焦平面APD探测器的国内外技术现状和发展趋势

合集下载

红外焦平面探测器

红外焦平面探测器

红外焦平面探测器介绍红外焦平面探测器(Infrared Focal Plane Array Detector,以下简称IRFPA)是一种用于探测红外辐射的器件,可广泛应用于航天、军事和民用领域。

它能够实时、高效地探测并转换红外辐射能量为电信号,从而实现红外图像的获取和处理。

工作原理IRFPA的工作原理基于红外辐射与物体表面的相互作用。

当红外辐射照射在IRFPA上时,它会导致IRFPA内的感光元件产生电子-空穴对。

感光元件通常由半导体材料制成,如硒化铟(InSb)、硫化镉汞(CdHgTe)等。

这些电子-空穴对随后在感光元件中分离并转换为电信号。

IRFPA的关键组件是焦平面阵列(Focal Plane Array,以下简称FPA),它由大量排列成矩阵的感光元件组成。

每个感光元件都对应于焦平面上的一个像素,因而整个FPA可以同时探测多个红外像素。

这些像素的信号经过放大和处理后,可以生成红外图像。

型号和特性IRFPA的型号和特性各不相同,取决于其应用领域和需求。

以下是一些常见的IRFPA型号和相应的特性:1.分辨率:IRFPA的分辨率指的是其能够探测到的最小单位像素数量。

一般而言,分辨率越高,探测到的红外图像越清晰。

常见的分辨率有320x240、640x480等。

2.帧率:IRFPA的帧率是指其每秒能够获取和处理的红外图像数量。

较高的帧率可以捕捉到快速移动的物体,对于一些动态场景非常重要。

3.波段范围:不同的IRFPA可以探测不同波长范围的红外辐射,如近红外(NIR),短波红外(SWIR),中波红外(MWIR)和长波红外(LWIR)。

选择适当波段范围的IRFPA取决于具体的应用需求。

4.灵敏度:IRFPA的灵敏度是指其能够探测到的最小红外辐射强度。

较高的灵敏度意味着IRFPA可以探测到较微弱的红外辐射,对于一些低信噪比场景非常重要。

应用领域IRFPA在多个领域具有广泛的应用。

以下是一些常见的应用领域:1.热成像:IRFPA可以通过探测物体表面的红外辐射,用于热成像和温度分布检测。

红外焦平面成像方法及红外焦平面芯片行业竞争分析及发展规划指导报告

红外焦平面成像方法及红外焦平面芯片行业竞争分析及发展规划指导报告
加强红外焦平面芯片的基础研究,提高自主创 新能力,突破关键技术瓶颈。
技术创新
鼓励企业加大技术研发投入,推动行业的技术 创新和产品升级。
人才培养
加强人才培养和引进,建立完善的人才体系,为行业发展提供人才保障。
行业市场拓展策略
市场定位
01
明确红外焦平面芯片的市场定位,针对不同领域和客户需求,
制定相应的市场拓展策略。
应用领域拓展
随着红外成像技术的不断成熟和成本降低,红外焦平面芯片的应用领域 将进一步拓展,包括智能家居、无人机、智能交通等领域。
03
市场竞争加剧
随着市场规模的扩大和技术进步,红外焦平面芯片行业的竞争将更加激烈。企业需要加大技术研来自和产品创新的投入,以提升竞争力。
03
红外焦平面芯片行业竞 争分析
竞争格局分析
市场份额
根据市场调研数据,美国Flir Systems在全球红外焦平面芯片市场中占据最大的 市场份额,约为30%;法国Thales和美国Raytheon分别占据约20%的市场份额 。
行业发展趋势分析
01 02
技术创新
随着材料科学、微电子技术等领域的发展,红外焦平面芯片的技术水平 不断提高,性能和可靠性得到提升。未来,高灵敏度、高分辨率、快速 响应的红外焦平面芯片将成为主流。
品牌建设
02
加强品牌建设和宣传,提高品牌知名度和美誉度,增强市场竞
争力。
国际合作
03
加强国际合作和交流,引进国际先进技术和管理经验,拓展国
际市场。
05
红外焦平面芯片行业未 来发展展望
技术创新推动行业发展
红外焦平面成像技术不断升级
随着技术的不断进步,红外焦平面成像的分辨率、灵敏度和响应速度将得到显著提升, 推动行业的发展。

