映射基础知识

合集下载

函数映射知识点归纳总结

函数映射知识点归纳总结

函数映射知识点归纳总结一、函数的定义与基本概念函数是数学中最基本的概念之一,在现代数学中函数被广泛应用到各个领域。

在实际应用中,函数是用来描述变量之间的关系的,它是一个很重要的工具。

1.1 函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

在数学上,我们通常用字母 y=f(x) 来表示这一关系,其中 x 是自变量,y 是因变量,f(x) 表示函数关系。

当 x 取不同的值时,y 也会随之变化,这就是函数的基本概念。

1.2 函数的表示方法函数可以用不同的表达方式来表示,其中最常见的有函数图像、函数的解析式、函数的数值表以及函数的映射图等。

函数图像可以直观地表示函数的变化规律,函数的解析式可以用代数式来表示函数的关系,函数的数值表可以用一组数据来列举函数的取值,函数的映射图则可以用有向箭头来表示函数元素之间的映射关系。

1.3 函数的性质函数有很多重要的性质,比如定义域和值域、奇偶性、周期性、增减性、极值等。

这些性质对于研究函数的特性和行为非常重要,它们可以帮助我们更深入地了解函数的规律和特点。

二、常见函数的类型及特点在数学中有很多常见的函数类型,它们都具有各自特定的特点和规律。

了解这些函数类型的特点对于理解函数的本质和规律非常有帮助。

2.1 一次函数一次函数是最简单的函数类型之一,它的解析式可以写成 y=ax+b 的形式,其中 a 和 b 分别是函数的斜率和截距。

一次函数的图像是一条直线,斜率决定了直线的倾斜程度,截距则是直线与坐标轴的交点。

2.2 二次函数二次函数是一个抛物线函数,它的解析式可以写成 y=ax^2+bx+c 的形式,其中 a、b、c 是函数的系数。

二次函数的图像是一个开口朝上或者朝下的抛物线,a 的正负决定了抛物线的开口方向,b 和 c 则决定了抛物线的位置和形状。

2.3 指数函数指数函数是一个以底数为常数的幂函数,它的解析式可以写成 y=a^x 的形式,其中 a 是底数,x 是幂。

映射与函数知识点总结

映射与函数知识点总结

映射与函数知识点总结一、映射与函数的概念1.映射的定义:将一个集合中的每个元素都对应到另一个集合中的一些元素的规律称为映射。

对于给定的两个集合A和B,如果每个元素a∈A都有一个元素b∈B与之对应,那么就称集合A到集合B的映射。

记作f:A→B。

2.函数的定义:函数是一种特殊的映射,它满足每个元素a∈A只能对应一个元素b∈B的规律。

对于给定的两个集合A和B,如果每个元素a∈A都有唯一的元素b∈B与之对应,那么就称集合A到集合B的函数。

记作f:A→B。

3.定义域和值域:函数f的定义域是指所有可能作为函数输入的数的集合,通常用符号D(f)表示;函数f的值域是指函数所有可能的输出的数的集合,通常用符号R(f)表示。

二、映射与函数的性质1.单射:也称为一一对应,指当对于集合A中的不同元素a1和a2,它们在集合B中的对应元素f(a1)和f(a2)也不相同。

换句话说,每个元素a∈A都对应着集合B中唯一的元素。

2.满射:也称为映满函数,指函数的值域与集合B相同,即函数的所有可能的输出都在集合B中。

3.双射:即同时满足单射和满射的函数,也称为一一映射。

4.奇函数和偶函数:如果对于函数f的定义域中的每一个实数x,都有f(-x)=-f(x)成立,则称函数f是奇函数;如果对于函数f的定义域中的每一个实数x,都有f(-x)=f(x)成立,则称函数f是偶函数。

5.反函数:如果函数f的定义域和值域都是实数集,且对于函数f中的每一对实数(x,y),都有y=f(x),则存在一个函数g,使得对于函数g中的每一对实数(y,x),都有x=g(y)。

