高强度紧固件的热处理实践
高强度紧固件失效实例分析

高强度紧固件失效实例分析ⅰ疲劳断裂的实例一.疲劳断裂的特征1.疲劳与断裂的概念:疲劳是机械零件常见的失效形式,据统计资料分析,在不同类型的零件失效中,有50%—80%是属于疲劳失效。
疲劳断裂在破坏前,零件往往不会产生明显的变形和预先的征兆,但破坏却往往是致命的,会酿成重大事故。
疲劳损坏产生及发展有其特点,最终形成为疲劳断裂。
疲劳问题的探索,最早是在1839年,法国人彭赛列提出材料和结构件的疲劳概念,德国人A·沃勒在1855年研究了代表疲劳性能的应力应变与震动次数的理论(S—N曲线),并且提出了疲劳极限的概念,因此,沃勒被称为材料疲劳理论的奠基人。
疲劳与断裂的力学理论经过一百多年的发展,各行业具体疲劳断裂事例不断涌现,经过科学家及工程师不间断地研究和探索,目前,疲劳断裂科学理论不断地充实和发展,从而在本质上了解了疲劳破坏的机理。
疲劳概念的论述:金属材料在应力或应变的反复作用下发生的性能变化称为疲劳;疲劳断裂:材料承受交变循环应力或应变时,引起的局部结构变化和内部缺陷的不断地发展,使材料的力学性能下降,最终导致产品或材料的完全断裂,这个过程称为疲劳断裂。
也可简称为金属的疲劳。
引起疲劳断裂的应力一般很低,疲劳断裂的发生,往往具有突发性、高度局部性及对各种缺陷的敏感性等特点。
2.疲劳的分类:(1)高周疲劳与低周疲劳10的疲劳,如果作用在零件或构件的应力水平较低,破坏的循环次数高于5称为高周疲劳,弹簧、传动轴、紧固件等类产品一般以高周疲劳见多。
10的疲作用在零件构件的应力水平较高,破坏的循环次数较低,一般低于4劳,称为低周疲劳。
例如压力容器,汽轮机零件的疲劳损坏属于低周疲劳。
(2)应力和应变来分:应变疲劳——高应力,循环次数较低,称为低周疲劳;应力疲劳——低应力,循环次数较高,称为高周疲劳。
复合疲劳,但在实际中,往往很难区分应力与应变类型,一般情况下二种类型兼而有之,这样称为复合疲劳。
(3)按照载荷类型弯曲疲劳扭转疲劳拉拉疲劳与拉压疲劳接触疲劳振动疲劳随着断裂力学的不断发展,行业内广大的技术人员逐渐认识疲劳裂纹的产生及其发展的规律,为控制和减少疲劳引起损害奠定了基础。
螺丝热处理要求-概述说明以及解释

螺丝热处理要求-概述说明以及解释1.引言1.1 概述螺丝热处理是一种常见的工业加工方法,用于改善螺丝的机械性能和耐腐蚀能力。
螺丝在使用过程中需要承受大量的力和压力,因此对其进行热处理是必不可少的。
热处理的目的是通过加热和冷却的过程,改变螺丝的晶体结构,使其具有更好的强度和韧性。
本文将针对螺丝热处理的要求进行详细的探讨。
在热处理过程中,温度和时间是两个非常关键的参数。
不同类型的螺丝材料和要求会有不同的热处理温度和时间要求。
在本文中,我们将详细介绍温度要求和时间要求对螺丝热处理过程的影响。
通过了解螺丝热处理的要求,我们可以更好地理解螺丝热处理的工艺和步骤,并为实际生产中的加工工艺提供有益的参考。
最后,通过对螺丝热处理要求的思考,可以更好地认识到它对产品质量和性能的重要性。
在接下来的章节中,我们将详细介绍螺丝热处理的定义和背景,并深入探讨螺丝热处理的温度要求和时间要求。
最后,我们将对本文所探讨的内容进行总结,并思考螺丝热处理要求的重要性。
希望通过本文的阅读,读者能对螺丝热处理要求有更全面和深入的了解。
1.2 文章结构文章结构部分的内容可以包括以下内容:文章结构部分的主要目的是介绍整篇文章的组织结构和各个部分的主题。
通过清晰地描述文章的结构,读者可以更好地理解整篇文章的内容,并对所涉及的主题有一个整体的认识。
首先,文章引言部分会给出对整篇文章的概述,简要介绍螺丝热处理要求的背景和目的。
在这部分,读者可以了解到该主题的重要性和研究意义。
接下来,文章主体部分会详细论述螺丝热处理要求的相关内容。
其中,2.1节会定义和阐述螺丝热处理以及其背景知识,为后续的内容做铺垫。
然后,在2.2节中,将重点讨论螺丝热处理的要求。
这一部分会分别从温度要求和时间要求两个方面进行分析和解释。
通过这些要求的论述,读者可以对螺丝热处理所需的条件和要求有一个全面的了解。
最后,在结论部分,文章会对全文进行总结,概括性地回顾螺丝热处理要求的主要内容,并对螺丝热处理要求的重要性进行思考。
gb品5267-2002紧固件表面处理标准.doc