焦平面APD探测器的国内外技术现状和发展趋势

焦平面APD探测器的国内外技术现状和发展趋势

红外焦平面探测器的国内外技术现状和发展趋势一、焦平面APD探测器的背景及特点焦平面APD探测器主要是由:APD阵列和读出电路(ROIC)两部分组成,其中APD是核心元件。

1、APD雪崩光电二极管(APD)是一种具有内部增益的半导体光电转换器件,具有量子响应度高、响应速度快、线性响应特性好等特点,在可见光波段和近红外波段的量子效率可达90%以上,增益在10~100倍,新型APD材料的最大增益可达200倍,有很好的微弱信号探测能力。

2、APD阵列的分类按照APD的工作的区间可将其分为:Geiger-modeAPD(反向偏压超过击穿电压)和线性模式APD(偏压低于击穿电压)两种。

(1)Geiger-modeAPD阵列的特点优点:1)极高的探测灵敏度,单个光子即可触发雪崩效应,可实现单光子探测;2)GM-APD输出信号在100ps量级,即有高的时间分辨率,进而有较高的距离分辨率,厘米量级;3)较高的探测效率,采用单脉冲焦平面阵列成像方式;4)较低的功耗,体积小,集成度高;5)GM-APD输出为饱和电流,可以直接进行数字处理,读出电路(ROIC)不需要前置放大器和模拟处理模块,即更简单的ROIC。

缺点:1)存在死时间效应:GM-APD饱和后需要一定时间才能恢复原来状态,为使其可以连续正常工作需要采用淬火电路对雪崩进行抑制。

2)GM-APD有极高的灵敏度,其最噪声因素更加敏感,通道之间串扰更严重。

(2)线性模式APD阵列的特点优点:1)光子探测率高,可达90%以上;2)有较小的通道串扰效应;3)具有多目标探测能力;4)可获取回波信号的强度信息;5)相比于GM-APD,LM-APD对遮蔽目标有更好的探测能力。

缺点:1)灵敏度低于GM-APD;(现今已经研制出有单光子灵敏度的LM-APD)2)读出电路的复杂度大于GM-APD(需对输入信号进行放大、滤波、高速采样、阈值比较、存储等操作)。

(其信号测量包括强度和时间测量两部分)按照基底半导体材料APD可分为:SiAPD、GeAPD、InGaAsAPD、HgCdTeAPD。

红外焦平面阵列技术发展现状与趋势

红外焦平面阵列技术发展现状与趋势

红外焦平面阵列技术发展现状与趋势跨入二十一世纪以来,红外热摄像技术的发展已经历了三十多个年头。

其发展已从当初的机械扫描机构发展到了目前的全固体小型化全电子自扫描凝视摄像,特别是非致冷技术的发展使红外热摄像技术从长期的主要军事目的扩展到诸如工业监控测温、执法缉毒、安全防犯、医疗卫生、遥感、设备先期性故障诊断与维护、海上救援、天文探测、车辆、飞行器和舰船的驾驶员夜视增强观察仪等广阔的民用领域。

红外热摄像技术的发展速度主要取决于红外探测器技术取得的进展。

三十年来,红外探测器技术已从第一代的单元和线阵列发展到了第二代的二维时间延迟与积分(TDI)8~12μm的扫描和3~5μm的640×480元InSb凝视阵列,目前正在向焦平面超高密度集成探测器元、高性能、高可靠性、进一步小型化、非致冷和军民两用技术的方向发展,正在由第二代阵列技术向第三代微型化高密度和高性能红外焦平面阵列技术方向发展。

1 发展现状1.1 超高集成度的焦平面探测器像元像可见光CCD光纤通信工业应用使其具有大批量生产的能力,因而几年来日益受到重视,美国传感器无限公司在DARPA 和NVESD支持下正在加速发展这种非致冷的红外焦平面阵列和摄像机技术,其阵列尺寸已达到320×240元。

·HgCdTe阵列:由于军用目的的需求,过去这种材料焦平面阵列技术的发展主要集中于中波和长波红外波段应用,但洛克威尔国际科学中心却一直在发展1~3μm波段工作的HgCdTe焦平面阵列技术,其主要目的是天文和低背景应用,该中心在90年代中期已制出HQWAⅡ-1 1024×1024元阵列,目前已研制成功世界上最大的HQWAⅡ-2型2048×2048元的阵列,该中心正在计划研制4096×4096元的特大型阵列。

