常微分方程四、五章作业答案 (1)
常微分课后答案第四章

第四章 高阶微分方程§4.1 线性微分方程的一般理论习题4.11.设)(t x 和)(t y 是区间[]b a ,上的连续函数,证明:若在区间[]b a ,上有≠)()(t y t x 常数或≠)()(t x t y 常数,则)(t x 和)(t y 在区间[]b a ,上线性无关.(提示:用反证法) 证明 )(t x 和)(t y 是区间[]b a ,上线性相关,则存在不全为0的常数21,c c 使得0)()(21≡+t y c t x c ,[]b a t ,∈,若)0(,021≠≠c c 或得12)()(c c t y t x -≡(或21)()(c c t x t y -≡)[]b a t ,∈∀成立。
与假设矛盾,故)(t x 和)(t y 在区间[]b a ,上线性无关.2.证明非齐次线性方程的叠加原理:设)(1t x ,)(2t x 分别是非齐次线性方程)()()(1111t f x t a dt xd t a dt x d n n n n n =+++-- (1) )()()(2111t f x t a dtxd t a dt x d n n n nn =+++-- (2) 的解,则)()(21t x t x +是方程)()()()(21111t f t f x t a dtxd t a dt x d n n n n n +=+++-- (3) 的解.证明 因为)(1t x ,)(2t x 分别是方程(1)、(2)的解,所以)()()(1111111t f x t a dt x d t a dt x d n n n n n =+++-- , )()()(2212112t f x t a dtx d t a dt x d n n n nn =+++-- , 二式相加得,)()())(()()()(21211211121t f t f x x t a dt x x d t a dt x x d n n n n n +=++++++-- ,即)()(21t x t x +是方程(3)的解.3.(1).试验证022=-x dt x d 的基本解组为tt e e -,,并求方程t x dtx d cos 22=-的通解。
常微分方程部分习题答案

1.第1题微分方程是( ).A.n阶常系数非齐次线性常微分方程;B.n阶常系数齐次线性常微分方程;C.n阶变系数非齐次线性常微分方程;D.n阶变系数齐次线性常微分方程.您的答案:C题目分数:2此题得分:2.02.第2题设有四个常微分方程:(i) , (ii) ,(iii) , (iv).A.线性方程有一个;B.线性方程有两个;C.线性方程有三个;D.线性方程有四个.您的答案:C题目分数:2此题得分:2.03.第3题是某个初值问题的唯一解,其中方程是, 则初始条件应该是( ).A. ,B. ,C. ,D. .A..B..C..D..您的答案:A题目分数:2此题得分:2.04.第5题是某个初值问题的唯一解,其中方程是, 则初始条件应该是( ).A. ,B. ,C. ,D. .A.AB.BC.CD.D您的答案:A题目分数:2此题得分:2.05.第7题满足初始条件和方程组的解为( ).A. ;B.; C.; D. .A..B..C..D..您的答案:B题目分数:2此题得分:2.06.第8题可将六阶方程化为二阶方程的变换是( ).A.;B.; C.;D..A..B..C..D..您的答案:B题目分数:2此题得分:2.07.第10题可将一阶方程化为变量分离方程的变换为A. ;B.; C. ; D..A..B..C..D..您的答案:C题目分数:2此题得分:2.08.第12题下列四个微分方程中, 三阶常微分方程有( )个.(i) , (ii) ,(iii) , (iv) .A.1B.2C.3D.4您的答案:C题目分数:2此题得分:2.09.第13题设有四个常微分方程:(i) , (ii),(iii) , (iv) .A.非线性方程有一个;B.非线性方程有两个;C.非线性方程有三个;D.非线性方程有四个.您的答案:B题目分数:2此题得分:2.010.第14题微分方程的一个解是( ).A. ,B. ,C. ,D. .A..B..C..D..您的答案:D题目分数:2此题得分:2.011.