这样的函数g称为函数f的反函数。

三、映射与函数的应用1.函数关系式:映射与函数可以描述实际问题中的各种关系,如线性函数、二次函数、指数函数、对数函数等。

通过分析函数关系式,我们可以了解函数的性质和特点,从而应用到各种实际问题中。

2.函数的图像:通过绘制函数的图像,可以直观地表达函数的变化规律,了解函数的增减性、奇偶性、周期性等。

高一数学映射知识点

高一数学映射知识点

高一数学映射知识点数学是一门综合性科学,映射是其中的重要概念之一。

在高一数学学习中,映射是一个需要深入理解和掌握的知识点。

本文将从映射的定义、映射的性质以及映射的应用等方面进行详细介绍。

一、映射的定义映射是一种对应关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素上。

映射常常用符号“f”表示,表示一个元素或者一组元素通过某种规则对应到另一个集合中。

对于集合A和集合B,如果存在一个映射f,使得对于A中的任意元素a,都有唯一的对应元素b在集合B中,即f(a)=b,那么我们可以说A中的元素通过映射f对应到B中的元素。

二、映射的性质1. 单射:如果映射f中不同的元素在B中有不同的对应元素,即对于任意的a1和a2,如果f(a1)=f(a2),则a1=a2。

这种映射被称为单射或一一映射。

单射保证了映射的唯一性。

2. 满射:如果映射f中的所有元素都有对应的元素存在于B中,即对于任意的b∈B,都存在a∈A,使得f(a)=b。

这种映射被称为满射。

满射保证了映射的完备性。

3. 双射:既是单射又是满射的映射被称为双射。

双射保证了映射的一一对应关系,即A中的每一个元素都有唯一对应的元素在B中,B中的每一个元素也都有唯一对应的元素在A中。

4. 逆映射:如果映射f是一个双射,那么它存在一个逆映射g,使得g(f(a))=a对于任意的a∈A成立,同时f(g(b))=b对于任意的b∈B也成立。

逆映射可以实现映射的互逆。

三、映射的应用映射在数学中的应用非常广泛,尤其在解决实际问题时起到了重要的作用。

以下是映射在几个常见领域的应用示例:1. 函数关系:函数是一种特殊的映射关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素上。

函数在数学中有着广泛的应用,例如描述物理规律、经济关系以及建立模型等。

2. 图论:映射在图论中有重要作用。

图是由一系列的顶点和边组成的数学模型,而映射则常常用于描述顶点之间的关系,例如在社交网络中描述用户之间的关注关系。

《映射》 知识清单

《映射》 知识清单

《映射》知识清单一、什么是映射在数学中,映射是一种特殊的关系,它将一个集合中的元素与另一个集合中的元素相对应。

简单来说,如果对于集合A 中的每一个元素,在集合 B 中都有唯一的元素与之对应,那么这种对应关系就称为从集合 A 到集合 B 的映射。

例如,我们考虑集合 A ={1, 2, 3},集合 B ={4, 5, 6}。

如果定义映射 f 为:f(1) = 4,f(2) = 5,f(3) = 6,那么这就是一个从集合 A到集合 B 的映射。

需要注意的是,集合 A 中的每一个元素都必须有对应的元素在集合B 中,并且一个元素在集合 A 中只能对应集合 B 中的一个元素。

但集合 B 中的元素不一定都有集合 A 中的元素与之对应。

二、映射的分类1、单射单射是指如果对于集合 A 中的任意两个不同元素 a1 和 a2,它们在集合 B 中的像 f(a1) 和 f(a2) 也不同,那么这个映射就称为单射。

例如,集合 A ={1, 2, 3},集合 B ={4, 5, 6, 7},映射 f 为:f(1) = 4,f(2) = 5,f(3) = 6,这是一个单射,因为 1、2、3 对应到 4、5、6 各不相同。