在3~5μm的中波红外焦平面阵列方面:中波红外焦平面阵列技术的发展一直是红外焦平面中发展最快的,主要有PtSi、InSb和HgCdTe三种阵列,其阵列规模已达到2048×2048元(400万元)。

焦平面红外探测器应用现状

焦平面红外探测器应用现状

焦平面红外探测器应用现状0 引言红外探测器广泛应用于军事、科学、工农业生产和医疗卫生等各个领域,尤其在军事领域,红外探测器在精确制导、瞄准系统、侦察夜视等方面具有不可替代的作用。

近年来,红外探测器的需求不断增加。

据美国相关公司市场调研分析师预测,全球军用红外探测器需求额有望在2020年达到163.5亿美元,复合年均增长率为7.71%。

红外探测器按探测机理可分为热探测器和光子探测器,按其工作中载流子类型可以分为多数载流子器件和少数载流子器件两大类,按照探测器是否需要致冷,分为致冷型探测器和非致冷型探测器。

非致冷探测器目前主要是非晶硅和氧化钒探测器,致冷型探测器主要包括碲镉汞三元化合物、量子阱红外光探测器Ⅱ类超晶格等。

在过去的几十年里,大量的新型材料、新颖器件不断涌现,红外光电探测器完成了第一代的单元、多元光导器件向第二代红外焦平面器件的跨越,目前正朝着以大规模、高分辨力、多波段、高集成、轻型化和低成本为特征的第三代红外焦平面技术的方向发展。

1 焦平面红外探测器应用现状热探测器的应用早于光子探测器。

热探测器包括热释电探测器、温差电偶探测器、电阻测辐射热计等。

热探测器具有宽谱响应、室温工作的优点,但是它响应时间较慢、高频时探测率低,目前主要应用于民用领域。

光子探测器是基于光电效应制备的探测器,通过配备致冷系统,具有高量子效率、高灵敏度、低噪声等效温差、快速响应等优点。

在军事领域,光子探测器占据主导地位。

常用的光子探测器有碲镉汞(HgCdTe)、InAs / InGaSb Ⅱ类超晶格、GaAs / AlGaAs量子阱等。

近年来量子点红外光探测器也引起广泛关注,量子点红外光探测器在理论上具有很多优点,但实际制备的量子点红外光探测器与理论预测的还是有一定差距。

表1对几种常用的光子型焦平面红外探测器进行了比较。

在精确制导领域,主流制导方式有红外制导和雷达制导,这两种方式各有优势,在某些特定的场合,红外制导更是显示出其不可替代性。

焦平面APD探测器地国内外技术现状和发展趋势

焦平面APD探测器地国内外技术现状和发展趋势

红外焦平面探测器的国内外技术现状和发展趋势一、焦平面APD探测器的背景及特点焦平面APD探测器主要是由:APD阵列和读出电路(ROIC)两部分组成,其中APD是核心元件。

1、APD雪崩光电二极管(APD)是一种具有内部增益的半导体光电转换器件,具有量子响应度高、响应速度快、线性响应特性好等特点,在可见光波段和近红外波段的量子效率可达90%以上,增益在10~100倍,新型APD材料的最大增益可达200 倍,有很好的微弱信号探测能力。

2、APD阵列的分类按照APD的工作的区间可将其分为:Geiger-mode APD(反向偏压超过击穿电压)和线性模式APD(偏压低于击穿电压)两种。

(1)Geiger-mode APD阵列的特点优点:1)极高的探测灵敏度,单个光子即可触发雪崩效应,可实现单光子探测;2)GM-APD输出信号在100ps量级,即有高的时间分辨率,进而有较高的距离分辨率,厘米量级;3)较高的探测效率,采用单脉冲焦平面阵列成像方式;4)较低的功耗,体积小,集成度高;5)GM-APD输出为饱和电流,可以直接进行数字处理,读出电路(ROIC)不需要前置放大器和模拟处理模块,即更简单的ROIC。

缺点:1)存在死时间效应:GM-APD饱和后需要一定时间才能恢复原来状态,为使其可以连续正常工作需要采用淬火电路对雪崩进行抑制。

2)GM-APD有极高的灵敏度,其最噪声因素更加敏感,通道之间串扰更严重。

(2)线性模式APD阵列的特点优点:1)光子探测率高,可达90%以上;2)有较小的通道串扰效应;3)具有多目标探测能力;4)可获取回波信号的强度信息;5)相比于GM-APD,LM-APD对遮蔽目标有更好的探测能力。