博客首页>>【技术】GB/T5267-2002 [紧固件表面处理]标准介绍2006-8-3 0:39:07GB/T5267-2002 [紧固件表面处理]标准介绍紧固件一般都需要经过表面处理,紧固件表面处理的种类很多,一般常用的有电镀、氧化、磷化、非电解锌片涂层处理等。
但是,电镀紧固件在紧固件的实际使用中占有很大的比例。
尤其在汽车、拖拉机、家电、仪器仪表、航天航空、通讯等行业和领域中使用更为广泛。
然而,对于螺纹紧固件来说,使用中不仅要求具有一定的防腐能力,而且,还必须保证螺纹的互换性,在这里也可称之为旋合性,。
为了同时满足螺纹紧固件在使用中要求的“防腐”和“互换”双重使用性能,制定专门的电镀层标准是非常必要的。
GB/T5267.1-2002[螺纹紧固件电镀层]标准是国家标准“紧固件表面处理”系列标准之一,该标准包括:GB/T5267.1-2002 [紧固件电镀层];GB/T5267.2-2002 [紧固件非电解锌片涂层] 两标准。
本标准等同采用国际标准ISO4042;1999 [螺纹紧固件电镀层]。
本标准代替GB/T5267-1985 [螺纹紧固件电镀层]标准。
一、GB/T5267.1-2002 [紧固件电镀层]标准介绍本标准规定了钢和钢合金电镀紧固件的尺寸要求、镀层厚度,并给出了高抗拉强度或硬化或表面淬硬紧固件消除氢脆的建议。
本标准适用于螺纹紧固件或其他紧固件电镀层,对于自攻螺钉、木螺钉、自钻自攻螺钉和自挤螺钉等可切削或碾压出与其相配的内螺纹的紧固件也是基本适用的。
本标准的规定也适用于非螺纹紧固件,如:垫圈和销等。
本标准与GB/T5267-1985相比主要变化如下:-调整了术语和定义内容;-取消了电镀层的使用条件;-增加了螺距P=0.2~0.3mm的镀层厚度上偏差值的规定,并调整部分其他螺距的镀层上偏差值的规定;-取消了旧标准有关镀层厚度验收检查的规定,采用GB/T90.1的规定;-调整并补充有关去除氢脆的资料;-取消局部厚度的测量方法;-增加螺纹零件电镀层的代码标记制度;-调整对“可容纳的金属镀层厚度的指导程序;-增加镀层标记示例。
紧固件热处理