满射是指如果集合 B 中的每一个元素都至少有集合 A 中的一个元素与之对应,那么这个映射就称为满射。

比如,集合 A ={1, 2, 3, 4},集合 B ={5, 6},映射 f 为:f(1) = 5,f(2) = 5,f(3) = 6,f(4) = 6,这就是一个满射,因为集合 B 中的 5 和 6 都能在集合 A 中找到对应的元素。

3、双射双射是指既是单射又是满射的映射。

这意味着集合 A 中的每一个元素在集合 B 中有唯一的对应元素,并且集合 B 中的每一个元素在集合A 中也有唯一的对应元素。

例如,集合 A ={1, 2, 3},集合 B ={4, 5, 6},映射 f 为:f(1) = 4,f(2) = 5,f(3) = 6,这就是一个双射。

大一高数映射知识点总结

大一高数映射知识点总结

大一高数映射知识点总结高等数学是大学阶段理工科学生的一门重要基础课程,其中映射是高等数学中的一个重要概念和知识点。

映射作为数学中的一种关系,研究了一个集合与另一个集合之间的对应关系。

本文将对大一高数中与映射相关的知识点进行总结。

一、映射的基本概念在数学中,映射是指一个集合的元素与另一个集合的元素之间的对应关系。

设A和B是两个非空集合,若对于A中的任意一个元素a,都存在B中唯一的一个元素b与之对应,则称这种对应关系为从集合A到集合B的映射,记作f:A→B。

二、映射的表示方法映射可以用不同的表示方法来表达,常见的表示方法有以下几种:1. 符号表示法:f(a) = b,表示元素a在映射f下的像是b。

2. 图表示法:可以用箭头连接集合A和集合B,箭头表示映射关系,箭头起点对应元素a,箭头终点对应元素b。

3. 列表表示法:可以将映射关系列出来,例如{(a, b), (c, d), (e,f)}。

三、映射的类型根据映射的特点和性质,映射可以分为以下几种类型:1. 一对一映射:映射中的每一个元素都有唯一的对应元素,即对于A中的不同元素a1和a2,映射f下的像f(a1)和f(a2)不相同。

2. 单射映射:映射中的每一个元素都有唯一的对应元素,即对于A中的不同元素a1和a2,若f(a1) = f(a2),则a1 = a2。

3. 满射映射:映射中的每一个元素都有对应元素,即对于B中的任意元素b,都存在A中的元素a与之对应。

4. 一一对应映射:既是一对一映射又是满射映射的映射称为一一对应映射或双射映射。

四、映射的性质映射作为一种关系有其特有的性质,下面介绍几个常见的映射性质:1. 反函数:对于一一对应的映射f:A→B,如果存在映射g:B→A,使得对于A中的任意元素a,都有g(f(a)) = a,且对于B中的任意元素b,都有f(g(b)) = b,那么g就是f的反函数。

2. 复合函数:对于映射f:A→B和映射g:B→C,可以定义映射h:A→C,使得对于A中的任意元素a,有h(a) = g(f(a)),此时h为f和g的复合映射。

大一高数映射知识点归纳

大一高数映射知识点归纳

大一高数映射知识点归纳在大一高等数学课程中,映射是一个非常重要且常见的概念。

映射可以理解为一种对应关系,它将一个集合中的元素映射到另一个集合中的元素。

接下来,我将对大一高数中与映射相关的知识点进行归纳总结。

一、映射定义与表示法映射是从一个集合到另一个集合的一个对应关系。

如果集合A 中的每个元素a都对应集合B中的唯一一个元素b,那么我们称A 到B的映射为定义在集合A上的一个映射。

在表示映射时,常用的表示法有:- 将映射写成集合形式,例如:{(x, y) | x∈A, y∈B, y=f(x)}- 使用函数的形式表示映射,例如:f: A → B,其中f表示映射的名称,A为起始集合,B为终止集合。