缺点:1)灵敏度低于GM-APD;(现今已经研制出有单光子灵敏度的LM-APD)2)读出电路的复杂度大于GM-APD(需对输入信号进行放大、滤波、高速采样、阈值比较、存储等操作)。

(其信号测量包括强度和时间测量两部分)按照基底半导体材料APD可分为: Si APD、Ge APD、InGaAs APD、HgCdTe APD。

红外焦平面成像技术发展现状

红外焦平面成像技术发展现状

红外焦平面成像技术发展现状姓名:高洁班级:11级硕研1班学号:S11080300007摘要红外焦平面列阵成像技术已经进入了成熟期。

本文对几种红外焦平面列阵器件如MCT、Insb 和QWIP 的最新进展作一评述,简要介绍其器件发展水平、技术路线和关键工艺。

简要提及一种新颖的非制冷焦平面成像技术:光学读出微光机红外接收器。

关键词:红外焦平面列阵;碲镉汞;锑化铟;量子阱红外探测器AbstractInfrared focal plane array (IRFPA) imaging technology has been matured during the passed decade. In this paper an overview of recent progress to several kind of IRFPA such as MCT, Insb and QWIP is provided , focusing on new device development, technical lines and key technologies. Also, a new type of uncooled FPA imaging technigue micro !optomechanical infrared receiver with optical readout is briefly introduced.Key words: IRFPA; MCT; Insb; QWIP引言红外探测器技术在20 世纪90 年代取得了飞速发展。

红外焦平面列阵成像技术进入了成熟期。

高性能大规格焦平面列阵已正式地应用于各种重大国家安全项目中,例如弹道导弹防御计划和重要新型武器系统。

另外,新型非制冷红外焦平面技术的涌现正在促进红外技术走向第三代。

美国人预言,未来几年美国红外市场将出现年均30%的连续高速增长[1]。

本文简要评述了几种红外焦平面列阵器件技术的最新进展。

2023年我国数字化X射线平板探测器行业现状:非晶硅为医疗领域技术主流

2023年我国数字化X射线平板探测器行业现状:非晶硅为医疗领域技术主流
2.数字化X射线平板探测器市场规模增长迅猛近年来,随着医疗技术的不断进步,数字化X射线平板探测器在医疗领域的应用越来越广泛。据统计,中国数字化X射线平板探测器市场规模持续增长,2019年市场规模已达到10亿元人民币,预计到2025年将达到20亿元人民币。
3.中国X射线平板探测器行业依赖非晶硅技术,未来可能有新突破目前,中国数字化X射线平板探测器行业主要采用非晶硅技术,该技术具有较高的灵敏度和稳定性,能够满足大多数医疗诊断需求。但是,随着医疗技术的不断进步,未来可能会有更多的新技术应用于该领域,进一步提高诊断准确性和效率。
发展历程
中国数字化X射线平板探测器行业现状:
自X射线平板探测器技术诞生以来,我国已经在这个领域取得了一定的进展。以下是中国数字化X射线平板探测器行业的发展历程:
1. 技术引入与研发阶段(20世纪80年代-2010年)在20世纪80年代,X射线平板探测器技术开始进入中国市场,但由于技术难度较大,国内企业主要以研发为主。2010年以后,随着国内科研实力的增强,一些企业开始逐渐掌握相关技术并开始量产。
3.稳步增长,政策扶持,预计2025年市场规模达50亿元首先,我国数字化X射线平板探测器市场规模正在稳步增长。由于国家政策对医疗行业的扶持以及国内企业不断加大研发投入,市场规模呈现快速增长的态势。据统计,2019年我国数字化X射线平板探测器市场规模约为30亿元,预计到2025年将达到50亿元,年均增长率达到10%左右。
中国X射线平板探测器行业技术突破(1)技术进步:近年来,中国数字化X射线平板探测器行业在技术方面取得了显著的进步。例如,新型探测器的研发、高分辨率图像的生成、低剂量技术的应用等方面都取得了重要进展。
中国数字化X射线平板探测器行业关注技术趋势,推动发展(2)技术趋势:未来,中国数字化X射线平板探测器行业将继续关注技术趋势,如更先进的探测器材料、更高效的图像处理算法、更低的辐射剂量等。这些技术趋势将有助于提高设备的性能,降低成本,并推动行业的进一步发展。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外焦平面探测器的国内外技术现状和发展趋势一、焦平面APD探测器的背景及特点焦平面APD探测器主要是由:APD阵列和读出电路(ROIC)两部分组成,其中APD是核心元件。