一、热处理方式:根据对象及目的不同可选用不同热处理方式。
调质钢:淬火后高温回火(500-650℃)弹簧钢:淬火后中温回火(420-520℃)渗碳钢:渗碳后淬火再低温回火(150-250℃)低碳和中碳(合金)钢淬成马氏体后,随回火温度的升高,其一般规律是强度下降,而塑性、韧性上升。
但由于低、中碳钢中含碳量不同,回火温度对其影响程度不同。
所以为了获得良好的综合机械性能,可分别采取以下途径:(1)、选取低碳(合金)钢,淬火后进行低温250℃以下回火,以获得低碳马氏体。
为了提高这类钢的表面耐磨性,只有提高各面层的含碳量,即进行表面渗碳,一般称为渗碳结构钢。
(2)、采取含碳较高的中碳钢,淬火后进行高温(500-650℃)回火(即所谓调质处理),使其能在高塑性情况下,保持足够的强度,一般称这类钢为调质钢。
如果希望获得高强度,而宁肯降低塑性及韧性,对含碳量较低的含金调质可采取低温回火,则得到所谓“超高强度钢”。
(3)、含碳量介于中碳和高碳之间的钢种(如60,70钢)以及一些高碳钢(如80,90钢),如果用于制造弹簧,为了保证高的弹性极限、屈服极限和疲劳极限,则采用淬火后中温回火。
二、作业流程:(一)、调质钢:退火(珠光体型钢)1、预热处理:正火高温回火(马氏体型钢)(1)、正火目的是细化晶粒,减少组织中的带状程度,并调整好硬度,便于机械加工,正火后,钢材具有等轴状细晶粒。
2、淬火:将钢体加热到850℃左右进行淬火,淬火介质可根据钢件尺寸大小和该钢的淬透性加以选择,一般可选择水或油甚至空气淬火。
处于淬火状态的钢,塑性低,内应力大。
3、回火:(1)、为使钢材具有高塑性、韧性和适当的强度,钢材在400-500℃左右进行高温回火,对回火脆性敏感性较大的钢,回火后必须迅速冷却,抑制回火脆性的发生。
(2)、若要求零件具有特别高的强度,则在200℃左右回火,得到中碳回火马氏体组织。
(二)、弹簧钢:1、淬火:于830-870℃进行油淬火。
弹簧和紧固件的热处理

弹簧和紧固件的热处理主要涉及以下步骤:
1.淬火:这一步涉及将金属加热到其熔点以上,然后迅速冷却,
以增强其硬度和强度。
对于弹簧和紧固件,淬火通常涉及将其
加热到特定的温度,然后在淬火介质中快速冷却。
2.回火:淬火后的金属通常会进行回火处理,以稳定其组织结构
并消除内应力。
回火通常在较低的温度下进行,持续时间因金
属和所需的特性而异。
3.表面处理:这可能包括喷丸、镀层或化学处理,以提高弹簧和
紧固件的耐腐蚀性和耐磨性。
4.质量检测:热处理后,弹簧和紧固件应进行质量检测,以确保
其满足规定的规格和性能要求。
请注意,热处理的详细步骤和条件可能因不同的金属类型、合金成分、零件规格和应用要求而有所不同。
因此,具体的热处理工艺应根据制造商的指南和规格进行定制。
在进行热处理之前,应咨询材料科学家或工程师,以确保安全有效地处理弹簧和紧固件。
汽车紧固件热处理技术的新发展

汽车紧固件热处理技术的新发展摘要:为了满足高强度紧固件的生产需求,先进的热处理装备是其必备条件,而先进的热处理工艺是影响其内在质量的关键因素,二者缺一不可。
目前我国汽车的高强度紧固件在质量、环保和能耗等方面仍处于落后的状态,为了赶超国际先进水平,我国的高强度紧固件的开发和生产面临着严峻的考验。
关键词:汽车紧固件;热处理技术;新发展1国内汽车用紧固件现状图1为世界紧固件应用行业分配比例图,从图中可以看出,电子工业、维修与建筑工业、汽车工业是紧固件的三大用户。
汽车工业所需的紧固件数量占紧固件总销量的23.2%,在三大用户中占有最大的比例,而维修与建筑工业和电子工业分别位居二三位,占20%和16.6%。
图1世界紧固件应用行业分配比例汽车紧固件种类繁多,主要分为四大类,包括标准紧固件、非标准紧固件、标准机械元件和非标准机械元件,其中非标准紧固件质量要求最高。
非标准紧固件中,如汽车发动机连杆螺栓、飞轮螺栓、车轮螺栓、悬挂螺栓等由于其要求很高的质量和良好的稳定性,我国还不能达到国产化要求,大部分依赖进口。
“十二五”整车期间,我国上海大众、上海通用、东风富康、广州本田、奇瑞、吉利、力帆、比亚迪等在内的整车企业迅速发展,必将在今后的一段时间内带动汽车紧固件的迅速发展。
2紧固件行业热处理技术2.1紧固件行业热处理概况紧固件所用钢材都要经过不同工艺的热处理,达到紧固件力学性能的要求。
根据紧固件所用钢材的力学性能要求和热处理工序的前后顺序,将热处理分为三步,第一步为钢材的热处理,包括软化退火和球化退火;第二步为中间热处理,包括再结晶退火和低温退火;第三步为紧固件成品的热处理,为调质处理。
据统计,到2007年底,我国共有紧固件企业七千余家,年产量达到520多万吨,其中8级以上的紧固件产量约220万吨,需要热处理的高强度紧固件高达40%。
我国生产紧固件企业中共有热处理设备2700多台,其中可控气氛连续式加热网带炉1600多台。
汽车紧固件热处理工艺技术及其发展