第20题已知是某一三阶齐次线性方程的解, 则和的伏朗斯基行列式( ).A. ;B.; C.; D. .A.AB.BC.CD.D您的答案:A题目分数:2此题得分:2.012.第21题设,及是连续函数,和是二阶变系数齐次线性方程的两个线性无关的解, 则以常数变易公式作为唯一解的初值问题是A. B.C. D.A..B..C..D..您的答案:B题目分数:2此题得分:2.013.第22题初值问题, 的第二次近似解可以写为( ). +A. 6;B.; C.; D. +.A..B..C..D..您的答案:D题目分数:2此题得分:2.014.第24题设是n 阶齐次线性方程的线性无关的解, 其中是连续函数. 则A. 的朗斯基行列式一定是正的;B. 的朗斯基行列式一定是负的;C. 的朗斯基行列式可有零点, 但不恒为零;D. 的朗斯基行列式恒不为零.A.AB.BC.CD.D您的答案:B题目分数:2此题得分:2.015.第25题设和是方程组的两个基解矩阵, 则A. 存在某个常数方阵C使得, 其中;B. 存在某个常数方阵C使得, 其中;C. 存在某个常数方阵C使得, 其中;D. 存在某个常数方阵C使得, 其中.A..B..C..D..您的答案:A题目分数:2此题得分:2.016.第15题求解方程时, 以下的解题步骤中不能省略的有哪几步:A. 因为,B. 所以原方程是恰当方程;C. 将方程中的重新分项组合,D. 凑出全微分:,E. 得到通解:.A.AB.BC.CD.DE.E您的答案:A,B,C,D,E题目分数:5此题得分:5.017.第16题设为方程(A 为常数矩阵)的一个基解矩阵,试指出如下的断言中哪些是错误的:A. 可以是也可以不是原方程组的解矩阵,B. 因为不知道是否有, 故无法判断是否是原方程组的基解矩阵,C. 存在奇异的常数矩阵C, 使得,D. 取, 可得到.E. .A..B..C..D..E..您的答案:A,B,C,D,E题目分数:5此题得分:5.018.第17题以下是一阶微分方程的求解过程, 请说明下划线所指出那些步骤中, 哪些是可以省略的:解答:记, 则(A), 注意到(B),因此方程不是恰当方程(C). 可以计算, 因而方程有只与x 有关的积分因子,并且该积分因子可以求出为:.将该积分因子乘在原方程的两端:(D),分项组合为,或可整理为(E), 最后得到原方程的通解.A.AB.BC.CD.DE.E您的答案:A,B,C,D,E题目分数:5此题得分:5.019.第18题如下求解三阶常系数线性方程的过程中, 下划线所指出的部分哪些计算有错误或叙述有错误:解答:(i) 先求对应齐方程的通解:对应齐方程的特征方程及特征根分别为(A), , , .故对应齐方程的通解为(B).(ii) 因为有特征根非零(C), 故应设原方程的特解有形如, 这里a,b是待定常数.代入原方程可得.利用对应系数相等便得到代数方程组:.由此可解得(D), 故.(iii) 原方程的通解可以表示为(E).A..B..C..D..E..您的答案:A,B,C,D,E题目分数:5此题得分:5.020.第19题利用降阶法求解二阶方程的过程中, 下划线所指出的那些步骤中, 哪些是关键性的:解答:这是不显含自变量的二阶方程, 因此可以用第二种降阶法。
常微分方程课后习题答案

1 dy y
2xdx, 两边同时积分得:ln y
x2 c,即y
e c x2 把x
0, y
1代入得
e c 1,故它的特解为y
x
2
。
y 2. 2 dx (x 1)dy 0, 并求满足初始条件:x=0,y=1 的特解.
解:对原式进行变量分离得:
1 dx 1 dy,当y 0时,两边同时积分得;ln x 1 1 c,即y 1
解: dy ( y3 )2 2x2 dy3 3[(y3 )2 2x2 ],,令y3 u,则原方程化为
dx y 2 (2xy3 x2 dx
解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0
dxy-d(y 2 -y)-dx 2 +x=c
xy-y 2 +y-x 2 -x=c
14: dy = x y 5 dx x y 2
解:原方程为:(x-y-2)dy=(x-y+5)dx
1 du - 1 =u 2 +3 4 dx 4 du =4 u 2 +13 dx u= 3 tg(6x+c)-1
2 tg(6x+c)= 2 (x+4y+1).