1、APD雪崩光电二极管(APD)是一种具有内部增益的半导体光电转换器件,具有量子响应度高、响应速度快、线性响应特性好等特点,在可见光波段和近红外波段的量子效率可达90%以上,增益在10~100倍,新型APD材料的最大增益可达200 倍,有很好的微弱信号探测能力。

2、APD阵列的分类按照APD的工作的区间可将其分为:Geiger-mode APD(反向偏压超过击穿电压)和线性模式APD(偏压低于击穿电压)两种。

(1)Geiger-mode APD阵列的特点优点:1)极高的探测灵敏度,单个光子即可触发雪崩效应,可实现单光子探测;2)GM-APD输出信号在100ps量级,即有高的时间分辨率,进而有较高的距离分辨率,厘米量级;3)较高的探测效率,采用单脉冲焦平面阵列成像方式;4)较低的功耗,体积小,集成度高;5)GM-APD输出为饱和电流,可以直接进行数字处理,读出电路(ROIC)不需要前置放大器和模拟处理模块,即更简单的ROIC。

缺点:1)存在死时间效应:GM-APD饱和后需要一定时间才能恢复原来状态,为使其可以连续正常工作需要采用淬火电路对雪崩进行抑制。

2)GM-APD有极高的灵敏度,其最噪声因素更加敏感,通道之间串扰更严重。

(2)线性模式APD阵列的特点优点:1)光子探测率高,可达90%以上;2)有较小的通道串扰效应;3)具有多目标探测能力;4)可获取回波信号的强度信息;5)相比于GM-APD,LM-APD对遮蔽目标有更好的探测能力。

缺点:1)灵敏度低于GM-APD;(现今已经研制出有单光子灵敏度的LM-APD)2)读出电路的复杂度大于GM-APD(需对输入信号进行放大、滤波、高速采样、阈值比较、存储等操作)。

(其信号测量包括强度和时间测量两部分)按照基底半导体材料APD可分为:Si APD、Ge APD、InGaAs APD、HgCdTe APD。

其中Si的由于波长在1um左右,由于材料限制很难做到大于32*32的阵列,再考虑到人眼安全以及军事对高功率激光的需求,工作波长在:1.5um的InGaAs APD 及HgCdTe APD为研究的热点内容。

二、国外的技术现状按照APD的工作区间进行分类讨论。

1、基于Geiger-mode APD(GM-APD)的焦平面探测器(1)技术手段:1)APD阵列:主要采用p型衬底金属有机气相外延(MOCVD)及台面工艺方法;或者n型衬底P扩散平面工艺方法制备。

2)ROIC:采用CMOS工艺代工流片。

3)封装技术:采用陶瓷封装等将APD和ROIC集成在一起的探测器封装,再封装到半导体热电制冷(TEC)方式使其工作与浅低温的条件。

4)APD和ROIC的集成:块接(Bump-bonding)技术或者桥接(Bridge-bonding)技术。

(2)发展历史:1998年林肯实验室研制出4*4的APD焦面探测器;2001年研制出Gen-I系统;2002年研制出微型化的Gen-II;2003年研制出Gen-III(APD阵列:32*32);2011年研制出ALIRT系统(APD阵列:32*128);目前为止已经可以实现:APD阵列:256*256,测量精度:5cm以内。

(3)主要的研究机构:美国MIT林肯实验室、波音Spectrolab公司、Princeton Lightwave公司等(4)结构及其原理框图:图一、GM-APD FPA原理图如图一所示:激光发射的同时产生一个计时开始信号(start);当光子回波到达时产生一个COMS兼容的电压脉冲(stop);该脉冲使读出电路时间测量单元停止计数;光脉冲到达的时间数字化,同时降低偏置实现雪崩淬灭,数据经传输处理获取目标三维距离信息。

图二、GM-APD FPA结构图如图二所示:InGaAs/InP APD阵列通过In柱子的倒装和下面的ROIC芯片集成,通过陶瓷封装之后,再封装到含有三级半导体热电制冷器(TEC)和石英玻璃光窗的金属管壳。