二、映射的分类1. 单射:如果映射中的每个不同元素a对应的都是不同的元素b,那么称该映射为单射。

也可以说是任意两个不同的元素在映射中的像都不相同。

2. 满射:如果映射中的每个元素b都有对应的元素a,那么称该映射为满射。

也可以说是终止集合B中的每个元素都有源自集合A中的元素与之对应。

3. 双射:如果一个映射既是单射又是满射,那么称该映射为双射。

三、映射的运算1. 复合映射:设有两个映射f: A → B,g: B → C,那么可以通过复合运算得到新的映射h: A → C。

复合映射的运算规则为:h(x) = g(f(x)),即先使用f进行映射,再使用g进行映射。

2. 逆映射:如果一个映射f: A → B是一个双射,那么可以定义其逆映射g: B → A。

逆映射的性质为:g(f(x)) = x,f(g(y)) = y。

四、映射的例子与应用1. 一次函数:一次函数可以表示为f(x) = kx + b的形式,其中k 为不为零的常数,称为斜率,b为常数,称为截距。

一次函数是一种常见的线性映射,常用于描述常量比例关系。

2. 复数平面映射:将复数表示为平面上的点,可以将复数映射到平面上。

3. 矩阵映射:在线性代数中,矩阵可以表示一个线性映射,通过矩阵乘法可以实现向量的变换。

映射的知识点总结

映射的知识点总结

映射的知识点总结一、映射的定义在数学中,映射被定义为一种从一个集合到另一个集合的元素之间的关系。

设A和B是两个集合,如果存在一个规则f,使得对A中的每一个元素a,都有一个唯一确定的元素b∈B与之对应,则称f是从A到B的一个映射,记作f:A→B。

在这里,A称为定义域,B称为值域,f(a)称为元素a的像,b称为元素a的原像。

映射的定义也可以用集合的语言来描述。

即映射是一个集合到另一个集合的元素之间的规则,使得集合中的每一个元素有且只有一个唯一确定的对应元素。

这种描述映射的方式更加直观,容易理解。

二、映射的性质1. 单射如果映射f:A→B的不同元素a1、a2∈A,若f(a1)≠f(a2),则称f是单射。

直观地说,单射表示A中的不同元素映射后得到的像也是不同的,即不会出现多个元素映射到一个元素上。

2. 满射如果映射f:A→B的任意元素b∈B,都存在一个元素a∈A,使得f(a)=b,即值域与B相等,则称f是满射。

满射表示在映射中,值域中的每一个元素都有至少一个原像。

3. 双射如果映射f:A→B既是单射又是满射,则称f是双射。

双射表示映射是一种一一对应的关系,每一个元素都有唯一的对应元素。

4. 逆映射设f:A→B是一个双射,那么存在一个映射f^-1:B→A,使得对于任意元素b∈B,f^-1(b)是唯一与b对应的元素,称f^-1是f的逆映射。

5. 复合映射设f:A→B和g:B→C是两个映射,其中f的值域是g的定义域,那么可以定义f和g的复合映射为g∘f:A→C,它的定义规则是(g∘f)(a)=g(f(a))。