3
16:证明方程 x dy =f(xy),经变换 xy=u 可化为变量分离方程,并由此求下列方程: y dx
1) y(1+x 2 y 2 )dx=xdy
1 u2
x
arcsin y =sgnx ln|x|+c x
7. tgydx-ctgxdy=0
常微分方程第5章答案

习题1.给定方程组x = x x= (*)a)试验证u(t)= ,v(t)= 分别是方程组(*)的满足初始条件u(0)= , v(0)= 的解.b)试验证w(t)=c u(t)+c v(t)是方程组(*)的满足初始条件w(0)= 的解,其中是任意常数.解:a) u(0)= =u (t)= = u(t)又 v(0)= =v (t)= = = v(t)因此 u(t),v(t)分别是给定初值问题的解.b) w(0)= u(0)+ u(0)= + =w (t)= u (t)+ v (t)= +=== w(t)因此 w(t)是给定方程初值问题的解.2. 将下面的初值问题化为与之等价的一阶方程组的初值问题:a) x +2x +7tx=e ,x(1)=7, x (1)=-2b) x +x=te ,x(0)=1, x (0)=-1,x (0)=2,x (0)=0c)x(0)=1, x (0)=0,y(0)=0,y (0)=1解:a)令 x =x, x = x , 得即又 x =x(1)=7 x (1)= x (1)=-2于是把原初值问题化成了与之等价的一阶方程的初值问题:x = x(1)=其中 x= .b) 令=x ===则得:且 (0)=x(0)=1, = (0)=-1, (0)= (0)=2,(0)= (0)=0于是把原初值问题化成了与之等价的一阶方程的初值问题:= x(0)= , 其中 x= .c) 令w =x, w =,w =y,w =y ,则原初值问题可化为:且即 ww(0)= 其中 w=3. 试用逐步逼近法求方程组= x x=满足初始条件x(0)=的第三次近似解.解:0241201 杨素玲习题02412—02 02412—031.试验证 =是方程组x = x,x= ,在任何不包含原点的区间a 上的基解矩阵。
解:令的第一列为 (t)= ,这时 (t)= = (t)故 (t)是一个解。
同样如果以 (t)表示第二列,我们有 (t)= = (t)这样 (t)也是一个解。
常微分方程第四、第五章部分习题参考答案

常微分方程习题4.2 2、解下列方程 (1)045)4(=+''-x x x解:特征方程1122045432124-==-===+-λλλλλλ,,,有根故通解为x=t t t te c e c e c e c --+++432221(2)03332=-'+''-'''x a x a x a x解:特征方程0333223=-+-a a a λλλ有三重根a =λ故通解为x=at at at e t c te c e c 2321++ (3)04)5(=''-x x解:特征方程0435=-λλ有三重根0=λ,=4λ2,=5λ-2故通解为54232221c t c t c e c e c x t t ++++=-(4)0=+'+''x x x解:特征方程012=++λλ有复数根=1λ,231i +-=2λ,231i-- 故通解为t e c t ec xt t 23sin 23cos 212211--+=(5) 12+=-''t s a s解:特征方程022=-a λ有根=1λa,=2λ-a当0≠a 时,齐线性方程的通解为s=atat e c e c -+21Bt A s +=~代入原方程解得21aB A -== 故通解为s=atat e c e c -+21-)1(12-t a当a=0时,)(~212γγ+=t t s 代入原方程解得21,6121==γγ故通解为s=t c c 21+-)3(612+t t (6) 32254+=-'+''-'''t x x x x解:特征方程025423=-+-λλλ有根=1λ2,两重根=λ 1 齐线性方程的通解为x=t t t te c e c e c 3221++又因为=λ0不是特征根,故可以取特解形如Bt A x +=~代入原方程解得A=-4,B=-1 故通解为x=t t t te c e c e c 3221++-4-t (7) 322)4(-=+''-t x x x解:特征方程121201224-===+-λλλλ重根,重根有 故齐线性方程的通解为x=t t t t te c e c te c e c --+++4321 取特解形如c Bt At x ++=2~代入原方程解得A=1,B=0,C=1 故通解为x=t t t t te c e c te c e c --+++4321+12+t (8)t x x cos =-'''解:特征方程013=-λ有复数根=1λ,231i +-=2λ,231i--13=λ 故齐线性方程的通解为t t t e c t e c t ec x 321221123sin 23cos ++=--取特解形如t B t A x sin cos ~+=代入原方程解得A=21,21-=B 故通解为t t t e c t e c t ec x 321221123sin 23cos ++=--)sin (cos 21t t +-(9) t x x x 2sin 