斯纳什均衡的概念,我们需要确定每个决策者的策略组合,以获得最优的结果。

在这个例题中,我们需要确定A店和B店的咖啡价格。

假设A店有80%的机会成为消费者的首选,B店有20%的机会。

根据这个信息,我们可以得到以下策略组合:情景一:A店设置高价格,B店设置低价格。

情景二:A店设置低价格,B店设置低价格。

情景三:A店设置高价格,B店设置高价格。

然后我们可以计算每种策略组合下两家咖啡店的利润,并找出使两家咖啡店利润最大化的策略组合。

结论:通过计算,我们可以得到以下结果:情景一:A店设置高价格,B店设置低价格。

这种情况下,A店的利润最大化,B店的利润最小化。

因此,纯策略贝叶斯纳什均衡的结果是,A店设置高价格,B店设置低价格时,两家咖啡店的利润最优化。

扩展思考:本例题中我们假设了A店有80%的机会成为消费者的首选,B店有20%的机会。

贝叶斯纳什均衡例题

贝叶斯纳什均衡例题

贝叶斯纳什均衡例题
贝叶斯纳什均衡 (Bayesian Nash Equilibrium) 是一种非合作的博弈理论。

在贝叶斯纳什均衡中,每个参与者根据其他参与者的策略和历史数据,计算出自己在给定其他参与者的策略下的最大收益,并采取最优策略。

以下是一个贝叶斯纳什均衡的例题。

假设有三个人,分别是 A、B、C,他们玩一个猜拳游戏。

游戏规则如下:
1. A 和 B 随机猜拳,胜负概率均为 50%。

2. 如果 A 和 B 获胜,则 C 获胜的概率为 25%。

3. 如果 A 和 B 失败,则 C 获胜的概率为 75%。

现在问,谁是游戏的胜者,如果 A 和 B 采取随机策略,而 C 采取最优策略。

根据贝叶斯纳什均衡的定义,我们需要计算出每个参与者在给定其他参与者策略下的最优策略。

首先,对于 A 和 B,由于他们是随机的,所以可以采取任何策略,因此他们的最优策略是随机。

其次,对于 C,他需要计算出自己在 A 和 B 随机策略下的最大收益。

根据游戏规则,如果 A 和 B 随机,则 C 的最大收益为 25%。

因此,C 的最优策略是采取赢的概率为 25% 的拳法。

最后,由于 C 已经采取了最优策略,A 和 B 将不得不采取随机策略。

因此,游戏的胜者是 C。

需要注意的是,贝叶斯纳什均衡只适用于非合作的博弈理论。

在合作博弈中,参与者之间的策略选择需要基于信任和相互利益。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精炼贝叶斯均衡例题
贝叶斯均衡是概率论中一个较为重要的分支,其基本理论是有限
理性决策理论。

它们是以Richard T. Ely在19世纪,使用经济学来
提出的,主要探讨如何在使用有限信息做决策的情况下,最大化效益。

精炼贝叶斯均衡是指在模型中,玩家对自身信息的正确性有信心
并且其他玩家也存在立场,在这种情况下的策略均衡。

通俗说法,它
是在玩家根据对手的行为,更加精准地估计对手所处的策略状态,以
及限制条件的情况下,产生的纳什均衡。

精炼贝叶斯均衡的计算,需
要使用具体的信息集和对玩家的行动做出正确的估计。

以下面一个例子来说明:
假设有一家咖啡厅准备推出新口味的拿铁,有两种口味,蜂蜜口
味和香草口味。

因为不同口味的制作流程不同,而且又有部分食材是
共通的,因此咖啡厅必须根据便利性考虑存储各种成分。

现在有两个人,Jack和Lucy,都喜欢在这家咖啡厅买咖啡。

他们对各种口味的选
择和买咖啡时间很有信心,而且他们都被告知了咖啡厅会根据每天的
订货量来决定存储的食材成分。

他们均希望让自己能够尽可能的喝到
新口味。

我们假设Jack和Lucy同等了解咖啡厅的情况,并且都认为咖啡
厅在每个工作日的早晨期间会根据他们的订货量来决定存储的食材成分。

如果订货量多,他们会添加更多的食材。

以上是对信息集的设置。

对于玩家的策略设置,我们定义了以下
几种:
对于咖啡厅,他们会考虑以下几种策略:
1. 咖啡厅只供应其中一种口味的咖啡
2. 咖啡厅以某种比率供应两种口味的咖啡
而对于买咖啡的玩家,他们的策略则包括:
1. Jack选择口味为香草的几率为p
2. Lucy选择口味为香草的几率为q
以上信息和设置提供了一个小的例子,可以帮助我们更加容易地理解精炼贝叶斯均衡的计算。

因为这个游戏中,两名玩家均有信心并且共享U0成分,那么我们就可以设计一个模型,来准确的计算出最优的商家策略和消费者策略,从而为各个方面提供最大的效益。

总之,精炼贝叶斯均衡的应用非常广泛,不仅在经济学,也在公司管理、政治学等领域有各种应用。

在实践中仍然有很多挑战,但它是均衡理论中,相对于纳什均衡等而言,更加符合真实世界的模型。

它能够为我们提供具体的决策方案,使得市场经济中各个行为主体之间的互动更加和谐、协调,产生最优的商业效应。

相关文档
最新文档