图三、GM-APD InGaAs/InP结构图如图三所示:采用背照入射平面结构,材料结构上采用光吸收雪崩倍增层分离的、具有能带渐变层和电荷层的结构。

2、基于线性模式APD(LM-APD)的焦平面探测器(1)技术手段:1)APD阵列:主要通过分子束外延生长(MBE)进行制备2)ROIC:采用CMOS工艺代工流片。

3)封装技术:采用陶瓷封装等将APD和ROIC集成在一起的探测器封装,再封装到半导体热电制冷(TEC)方式使其工作与浅低温的条件。

4)APD和ROIC的集成及其结构:Z堆叠(Z-stacking)技术,或者垂直互连探测器阵列技术(Vertically Integrated Sensor Arrays,VISA)。

图四、VISA与Z堆叠技术的结构对比如图四所示:VISA采用垂直互连代替Z最堆叠中的平行结构,其可以克制芯片的长度限制,用于制造更大规模的探测器阵列和更复杂的片上信号处理系统。

图五、VISA的焦平面探测器结构(2)发展历史:2000年开始Raytheon在国防预先研究计划局(DARPA)支持下先后研制了:4*4,32*2,10*10,4*256等不同规格的APD阵列探测器;2001年开始DRS公司对HgCdTe APD进行研究,并利用高密度垂直集成光电二极管的结构开发圆柱形N-on-P APD;2005年开始ASC公司开发了一系列3D闪光激光探测成像传感器InGaAs APD 阵列(APD阵列128×128);2007年,Raytheon研制了一种应用于导弹系统和海军空中作战中心的HgCdTe APD三维成像雷达(APD阵列2×128),目前仪可以做出256*256;2007年,DSR公司在美国陆军CELRAP计划支持下开发了HgCdT e APD脉冲无扫描激光雷达系统(APD阵列128×128,增益可达1000倍);2011年,法国CEA/LETI和DEFIR实验室研制了一种具备主动和被动成像能力的HgCdT e APD三维闪光激光雷达(APD阵列320*256);目前为止:APD阵列320*256(近年已经达到515*512);分辨率:ns量级;增益大于100(3)主要的研究机构:美国的:雷神公司(Raytheon)、DRS公司、ASC (Advanced Scientific Concepts)公司、Lockheed Martin公司;法国的:CEA-Leti 公司等等(4)一些典型的APD阵列结构及原理图图六、Raytheon旗下的各带产品图七、Raytheon产品APD阵列256*4的结构图如图七所示是:Raytheon公司的一款256*4APD阵列的产品,其ROIC和APD阵列封装在TEC中,TEC使其在浅低温环境下工作,周围的电路板提供旁路电容器、多路复用器、LVDS接收器等等。

图八、CEA/LET的ROIC结构图和计时原理图如图八所示:为法国CEA/LET研制的APD阵列为:320*256的焦平面探测器的ROIC原理图,处理系统采用脉冲飞行时间法(TOF)测距,读出电路由CTIA放大器、比较器、锁存器和采样保持电路组成.其强度测量采用与CCD类似的积分形式实现;其时间测量采用对基准参考电压采样实现;其原理右图所示脉冲发射(T1)后,参考电压开始随时间线性增加,当激光脉冲回波到达( T2)后,触发锁存器,对参考电压采样即V3D,根据电压的大小,即可判定脉冲回波时间,获取目标距离。

图九、各材料的增益和噪声的关系图如图九所示:可以很清楚的看出HgCdT e的增益大小和环境噪声基本无关,并且一直保持很小,即相比于Si和InAlAs,HgCdT e的大增益抗噪声能力更强。

对比一下GM和LM:图十、LM APD和GM APM的对比如图所示易知:1)GM的APD的增益比LM大很多2)GM的ROIC噪音比LM大的多3)GM不能测强度但是LM能4)GM的效率比LM小的多三、国内的技术现状及与国外对比1、国内技术现状(1)发展历史:2004年在863计划支持下,我国研制出机载推帚式激光三维成像系统(APD阵列:1*16)2010年电子科大设计了光纤耦合APD探测系统(APD阵列:4*4)2012年上海光机所设计了一种GM-APD(APD阵列:3*3)2012年清华大学设计了APD激光雷达系统(APD阵列:1*16)2013年哈尔滨工业大学设计了一种APD探测器(APD阵列:5*5)上海技术物理所设计了一款了(APD阵列:1*25)(2)主要研究机构:电子科技大学、上海技术物理所、上海光机所、清华大学、哈尔滨工业大学等(3)现存的状况:我国在阵列化APD 焦平面探测器的研究工作处于起步阶段,国内公开发布的阵列APD 探测系统像素数量较低,由于受到相关器件和半导体光电探测器生产工艺的限制,以及国外对高灵敏度探测器的技术封锁,国内的大部分还处于理论和实验验证的阶段,大部分关键技术和国外相比有较大的差距。