82=-'+''解:特征方程022=-+λλ有根=1λ-2,=2λ 1 故齐线性方程的通解为x=tte c e c 221-+因为+-2i 不是特征根取特解形如t B t A x 2sin 2cos ~+=代入原方程解得A=56,52-=-B 故通解为x=tte c e c 221-+t t 2sin 562cos 52--(10)t e x x =-'''解:特征方程013=-λ有复数根=1λ,231i +-=2λ,231i--13=λ 故齐线性方程的通解为t t t e c t e c t ec x 321221123sin 23cos ++=-- =λ1是特征方程的根,故t Ate x =~代入原方程解得A=31 故通解为t t t e c t e c t ec x 321221123sin 23cos ++=--+t te 31(11)t e s a s a s =+'+''22解:特征方程0222=++a a λλ有2重根=λ-a 当a=-1时,齐线性方程的通解为s=t t te c e c 21+,=λ1是特征方程的2重根,故t e At x 2~=代入原方程解得A=21通解为s=22121t te c e c t t ++, 当a ≠-1时,齐线性方程的通解为s=at at te c e c --+21,=λ1不是特征方程的根,故t Ae x =~代入原方程解得A=2)1(1+a故通解为s=at at te c e c --+21+te a 2)1(1+ (12)t e x x x 256=+'+''解:特征方程0562=++λλ有根=1λ-1,=2λ-5 故齐线性方程的通解为x=tte c ec 521--+=λ2不是特征方程的根,故t Ae x 2~=代入原方程解得A=211故通解为x=t te c ec 521--++te 2211 (13)t e x x x t cos 32-=+'-''解:特征方程0322=+-λλ有根=1λ-1+2i,=2λ-1-2i 故齐线性方程的通解为t e c t e c x t t 2sin 2cos 21+=i ±-1 不是特征方程的根, 取特解行如t e t B t A x -+=)sin cos (~代入原方程解得A=414,415-=B 故通解为t e c t e c x t t 2sin 2cos 21+=+t e t t --)sin 414cos 415( (14) t t x x 2cos sin -=+''解:特征方程012=+λ有根=1λi,=2λ- i 故齐线性方程的通解为t c t c x sin cos 21+= 对于t x x sin =+'',=1λi,是方程的解, 设)sin cos (~t B t A t x +=代入原方程解得A=21-B=0 故t t x cos 21~-=对于t x x 2cos -=+'' ,设t B t A x 2sin 2cos ~+=代入原方程解得A=31 B=0 故t x 2cos 31~= 故通解为t c t c x sin cos 21+=t t cos 21-t 2cos 31+ 15)1442++=+'-''ttee x x x解:0442=+-λλ,22,1=λ,齐次方程的通解为)()(212t C C e t x t +=。
第四章常微分方程参考答案(1)

爱启航在线考研第四章常微分方程4.1答案:应选(C )解析:原方程写成23e 0+'+=yxyy ,分离变量有23e d =e d y x y y x --,积分得232e 3e --=x y C ,其中C 为任意常数.4.2答案:应填sin e=C xy ,其中C 为任意常数.解析:原方程分离变量,有d cos d ln sin =y xx y y x,积分得1ln |ln |ln |sin |ln =+y x C ,通解为ln sin =y C x 或sin e=C x y ,其中C 为任意常数.4.3答案:应填()2112e-=x y x 解析:原方程化为d 1d ⎛⎫=- ⎪⎝⎭y x x y x .积分得通解211ln ||ln ||2y C x x =-,即122ex y Cx -=.由初值(1)1=y 解出12e C =得特解.故答案为:()2112e-=x y x .4.4答案:应选(B )解析:原方程求导得()2()'=f x f x ,即()2()'=f x f x ,积分得2()e =x f x C ,又(0)ln 2=f ,故ln 2=C ,从而2()e ln 2=x f x .故应选(B ).4.5解:曲线()=y f x 在点(,)x y 处的切线方程为()'-=-Y y y X x ,令0=X ,得到切线在y 轴截距为'=-xy y xy ,即(1)'=-xy y x .此为一阶可分离变量的方程,于是d 11d ⎛⎫=- ⎪⎝⎭y x y x ,两边积分有1ln ||ln =-y C x x ,得爱启航线考研到e =x Cx y .又()11e y -=,故1=C ,于是曲线方程为e =xx y .4.6解:22d d 11+y y y x x x x =∆=+,得2d d 1=+y y x x ,变量分离2d 1d 1=+y x y x.两边积分得1ln arctan y x C =+.