小学鸡兔同笼类型应用题及答案
鸡兔同笼的练习题及答案

鸡兔同笼问题的练习题及答案一、基础题1. 有一个笼子里有鸡和兔,共有头30个,脚90只,请问笼子里各有几只鸡和兔?2. 鸡和兔共40只,脚共有112只,求鸡和兔各有多少只?3. 笼子里有鸡和兔共35只,脚共有94只,鸡和兔各有多少只?4. 笼子里有鸡和兔共18只,脚共有52只,求鸡和兔的数量。
5. 有一个笼子里鸡和兔共有26只,脚共有70只,问鸡和兔各有多少只?二、提高题6. 有两个笼子,第一个笼子里有鸡和兔共20只,脚共有60只;第二个笼子里有鸡和兔共25只,脚共有70只。
请问两个笼子中鸡和兔各有多少只?7. 有三个笼子,分别装有鸡和兔,第一个笼子共15只,第二个笼子共20只,第三个笼子共25只,三个笼子的脚总数为96只。
求每个笼子中鸡和兔的数量。
8. 笼子里有鸡和兔共30只,如果增加5只鸡,脚的总数将增加20只,求原来笼子里鸡和兔各有多少只?9. 笼子里有鸡和兔共50只,脚共有140只,如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将增加40只。
求原来鸡和兔各有多少只?10. 有两个笼子,第一个笼子里鸡和兔共15只,第二个笼子里鸡和兔共25只,两个笼子的脚总数为100只。
求两个笼子中鸡和兔各有多少只?三、拓展题11. 有三个笼子,分别装有鸡和兔,第一个笼子共10只,第二个笼子共15只,第三个笼子共20只,三个笼子的脚总数为68只。
求每个笼子中鸡和兔的数量。
12. 笼子里有鸡和兔共40只,脚共有110只。
如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将减少30只。
求原来鸡和兔各有多少只?13. 有四个笼子,分别装有鸡和兔,第一个笼子共8只,第二个笼子共12只,第三个笼子共16只,第四个笼子共20只,四个笼子的脚总数为只。
求每个笼子中鸡和兔的数量。
14. 笼子里有鸡和兔共60只,脚共有160只。
如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将增加40只。
求原来鸡和兔各有多少只?15. 有五个笼子,分别装有鸡和兔,每个笼子的鸡和兔总数分别为10、15、20、25、30只,五个笼子的脚总数为140只。
六年级列方程解应用题-鸡兔同笼问题带答案

列方程解利用题—鸡兔同笼成绩之杨若古兰创作一、课前小练习:1、一个养兔厂养白兔100只,黑兔是白兔的,灰兔又占黑兔的,灰兔多少只?答案:45只2、 鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只? 答案:鸡:9只 兔:11只3、鸡兔同笼,头共70个,脚共186只,求鸡与兔各有多少个头?答案:鸡:47只 兔:23只二、常识点讲解: 例 1 鸡兔同笼,共有45个头,146只脚.笼中鸡兔各有多少只?解法一 假设全是兔子.(4×45-146)÷(4-2)=17(只)——鸡45-17=28(只)——兔解法二 假设全是鸡.(146-2×45)÷(4-2)=28(只)——兔45-28=17(只)——鸡答:鸡有17只,兔子有28只.拓展练习: 列方程解利用题,若在题干中含有多个量的情况下,在设出一个量为未知量时,必定要将其他的量用暗示出来1、在一个停车场上,停了汽车和摩托车一共32辆.其中汽车有4个轮子,摩托车有3个轮子,这些车一共有108个轮子.求汽车和摩托车各有多少辆?答案:汽车:12辆摩托车:20辆2、张大妈养鸡兔共200只,鸡兔够数共560只,求鸡兔各有多少只?答案:鸡:120只兔:80只3、鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只?答案:鹤:2只龟:14只例2蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.此刻这三种小虫16只,共有110条腿和14对翅膀.问,每种小鸟各几只?答案:蜘蛛有7只,蜻蜓有5只,蝉有4只拓展练习:螃蟹有10条腿,螳螂有6条腿和1对翅膀,蜻蜓有6条腿和2对翅膀.此刻这三种动物37只,共有250条腿和52对翅膀.每种动物各有多少只?答案:螃蟹有7只,螳螂有8只,蜻蜓有22只例3 鸡与兔共有32只,鸡的脚比兔的脚少8只,问鸡与兔各多少只?拓展练习:鸡与兔共有45只,兔的脚比鸡的脚多30只,问鸡与兔各多少只?答案:鸡:25只兔:20只例4已知鸡兔共居一笼,鸡、兔共有脚136只,若将鸡换成兔,兔换成鸡,则共有脚86只.问:鸡、兔各有几只?答案:鸡:22只兔:23只三、课后练习:1、有鸡兔共20只,脚44只,鸡兔各几只?答案:鸡:18只兔:2只2、鸡、兔共笼,鸡比兔多26只,够数共274只,问鸡、兔各几只?答案:鸡:63只兔:37只3、鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?