2、国内外技术对比图十一、国内外APD阵列探测系统的对比如图十一所示:中国和国外的APD阵列的探测器的无论是阵列规模还是系统的各项参数都远不及国外。

中国需要在APD阵列探测器的系统层次上设计及系统性能的研究上着手跟上世界先进的步伐。

四、未来的发展趋势近年来国外一些国家已经研制出多种模式的阵列APD 探测器和接收处理系统,并制造出实用化的设备,APD 阵列像元数可达512×512,探测范围将包含从可见光到中波段红外线(MWIR),探测器噪声越来越低的同时精度和灵敏度也逐步提高,应用范围更加广泛,包括了光谱测量、机载成像、深空探测等,并且已经在军事领域扮演重要角色的基础上开始向民用领域上进行市场大进军。

而随着材料科学的发展,单光子灵敏度的LM APD阵列的发现,使得LM-APD已经取代了GM-APD的优势地位。

为了三维探测的需求其发展趋势如下:1、APD阵列应具有:更大的象元素量、更高的饱和阈值、更大的增益、更高的动态范围、更高的工作温度、更高的距离分辨率以及更小的象元尺寸等。

2、ROIC应具有:更小的体积、更小的信号处理复杂度、更低的信号噪音、更低的信号处理的带宽等。

3、整体上应具有:更高的象元集成度、更小的体积、更低的功耗性能、片上偏置电压非均匀性校正、更低的制造成本、以及更简洁的工业批量生产工艺。

4、在发展硬件系统设计的同时,图像处理技术的发展也是不可或缺的。

五、参考文献1、Jeff Beck.Gated IR imaging with 128 ×128 HgCdTe electron avalanchephotodiode FPA [C]. Proceedings of SPIE, 2007, 6542: 17.2、M.A.Albota, R.M.Heinriechs, D.G.Kocher, et al.Three dimensional imaging laserradar with a photon couting avalanche photodiode array and microchip laser[J]. Appl Opt. 2002, 41(35): 7671-7678.3、BORNIOL E,ROTHMAN J,GUELLEC F,et al.. Active Three-dimensional and thermalimaging with a 30μm pitch 320×256 HgCdTe avalanche photodiode focal plane array[J]. Opt. Eng.,2012,51(6):06305.4、Advances in Linear and Area HgCdTe APD Arrays For Eyesafe LADAR Sensors.2001 SPIE · 0277-786X/015、HgCdTe APD-based Linear-Mode Photon Counting Components and LADARReceivers. 2011 SPIE · CCC code: 0277-786X/116、Eric de Borniol, Fabrice Guellec, Johan Rothman. HgCdTe-based APD focalplane array for 2D and 3D active imaging: first results on a 320×256 with 30m pitch demonstrator[C]. Proceedings of SPIE, 2010,7660:3-5.7、Advances in LADAR Components and Subsystems at Raytheon. SPIE 8353-778、Roger Stettner and Howard Bailey.Eye-safe laser radar 3D imaging[C]. Proceedings of SPIE, 2004, 5412: 111-116.9、Roger Stettner, Howard Bailey, and Steve Silverman. Large formattime-of-flight focal plane detector development[C]. Proceedings of SPIE, 2005, 5791: 288-292.10、Ping Yuan.32 x 32 Geiger-mode LADAR cameras SPIE · CCC code: 0277-786X11、郑睿童,吴冠豪. 基于线阵APD探测器的脉冲式一维非扫描激光雷达系统[J].红外与激光工程,2012, 41(1): 96-100.12、朱静浩. 阵列APD无扫描激光雷达非均匀性的分析与实验研究[D]. 哈尔滨工业大学 2013APD焦平面探测器在现今常见的单光子探测器中,基于III-V族材料APD的红外单光子探测器在近红外波段实用化程度最高、性能最好。

相关文档
最新文档