可得arctan exy C =又()0y =π,则C =π.所以arctan πexy =,()πarctan141πeπe y ==.4.7解:令=yu x,即=y ux ,则y u x u ''=+,又由题给表达式可得2y u u '=,即有u x u '+2u u =-d 1d 22=-x xu u ,两边积分得1ln 1ln ln u x C -=+,即ln(1ln ln 1=-+⇒-=⇒-=y Cu x C x xy C x x.4.8答案:应填2(ln ||)=+x y y C 解析:将x 看成未知函数,原方程改写为2d 1d 222+==+x x y x y xy y x这是一个伯努利方程,令2=z x ,有d 1d -=z z y y ,得11d d 2e ed (ln ||)-⎛⎫⎰⎰==+=+ ⎪ ⎪⎝⎭⎰y y y y x z y C y y C .故答案为:2(ln ||)=+x y y C ,其中C 为任意常数.4.9答案:应填()cos +x C x解析:属于一阶非齐次线性方程,直接根据一阶非齐次线性微分方程的通解公式即可得出答案.故答案为:()cos +x C x ,其中C 为任意常数.4.10答案:应填1爱启航在线考研解析:()2d 2d 22e 4e d e4ed x x xxy x x C x x C--⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰⎰222e (21)e (21)e x x xx C x C --⎡⎤=-+=-+⎣⎦.当0=x 时,1=-y ,则0=C .可得21=-y x ,则()11=y .故答案为1.4.11答案:应填1解析:由11()()'+=y P x y Q x 及22()()'+=y P x y Q x 得()()1212()()()αββαβ'+++=+y y P x ay y Q x .又因12αβ+y y 满足原方程,故应有()()()β+=a Q x Q x ,即1αβ+=.故答案为1.4.12解:()sin d sin d e cos e d -⎛⎫⎰⎰=+ ⎪⎝⎭⎰x xx x gx x x C ()cos cos e cos ed -=+⎰xxx x C又()00g =,故()()cos cos cos 0e cos ed cos ed limlime lim xxxx x x x x Cx x Cg x xxx--→→→++==⋅=⎰⎰cos 0e lim cos e 1x x x -→⋅=.4.13解:2d 1d 2y x x y =-,则2d 2d x x y y =-,即2d 2d x x yy-=-()()2d 2d 222222111e e d e e d e 224yy y y y x y y C y y C y y C --⎛⎫⎰⎰⎡⎤=-+=-+=+++ ⎪⎣⎦⎝⎭⎰⎰.4.14解:令=tx u ,则u t x d d =,则代入到题给表达式101()d ()d xf tx t f u u x =⎰⎰,可得20()d 2()xf u u xf x x =+⎰.两边求导得()2()2()2f x f x xf x x '=++,则()2()2f x xf x x '+=-.从而11131d d 2222222()e (1)ed 33x x x x f x x C x x C x Cx ---⎛⎫⎛⎫⎰⎰=-+-+=-+ ⎪⎝ ⎝⎭=⎪⎭⎰.爱启航在线考研4.15解:将原方程改写成211cos sin y x x yy '+=-,并令1z y =,则21z y y ''=-,且原方程化为sin cos z z x x '-=-.d de (sin cos )e d x x z x x x C -⎡⎤⎰⎰=-+⎢⎥⎣⎦⎰e (sin cos )e d x x x x x C -⎡⎤=-+⎣⎦⎰()e sin ed cose d xxx x x x x C --=-+⎰⎰,其中()sin e d sin d e sin e e cos d x x x x x x x x x x ----=-=-+⎰⎰⎰,故()e sin e e sin x x x z x C C x -=-+=-,即1e sin x C x y=-为所求通解.4.16答案:应选(C )解析:因原方程阶数为2,通解中应包含两个任意常数(可求出通解为3126++x C C x );特解中不含有任意常数(3*6=x y 为特解);36+x Cx 满足原方程,为原方程的解,故选项(A ),(B ),(C )都不对,应选(C ).4.17解:(1)令y p '=,则d d p y x ''=,从而2d 1d pp x=+,则2d d 1p x p =+积分得p arctan 1arctan p x C =+,故()1d tan d yp x C x=+=,则两边对x 积分1d tan()d y x C x =+⎰⎰,得()1121sin()d ln cos cos()x C y x x C C x C +==-+++⎰.(2)()10xy xy C '''=⇒=,即1y xC '=,故12ln y C x C =+.4.18解:由21e x y =,得212e x y x '=,()22124e x y x ''=+;由22e x y x =,得222(12)e x y x '=+,()22364e x y x x ''=+.