答案:鸡:80只兔:20只4、鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?答案:鸡:124只兔:76只5、今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只,问鸡兔各几只?6、蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和23对翅膀,问蜘蛛、蝴蝶、蝉各有几只?答案:蜘蛛有8只,蝴蝶有10只,蝉有3只7、鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只.问:鸡、兔各有几只?答案:鸡:12只兔:19只8、有一群鸡和兔,腿的总数比头的总数的2倍多18只,兔有几只?答案:兔:9只假设法:假设全是鸡则总脚数为总头数的2倍兔:只9、小华买了2元和5元纪念邮票一共34张,用去98元钱.求小华买了2元和5元的纪念邮票各多少张?答案:2元:24张 5元:10张10、全班46人去划船,共乘12只船,其中大船每只坐5人,划子每只坐3人,求大船和划子各有多少只?答案:大船:5只划子:7只。
鸡兔同笼类型应用题

鸡兔同笼类型应用题鸡兔同笼类型或与此类似的应用题,可用假设法解的问题,有时需要把多个对象进行恰当组合以转化为两个对象而运用假设法1、松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个。
它连几天采了112个松籽,平均每天采14个。
问这几天当中有几天有雨?解答:松鼠妈妈一共采了112÷14=8天的松子,如果全部都是晴天,那么应该采20×8=160个,现在只采有112个是因为有雨天,所以而(160-112)÷(20-12)=6,这几天当中6天有雨。
2、三年级一班的40名同学参加植树,男生每人种3棵树,女生每人种2棵树。
已知男生比女生多种30棵树,问男、女生各有多少人?解答:如果男、女生一样多,那么男生比女生多种(3-2)×20=20棵树,实际男生比女生多种30棵树,是因为男生比女生多,男生每增加1名女生就减少1名,这样每增加1名男生,男生就是女生多种3+2=5棵树,所以男生的人数比20多(30-20)÷5=2名则男生22名,女生18名。
3、在一次数学竞赛共有20道题,规定答对题得10分,答错一题倒扣5分。
五年级有45名同学参加,共得5625分,那么这个班共答对多少道题?解答:如果这个班全部答对应得20×45×10=9000分,现在只得到5625分,是因为有人答错,而答错一道题较答对一道题要差10+5=15所以共答错(90005625):15=225,那么共答对了20×45 225=6754、托运玻璃仪器250箱,合同规定每箱运费20元,若有损坏,被损坏的箱不仅不给运费,还要每箱赔偿损失费100元。
那么运后结算时要想获得运费,最多只能损坏多箱?解答,如果没有损坏那么250箱可以获得运费20×250=5000元但是如果损坏一箱较没有损坏要少100+20=120钱,5000÷120≈41.7。
所以最多只能损坏41箱才能在结算时获得运费5、食品店上午卖出每千克为20元、25元, 30元的3种糖果共100千克,共收入2570元。
鸡兔同笼类型应用题

鸡兔同笼类型应用题一、鸡兔同笼问题基础概念与解法1. 鸡兔同笼问题的描述2. 解法一:假设法- 假设全是鸡- 解题思路:如果笼子里全是鸡,那么每只鸡有2只脚。
已知共有35个头,也就是鸡和兔的总数是35只。
如果全是鸡,那么脚的总数应该是35×2 = 70只。
但实际有94只脚,多出来的脚是因为把兔子当成鸡来算少算了脚,每只兔子比鸡多4 - 2=2只脚。
- 计算过程:实际脚数与假设全是鸡时脚数的差为94 - 70 = 24只,这24只脚就是兔子多出来的脚,所以兔子的数量为24÷2 = 12只,鸡的数量就是35 - 12 = 23只。
- 假设全是兔- 解题思路:如果笼子里全是兔,每只兔有4只脚,那么脚的总数应该是35×4 = 140只。
但实际有94只脚,少的脚是因为把鸡当成兔多算了脚,每只鸡比兔少4 - 2 = 2只脚。
- 计算过程:假设全是兔时脚数与实际脚数的差为140 - 94 = 46只,所以鸡的数量为46÷2 = 23只,兔子的数量就是35 - 23 = 12只。
3. 解法二:方程法- 设鸡有x只,兔有y只。
- 根据头的总数可得方程x + y=35(因为鸡和兔的总数是35只)。
- 根据脚的总数可得方程2x + 4y = 94(鸡有2只脚,兔有4只脚,总脚数是94只)。
- 由x + y = 35可得x = 35 - y,将其代入2x+4y = 94中,得到2(35 - y)+4y = 94。
- 展开式子:70 - 2y+4y = 94,2y = 94 - 70,2y = 24,解得y = 12。