6. 映射的像和原像对于映射f:A→B,其中元素b∈B,称元素b在映射f下的像为f^-1(b)={a∈A|f(a)=b},即元素b对应的所有原像所构成的集合。

而元素a∈A,称元素a在映射f下的原像为f(a)。

三、映射的分类根据映射的性质,可以将映射分为不同的类型。

1. 根据值域的大小,映射可以分为有限映射和无限映射。

专升本数学集 合与映射基础知识梳理

专升本数学集 合与映射基础知识梳理

专升本数学集合与映射基础知识梳理专升本数学:集合与映射基础知识梳理在专升本数学的学习中,集合与映射是非常基础且重要的概念。

理解和掌握好这部分知识,对于后续数学课程的学习起着至关重要的作用。

接下来,让我们一起系统地梳理一下集合与映射的基础知识。

一、集合的概念集合,简单来说,就是把一些具有特定性质的对象放在一起组成的一个整体。

这些对象称为集合的元素。

比如,我们可以把所有的正整数组成一个集合,把某班所有身高超过 18 米的同学组成一个集合。

集合通常用大写字母表示,如A、B、C 等,元素用小写字母表示,如 a、b、c 等。

如果一个元素 a 属于集合 A,我们记作 a ∈ A;如果一个元素 b 不属于集合 A,我们记作 b ∉ A。

集合的表示方法有多种,常见的有列举法、描述法和区间法。

列举法就是把集合中的元素一一列举出来,用逗号分隔,并用花括号括起来。

例如,集合 A ={1, 2, 3, 4, 5}。

描述法是用元素所具有的特征来描述集合。

例如,集合 B ={x |x 是大于 5 的整数}。

区间法通常用于表示连续的实数集合。

例如,区间(1, 5) 表示大于1 且小于 5 的实数组成的集合。

二、集合的基本关系集合之间存在着包含、相等、真包含等关系。

如果集合 A 中的所有元素都属于集合 B,那么我们说集合 A 包含于集合 B,记作 A ⊆ B;如果集合 A 包含于集合 B,且集合 B 中存在元素不属于集合 A,那么我们说集合 A 真包含于集合 B,记作 A ⊂ B;如果集合 A 和集合 B 中的元素完全相同,那么我们说集合 A 等于集合B,记作 A = B。

三、集合的运算集合的运算包括交集、并集和补集。

交集:集合 A 和集合 B 的交集,记作A ∩ B,是由既属于集合 A又属于集合 B 的所有元素组成的集合。

并集:集合 A 和集合 B 的并集,记作 A ∪ B,是由属于集合 A 或者属于集合 B 的所有元素组成的集合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

映射基础知识
一、映射
1.映射概念
定义设X、Y是两个非空集合,如果存在一个法则f,使得对X中每个元素
x,按法则f,在Y中有唯一确定的元素y与之对应,么称f为从X到Y的映射, 记作
f:x→y,
其中y称为元素x(在映射/下)的像,并记作f(x),即
y=f(x),
而元素x称为元素y(在映射f下)的一个原像;集合X称为映射f的定义域,记
作D,即D=X;X中所有元素的像所组成的集合称为映射f的值域,记作R或
f(X),即
R=f(X)=f(x)lx∈X
从上述映射的定义中,需要注意的是:
(1)构成一个映射必须具备以下三个要素:集合X,即定义域D=X;集合
Y,即值域的范围:R,Cy;对应法则f,使对每个x∈X,有唯一确定的y=
f(x)与之对应
(2)对每个x∈X,元素x的像y是唯一的;而对每个y∈R,元素y的原像不
一定是唯一的;映射f的值域R是Y的一个子集,即Rcy,不一定R=y
2.逆映射与复合映射
设f是X到Y的单射,则由定义,对每个y∈R,有唯一的x∈X,适合
f(x)=y.于是,我们可定义一个从R到X的新映射g,即
g:R→X,
对每个y∈R,规定g(y)=x,这x满足f(x)=y个映射g称为f的逆映射,记作f, 其定义域D=R,值域R=X.
按上述定义,只有单射才存在逆映射.所以在例1、例2、例3中,只有例3
中的映射f才存在逆映射f,这个就是反正弦函数的主值
f'(x)=arcsin x, x [-1 1],
其定义域D=[-1,1],值域R=-
设有两个映射
g:X→y1, f:2→z,
其中Y1CY2,则由映射g和f可以定出一个从X到Z的对应法则,它将每个
x∈X映成fg(x)]∈Z.显然,这个对应法则确定了一个从X到Z的映射,这个
映射称为映射g和f构成的复合映射,记作fg,即
fg:→z,(fg)(x)=fg(x)],x∈X.
由复合映射的定义可知,映射g和f构成复合映射的条件是:g的值域R必
须包含在f的定义域内,即RCD否则,不能构成复合映射.由此可以知道,映
射g和f的复合是有顺序的,fg有意义并不表示gf也有意义即使
fg与gf都有意义,复合映射fg与gf也未必相同。

相关文档
最新文档