因爱启航在线考研()()()22222211144224e 42e 42e 0x x x y xy x y x x x x '''-+-=+-⋅+-=.()()()()222232222244264e 412e 42e 0x x x y xy x y x x x x x x '''-+-=+-++-=.故1y 与2y 都是方程的解.又因21y x y =不等于常数,故1y 与2y 线性无关.于是方程的通解为()2112212e x y C y C y C C x =+=+.4.19答案:应选(A )解析:根据高阶线性微分方程根的形式可知,选(A ).4.20答案:应选(B )解析:由题意可知,-1是特征方程二重特征根,1是特征方程的特征根,故特征方程为()()2110+-=r r ,即3210+--=r r r .故三阶常系数齐次线性方程为0y y y y ''''''+--=.故选(B ).4.21答案:应选(C )解析::特征方程为2220++=r r 即2(1)1+=-r ,解得特征根为1,21i r =-±.而()e sin x f x x -=,i 1i w ±=-±λ是特征根,故特解的形式为*e (cos sin )x y x a x b x -=+.4.22答案:应填()*22e xy x ax bx c dx =+++解析:特征方程为220-=r r ,特征根10r =,22r =.对21()1=+f x x ,10λ=是特征根,所以()*21y x ax bx c =++.对22()exf x =,22λ=也是特征根,故有*22e =x y dx .从而***12=+y y y 就是特解.故答案为()*22e x y x ax bx c dx =+++.4.23解:所给微分方程的特征方程为256(2)(3)0++=++=r r r r ,特征根为12=-r ,23=-r .于是,对应齐次微分方程的通解为2312)e e xx y x C C --=+.爱启航在线考研设所给非齐次方程的特解为*e xy A -=.将*()y x 代入原方程,可得1A =.由此得所给非齐次方程得特解*e xy -=.从而,所给微分方程得通解为2312()e e e xx x y x C C ---=++,其中1C ,2C 为任意常数.4.24答案:应选(C )解析:将()()000y y '==代入3e xy py qy '''++=,得()01''=y .()()()()()22000ln 122limlimlimlim 2x x x x x x x y x y x y x y x →→→→+===='''.故选C.4.25答案:应填12e(cos sin )e xxC x C x ++解析:所给微分方程的特征方程为22201i -+=⇒=±r r r ,从而齐次通解为12e (cos sin )x C x C x +,设特解为e x A ,代入方程得e 2e 2e e 1x x x x A A A A -+=⇒=,即得特解为e x .非齐次通解为12e(cos sin )e xx C x C x ++.。
常微分方程第5章答案
常微分方程第5章答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March习题1.给定方程组x = x x= (*)a)试验证u(t)= ,v(t)= 分别是方程组(*)的满足初始条件u(0)= , v(0)= 的解.b)试验证w(t)=c u(t)+c v(t)是方程组(*)的满足初始条件w(0)= 的解,其中是任意常数.解:a) u(0)= =u (t)= = u(t)又 v(0)= =v (t)= = = v(t)因此 u(t),v(t)分别是给定初值问题的解.b) w(0)= u(0)+ u(0)= + =w (t)= u (t)+ v (t)= +=== w(t)因此 w(t)是给定方程初值问题的解.2. 将下面的初值问题化为与之等价的一阶方程组的初值问题:a) x +2x +7tx=e ,x(1)=7, x (1)=-2b) x +x=te ,x(0)=1, x (0)=-1,x (0)=2,x (0)=0c)x(0)=1, x (0)=0,y(0)=0,y (0)=1解:a)令 x =x, x = x , 得即又 x =x(1)=7 x (1)= x (1)=-2于是把原初值问题化成了与之等价的一阶方程的初值问题:x = x(1)=其中 x= .b) 令=x ===则得:且 (0)=x(0)=1, = (0)=-1, (0)= (0)=2,(0)= (0)=0于是把原初值问题化成了与之等价的一阶方程的初值问题:= x(0)= , 其中 x= .c) 令w =x, w =,w =y,w =y ,则原初值问题可化为:且即 ww(0)= 其中 w=3. 试用逐步逼近法求方程组= x x=满足初始条件x(0)=的第三次近似解.解:0241201 杨素玲习题02412—02 02412—031.试验证 =是方程组x = x,x= ,在任何不包含原点的区间a 上的基解矩阵。
常微分方程习题答案(第五章定性与稳定性理论简介)