- 把y = 12代入x = 35 - y,得x = 35 - 12 = 23。
1. 题目- 一个停车场里停着汽车和摩托车共24辆,这些车共有86个轮子。
问汽车和摩托车各有多少辆?2. 解析- 假设法- 假设全是摩托车- 解题思路:摩托车有2个轮子,如果24辆车全是摩托车,那么轮子总数是24×2 = 48个。
小学鸡兔同笼应用题习题练习

小学鸡兔同笼应用题习题练习 小学数学中,有一种经典的问题叫做鸡兔同笼问题。这种问题可以通过代数解方程或者逻辑推理解决,是培养孩子思维逻辑能力和解决实际问题能力的好题目。本文将提供一些鸡兔同笼应用题的习题练习,帮助学生巩固对这类题目的掌握。 1. 问题描述:一共有鸡和兔子在一个笼子中,它们的头一共有35个,脚一共有94只。问鸡和兔子各有多少只? 解题思路:我们设鸡的数量为x只,兔子的数量为y只。根据题目中的条件,可以列出如下方程组: x + y = 35 (1) 2x + 4y = 94 (2) 解方程组的步骤如下: 由方程(1)可知,y = 35 - x。将这个结果代入方程(2)中,得到:
2x + 4(35 - x) = 94 化简得到:2x + 140 - 4x = 94 合并同类项:-2x = -46 两边同时除以-2,得到:x = 23 将x = 23代入y = 35 - x中,可得y = 35 - 23,即y = 12。 所以,答案是:鸡有23只,兔子有12只。 2. 问题描述:一个农场只有鸡和兔子,它们的头一共有50个,脚一共有152只。问鸡和兔子各有多少只? 解题思路:同样设鸡的数量为x只,兔子的数量为y只。根据题目中的条件,可以列出如下方程组: x + y = 50 (3) 2x + 4y = 152 (4) 解方程组的步骤如下: 由方程(3)可知,y = 50 - x。将这个结果代入方程(4)中,得到: 2x + 4(50 - x) = 152 化简得到:2x + 200 - 4x = 152 合并同类项:-2x = -48 两边同时除以-2,得到:x = 24 将x = 24代入y = 50 - x中,可得y = 50 - 24,即y = 26。 所以,答案是:鸡有24只,兔子有26只。 通过以上两个例题,我们可以发现解决鸡兔同笼问题的关键在于建立方程组,然后通过解方程组来求得鸡和兔子的数量。 继续解题: 3. 问题描述:一个农场只有鸡和兔子,它们的头一共有50个,脚一共有130只。问鸡和兔子各有多少只?
鸡兔同笼六年级应用题

鸡兔同笼六年级应用题
鸡兔同笼六年级应用题是一道常见的数学题,通常用于计算笼子里有多少只鸡和兔子。
下面是一份鸡兔同笼六年级应用题的解答: 假设笼子里有 x 只鸡和 y 只兔子,根据题意可以列出以下方程组:
x + y = 总数
2x + 4y = 总腿数
第一个方程式表示总数量 + 总只数 = 总数,第二个方程式表示鸡和兔子的总腿数 = 总腿数。
通过解方程组,可以求出 x 和 y 的值。
具体步骤如下:
1. 将第一个方程式乘以 2,得到 2x + 2y = 总腿数。
2. 将第二个方程式减去上式,得到 2x + 4y - 2x - 2y = 总腿数 - 总脚数,化简后得到 2y = 总脚数 - 总腿数。
3. 将 2y 的式子两边都乘以 2,得到 4y = 总脚数,因此 y = 总脚数 / 4。
4. 将 y 的值代入第一个方程式,得到 x + 4(总脚数 / 4) = 总数。
5. 将 x 的值代入第一个方程式,得到 x + 总脚数 = 总数。
6. 将 x 和 y 的值代入任意一个方程式,得到唯一的解 x = 总数 / 2 - 总脚数 / 2 和 y = 总数 / 2 + 总脚数 / 2。
7. 最后,将 x 和 y 的值代入任意一个方程式,得到唯一的解 x = 鸡的数量 and y = 兔子的数量。
因此,鸡兔同笼六年级应用题的答案为:笼子里有 x 只鸡和 y 只兔子,x 和 y 的值为 (总数 / 2 - 总脚数 / 2) 和 (总数 / 2 + 总脚数 / 2)。
鸡兔同笼问题讲解及习题(含答案)

鸡兔同笼问题讲解及习题鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。
许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。
例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44—32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
‘解:有兔(44—2×16)÷(4—2)=6(只),有鸡16—6=10(只)。
答:有6只兔,10只鸡。
当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64—44=20(只)脚,这是因为把鸡当作兔了。