Ab t a t T nr d c h e eo me t o r eo a se e e tf ame t p aa u n ea v n a e n ia v n a s r c o i t u e te d v l p n u s fc rf tn r a e t n p r t sa d t d a tg sa dd s d a t — o c a h a h
me t i te gh i ce sn ,a d t efri o tns i o eo ih srn t se e e d e d tr n d h a a — n t sr n t r a i g n ert c n e t n c r f g t gh f t n rn e st b ee mie .T e e r s w h n h e h e a o f
关键词
汽车紧同件 ; 高强度紧固件 ; 处理 ; 热 调质处理 ; 氢; 驱 冷镦
T 6 . G127
中 图分 类 号
He tt e t e tt c o o y o a a t ne n t e e o m e t a r a m n e hn l g f c r f se r a d is d v l p n
lv l a tr l ,f r a e tmp r t r e e ,rw mae i s u n c e e au e,amo p e e i u n c n u n h me i m. T e c e c lc mp st n fr w a t s h r n f r a e a d q e c du h h mi a o o i o s o a i
第 3 卷 6
VoJ 6 13
第2 期
No 2 .
高强度螺栓工艺评定报告

高强度螺栓工艺评定报告一、引言高强度螺栓是一种重要的紧固件,广泛应用于各个工业领域。
在工程设计中,螺栓的承载能力对于确保结构的安全性至关重要。
为了评定高强度螺栓的工艺,本报告将对螺栓的制造工艺、材料性能和力学性能等方面进行综合分析和评估。
二、螺栓制造工艺1. 材料选择高强度螺栓通常采用合金钢材料,具有较高的抗拉强度和抗腐蚀性能。
在制造过程中,应确保原材料的质量符合相关标准,以保证螺栓的使用寿命和可靠性。
2. 热处理工艺螺栓的热处理过程对其力学性能具有重要影响。
常用的热处理方法包括淬火和回火。
淬火可以提高螺栓的硬度和强度,而回火则可降低螺栓的脆性,并提高其韧性和抗拉伸性能。
3. 冷锻工艺冷锻是制造高强度螺栓的常用工艺之一。
通过冷锻,可以改善螺栓的内部组织和力学性能,提高其抗拉强度和耐久性。
三、螺栓材料性能评估1. 抗拉强度测试抗拉强度是衡量螺栓材料性能的重要指标之一。
通过拉伸试验,可以测量螺栓在受力状态下的最大抗拉强度。
测试结果应符合相关标准要求。
2. 延伸率测试延伸率是指螺栓在拉伸过程中的变形程度,是衡量其韧性和可塑性的指标。
延伸率测试可以评估螺栓的变形能力和断裂性能。
3. 冲击韧性测试冲击韧性测试可以评估螺栓在低温环境下的抗冲击性能。
这对于一些在恶劣环境中使用的螺栓来说尤为重要,如航空航天领域。
四、螺栓力学性能评估1. 螺栓预应力设计螺栓的预应力设计是确保结构稳定性和安全性的重要环节。
通过预紧螺栓,可以产生对结构的压力,使结构更加牢固稳定。
2. 螺栓扭矩测试扭矩测试是评估螺栓力学性能的一种常用方法。
通过施加扭矩,可以测量螺栓的转动力和转动角度,从而评估其紧固能力和力学性能。
3. 螺栓松动试验螺栓松动是螺栓寿命的重要衡量指标。
通过螺栓松动试验,可以评估螺栓在长时间使用后的紧固性能和可靠性。
五、结论通过对高强度螺栓的工艺、材料性能和力学性能进行综合评估,可以得出以下结论:1. 高强度螺栓的制造工艺应严格按照相关标准进行,确保原材料选择、热处理和冷锻等工艺环节的质量控制。