常微分方程习题答案第五章定性与稳定性理论简介教材习题同步解答习题5.21. 对于方程组41114221,,xx x x x x ⎧=-⎨=⎩ 试说明 441212(,)V x x x x =+是正定的,而dVdt是常负的。
证:易知(0,0)0V =,当22120x x +≠时,12(,)0V x x > 正定。
34344444121122211212124()4()440dV V V x x x x x x x x x x x x dt x x ∂∂=+=-+-=-+=∂∂ ,故dV dt是常负。
(0,0)0V =。
2. 讨论方程组312132124,3,xx x x x x ⎧=--⎨=-⎩ 零解的稳定性。
证:取 221212(,)V x x x x =+, 易知(0,0)0V =,当22120x x +≠时, 12(,)0V x x >即正定。
334411221212121212222(4)2(3)22()0dV x x x x x x x x x x x x x x dt=+=--+-=---< ,故方程的零解是渐进稳定的。
3. 讨论自治系统2111222212,,x Ax x x x Ax x x ⎧=-⎨=-⎩ 零解的稳定性。
证:证:取 221212(,)V x x x x =+, 易知(0,0)0V =,当22120x x +≠时,12(,)0V x x >即正定。
222211221112221212222()2()2()dV x x x x x Ax x x x Ax x x A x x dt=+=-+-=+ ,故方程的0A >,则零解是不稳定的;若0A <,则零解是渐进稳定的。
习题5.3通过求解,确定下列各方程的奇点类型,画出相图,并确定奇点的稳定性:(1)2,3;dx x dt dy y dt ⎧=-⎪⎪⎨⎪=-⎪⎩(2)3,3;dx x dt dy x y dt⎧=⎪⎪⎨⎪=+⎪⎩(3),;dx y dt dy x dt ⎧=⎪⎪⎨⎪=-⎪⎩(4)23,3;dxx y dtdy x y dt ⎧=+⎪⎪⎨⎪=+⎪⎩解:(1)方程的奇点为(0,0)O ,方程所对应的系数矩阵为2003A -⎡⎤=⎢⎥-⎣⎦,系数矩阵所对应的特征方程为20003λλ--=-- 或2560λλ++= ,特征根为 1220,30,λλ=-<=-<奇点(0,0)O 为稳定结点。
常微分方程第4章习题答案
习 题 4—11.求解下列微分方程1) 22242x px p y ++= )(dx dy p =解 利用微分法得 0)1)(2(=++dx dp p x 当 10dp dx+=时.得p x c =-+ 从而可得原方程的以P 为参数的参数形式通解22242y p px x p x c ⎧=++⎨=-+⎩或消参数P.得通解 )2(2122x cx c y -+= 当 20x p +=时.则消去P.得特解 2x y -=2)2()y pxlnx xp =+; ⎪⎭⎫ ⎝⎛=dx dy p 解 利用微分法得 (2)0dp lnx xp x p dx ⎛⎫++= ⎪⎝⎭当0=+p dxdp x 时.得 c px = 从而可得原方程以p 为参数的参数形式通解:2()y pxln xp px c ⎧=+⎨=⎩或消p 得通解 2y Clnx C =+ 当20lnx xp +=时.消去p 得特解 21()4y lnx =- 3)()21p p x y ++= ⎪⎭⎫ ⎝⎛=cx dy p 解 利用微分法.得x dx p p p -=+++2211 两边积分得 ()c x P P P =+++2211由此得原方程以P 为参数形式的通解:21(p p x y ++= .().11222c x p p p =+++或消去P 得通解222)(C C X y =-+ 1. 用参数法求解下列微分方程1)45222=⎪⎭⎫ ⎝⎛+dx dy y 解 将方程化为 221542=⎪⎭⎫ ⎝⎛+dx dy y 令2sin y t = 2cos 5dy t dx = 由此可推出 1515(2sin )22cos 2cos 5dx dy d t dt t t ===从而得 c t x +=25因此方程的通解为 52x t c =+ .2sin y t = 消去参数t.得通解22sin ()5y x C =- 对于方程除了上述通解.还有2±=y .0=dxdy .显然 2=y 和2-=y 是方程的两个解。
常微分方程第四章课后答案
常微分方程第四章课后答案大家好,我是你们的语文老师小七。
在高中阶段很多学生对于课本上的知识点都有一些基础认识,但是有些同学在理解了这个知识点之后就不知道该如何去理解了,所以今天我就来给大家讲解一下常微分方程第四章课后习题练习。
这一章节主要讲两个内容:①什么是常微分方程;②常微分方程解法。
第一个内容是常微分方程解法的定义,这是在课本中找不到的知识。
这一部分主要要学习基本的表达式以及一些解析式。
第二个内容是常微分方程中积分法,对于初学者来说这一部分更是需要好好学习了。
下面我们就来了解一下这些知识点吧。
首先要明确一下这章节讲的内容不能单独做练习题,而是需要把每一道例题都做完才行。
这节课除了常规的知识会做一些相关例题之外,还会讲解下几道解析式以及常见的几种情况了。