我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4—2=2(只)。
因此只要算出20里面有几个2,就可以求出鸡的只数。
有鸡(4×16—44)÷(4—2)=10(只),有兔16—10=6(只)。
由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。
因此这类问题也叫置换问题。
例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演变而得。
如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300—140=160(个)。
现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3—1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100—80=20(人)。
鸡兔同笼应用题(讲解,答案)

鸡兔同笼问题(讲解,答案)1、鸡兔同笼,共有头100个,足316只,求鸡兔各有多少只?兔:316÷2-100=58 鸡:100-58=422、小明花4元钱买贺年卡和明信片,共14张,贺年卡每张3角5分,明信片每张2角5分。
问:买了几张贺年卡,几张明信片?3角5分:(4-0.25×14)÷(0.35-0.25)=5 2角5分:14-5=93、鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。
鸡兔各几只?(100-92÷2)=4 鸡:(100-4×4)÷(2+4)=14 兔:14+4=184、100个馒头100个和尚吃,大和尚每人吃3个,小和尚每3人吃一个。
大、小和尚各有多少人?大和尚:100÷(3+1)=25 小和尚:25×3=755、30枚硬币,由2分和5分组成,共值9角9分。
两种硬币各多少枚?5分:(99-2×30)÷(5-2)=13 2分:30-13=176、有2角、5角和1元的人民币20张,共计12元,三种票子各多少张?2角的是5的倍数。
2角5张。
20-5=15张 12-0.2×5=11元5角:(1×15-11)÷(1-0.5)=8 1元:15-8=77、班主任老师带五年级二班50名学生去栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽两棵,总共栽树120棵。
有几名男生?几名女生?120-5=115 女生:(50×3-115)÷(3-2)=35 男生:50-35=158、100名师生绿化校园,老师每人栽3棵树,学生每两人栽1棵树,总共栽树100棵,求老师和学生各栽树多少棵?(2×100-100)÷(3-1/2)=80名学生:80÷2=40棵老师: 100-40=60棵9、80本语文书和100本数学书总价相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学鸡兔同笼类型应用题及答案
小学鸡兔同笼类型应用题及答案
鸡兔同笼是很典型的数学应用题,也是小学经常会用来考察学生数学能力的题型,通过对鸡兔同笼问题的处理,能提升小学生数学的把握能力和认知能力,下面是店铺为大家提供的小学鸡兔同笼类型应用题及答案,一起来看看这类型题目是怎么解答的吧!
小学鸡兔同笼类型应用题及答案1
1鸡兔同笼,共有30个头,88只脚。
求笼中鸡兔各有多少只?
2.鸡兔同笼,共有头48个,脚132只,求鸡和兔各有多少只?
3.一个饲养组一共养鸡、兔78只,共有200只脚,求饲养组养鸡和兔各多少只?
4.鸡兔同笼不知数,三十六头笼中露。
数清脚共五十双,各有多少鸡和兔?
5.小明用10元钱正好买了20分和50分的邮票共35张,求这两种邮票名买了多少张?
6.小红用13元6角正好买了50分和80分邮票共计20张,求两种邮票各买了多少张?
7.小刚的储蓄罐里共2分和5分硬币70枚,小刚数了一下,一共有194分,求两种硬币各有多少枚?
8.三年一班30人共向北京奥运会捐款205元,同学每人了捐了5元或10元,你知道捐5元和10元的.同学各有多少人吗?
9.三年二班45个同学向爱心基金会共计捐款100元,其中11个同学每人捐1元,其他同学每人捐2元或5元,求捐2元和5元的同学各有多少人?
10.松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个。
它一连8天共采了112个松籽,这八天有几天晴天几天雨天?
11.某校有一批同学参加数学竞赛,平均得63分,总分是3150分。
其中男生平均得60分,女生平均得70分。
求参加竞赛的男女各有多少人?
12.一次数学竞赛共有20道题。
做对一道题得5分,做错一题倒扣3分,刘冬考了52分,你知道刘冬做对了几道题?