1.线性表达式的两个性质线性表达式中含有一个值为 y,由定义可知 x的值为 y=0,这种情况下表达式的两个性质分别为①线性表达式有无限长时,函数的阶数不变;②线性表达式随解变小而逐渐递减;③线性表达式对任意一阶值的变换都可以得到对应形式,比如用n× n来表示(如矩阵)。
这两个性质可以通过具体例子来说明这一点。
在函数 x>0时,由于有无穷多个解,每个解都有相应的矩阵,并且在这个矩阵中存在相同的化简问题。
那么解方程中所含有的多变量就是这两个性质。
其中 x 和 y分别表示对一个函数 x和 y取对应微分时变量之间的关系。
另外还有一种情况会用到近似解来证明:即满足 k、 z、?三大条件中有任意一种条件时,可以得到一个近似求解的常微分方程:所以两个函数均满足 k、 z、?三大条件中任意一项就可以得到这类线性表达式下面这个解法:若 y为二元函数,则 y=2 x+1 y^2 x+1 y^2 x^2 x=+1x?1=+1x-2-0 (如矩阵)。
2.等比数列在常微分方程解法方面,我们的解法就是将该解法和实际中计算的解做一个等值处理。
我们通常将等值数列分为等比数列(m= m)和等比数列(m=1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《常微分方程》第四、五章作业答案
第四章
1.证明:由题可知()t x 1,()t x 2分别是方程(1),(2)的解
则:()()()
()()()t f t x t a dt t x d t a dt t x d n n n n n 111
1111=+++--Λ (3)
()()()
()()()t f t x t a dt t x d t a dt t x d n n n n n 221
2112=+++--Λ (4) 那么由(3)+(4)得:
()()()()()()()
()()()()=++++++--t x t x t a dt t x t x d t a dt t x t x d n n n n n 211
211121Λ()t f 1+()t f 2 即()t x 1+()t x 2是方程是()()=+++--x t a dt
x
d t a dt x d n n n n n Λ111()t f 1+()t f 2的解。
2.(1)特征方程为:42540λλ-+=
特征根为12341,1,2,2λλλλ==-==- 原方程通解为:221234()t t t t x t c e c e c e c e --=+++ (2)特征方程为:5340λλ-=
特征根为1230,2,2λλλ===-,其中10λ=是三重根 原方程通解为:22212345()t t x t c c t c t c e c e -=++++ (3)特征方程为: 22100λλ++=
特征根为:1,213i λ=-±
通解为:12()(cos3sin 3)t x t c t c t e -=+
(4)原方程对应的齐线性方程的通解为:
123456*()()cos ()sin t t x t c e c e c c t t c c t t -=+++++
下求原方程的特解.
设原方程的特解为:2()x t At Bt C =++ 代入方程有: 2243A At Bt C t -+++=- 故1,0A C B ===
原方程特解为:2()1x t x =+
通解为:2123456()()cos ()sin 1t t x t c e c e c c t t c c t t x -=+++++++
(5)原方程对应的齐线性方程的通解为:
2123*()()t
t
x t c e c c e -=++ 下求原方程的特解.
设原方程的特解为:()t x t Ate =
代入方程有:(3)1
31,3
t t t
A t e Ate e A A +-≡==
原方程特解为:1
()3
t x t te =
通解为:21231()()3
t
t
t x t c e c c e te -=+++ (6)解:通解为:121
x c t c t
=+
第五章
1.解:矩阵A 的特征多项式为230λ-=
特征值为12λλ==
对应的特征向量分别为11,22⎛⎫⎛⎫
+-⎝⎝
故通解为121122x c c e ⎛⎫⎛⎫=+ +⎝⎝ 2.解:解: det(A E -λ)=0543
4
2
1
2=--=----λλλλ
所以,5,
121=-=λλ
设11-=λ对应的特征向量为1v
由0110
442211≠⎪
⎪⎭
⎫
⎝⎛-==⎪⎪⎭⎫
⎝⎛----ααv v 可得
取⎪
⎪⎭
⎫
⎝⎛=⎪
⎪⎭
⎫
⎝⎛-=211121v v 同理取
所以,)(t Φ=
[]
=
-251
v e v e
t
t
⎪⎪⎭
⎫ ⎝
⎛---t t t t e e e e 552 ⎪⎪⎭
⎫ ⎝⎛+--+=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝
⎛-=⎪⎪⎭
⎫ ⎝⎛-⎪⎪⎭⎫ ⎝
⎛-=ΦΦ=----------t t t t t t t
t t t t t
t t
t
t
At e e e
e e e e e e e e e e e e e
t e 5555551
551222231111223121112)0()(。