13.一次数学竞赛共有20道题。
做对一道题得8分,做错一题倒扣4分,刘冬考了112分,你知道刘冬做对了几道题?
14.52名同学去划船,一共乘坐11只船,其中每只大船坐6人,每只小船坐4人。
求大船和小船各几只?
15.在一个停车场上,停了小轿车和摩托车一共32辆,这些车一共108个轮子。
求小轿车和摩托车各有多少辆?
16.解放军进行野营拉练。
晴天每天走35千米,雨天每天走28千米,11天一共走了350千米。
求这期间晴天共有多少天?
17.100个和尚吃了100个面包,大和尚1人吃3个,小和尚3人吃1个。
求大小和尚各有多少个?
18.有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对。
问蜻蜓有多少只?(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀)
19.一队强盗一队狗,二队拼作一队走,数头一共三百六,数腿一共八百九,问有多少强盗多少狗?
答案
1.鸡:16只,兔:14只
2.鸡:30只,兔:18只
3.鸡:56只,兔:22只
4.鸡:22只,兔:14只
5.20分的邮票25张,50分的邮票10张。
6.50分的邮票8张,80分邮票12张。
7.2分硬币52枚,5分硬币18枚。
8.捐了5元的同学有19人,捐10元的有11人。
9.捐2元的有27人,捐5元的有7人。
10.晴天2天,雨天6天。
11.求参加竞赛的女生15人,男生35人。
12.刘冬做对14道题。
13.刘冬做对16道题。
14.大船4只,小船7只。
15.小轿车22辆,摩托车10辆。
16.晴天共有6天。
17.大和尚有25个,小和尚有75个。
18.蜘蛛5只;蜻蜓7只;蝉6只。
19.强盗275人,狗85只。
小学鸡兔同笼类型应用题及答案2
例题1:有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?
解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着。
现在,地面上出现脚的总数的一半,也就是
244÷2=122(只)
在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次。
因此从122减去总头数88,剩下的就是兔子头数
122—88=34,
有34只兔子。
当然鸡就有54只。
答:有兔子34只,鸡54只。
上面的计算,可以归结为下面算式:
总脚数÷2—总头数=兔子数。
上面的解法是《孙子算经》中记载的。
做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍。
可是,当其他问题转化成这类问题时,“脚数”就不一定是4和2,上面的计算方法就行不通。
因此,我们对这类问题给出一种一般解法。
还说此题。
如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了88×4—244=108(只)。
每只鸡比兔子少(4—2)只脚,所以共有鸡
(88×4—244)÷(4—2)= 54(只)。
说明我们设想的88只“兔子”中,有54只不是兔子。
而是鸡。
因此可以列出公式
鸡数=(兔脚数×总头数—总脚数)÷(兔脚数—鸡脚数)。
当然,我们也可以设想88只都是“鸡”,那么共有脚2×88=176(只),比244只脚少了
244—176=68(只)。
每只鸡比每只兔子少(4—2)只脚,
68÷2=34(只)。
说明设想中的“鸡”,有34只是兔子,也可以列出公式
兔数=(总脚数—鸡脚数×总头数)÷(兔脚数—鸡脚数)。
上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数。
假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为“假设法”。
现在,拿一个具体问题来试试上面的公式。
例题2:红铅笔每支0。
19元,蓝铅笔每支0。
11元,两种铅笔共买了16支,花了2。
80元。
问红、蓝铅笔各买几支?
解:以“分”作为钱的单位。
我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚。
现在已经把买铅笔问题,转化成“鸡兔同笼”问题了。
利用上面算兔数公式,就有
蓝笔数=(19×16—280)÷(19—11)
=24÷8
=3(支)。
红笔数=16—3=13(支)。
答:买了13支红铅笔和3支蓝铅笔。
对于这类问题的计算,常常可以利用已知脚数的特殊性。
例2中的“脚数”19与11之和是30。
我们也可以设想16只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚数是
8×(11+19)=240。
比280少40。
40÷(19—11)=5。
就知道设想中的8只“鸡”应少5只,也就是“鸡”(蓝铅笔)数是3。
30×8比19×16或11×16要容易计算些。
利用已知数的特殊性,靠心算来完成计算。
实际上,可以任意设想一个方便的兔数或鸡数。
例如,设想16只中,“兔数”为10,“鸡数”为6,就有脚数
19×10+11×6=256。
比280少24。
24÷(19—11)=3,
就知道设想6只“鸡”,要少3只。
要使设想的数,能给计算带来方便,常常取决于你的心算本领。