弯扭组合变形的测定

合集下载

弯扭组合变形实验(内力素)

弯扭组合变形实验(内力素)

弯扭组合变形实验(内力素)变形实验是土木工程、机械结构与力学研究领域中应用广泛的手段之一,用以研究各类受力物体在外力作用下的内力及变形特性的变化。

在这项实验中,我们选取了一种特殊的变形实验,即弯曲扭组合变形实验(内力素),介绍如下:一、实验目的弯曲扭组合变形实验(内力素)主要用于研究材料在弯曲及扭转时结构上产生的内力与变形情况。

此类实验可以观察材料的强度特性,如材料的刚度、断裂强度特性及扭曲强度特性等,同时也可以帮助我们掌握材料的断裂模式,对设计及使用有较大的指导作用。

二、实验环境弯曲扭组合变形实验(内力素)需要使用相应的设备,其中最重要的是“弯曲扭组合变形实验仪”。

该仪器利用驱动力中心支撑件可搭载一条杆件,将外力施加在杆件上,以此来观察杆件内部的变形及产生的内力。

一次弯曲扭组合变形实验需要对一定大小的杆件、材料板及驱动力中心支撑件等设备进行安装。

三、实验步骤1. 安装杆件:先将杆件安装在驱动力中心支撑件上,然后用螺栓从外部将杆件支撑件固定,使之不受外力影响。

2. 加载实验:将所需外力施加到杆件上,通过驱动力中心支撑件将外力施加到杆件上。

外力的施加通常由步进电机控制。

3. 观测变形:采用轴心变形测量装置或激光测量仪探头来监测杆件的变形情况及内力的变化特点。

4. 结果分析:将获得的现场数据导入计算机进行分析,从而获得杆件内力与变形规律。

四、安全注意1. 操作者必须掌握实验知识,熟悉实验环境和安全注意事项,以减少可能发生的错误。

2. 使用完试验仪器后,应将电源断开以及必要的安全保险,以防事故发生。

3. 实验前,应当将实验杆件清理干净,对弯曲扭组合变形实验仪检查确认无损坏。

4. 建议实验过程中应有多人在场进行指导,以确保操作人员安全。

弯曲扭组合变形实验(内力素)是一种重要的变形实验方法,既可以让我们更好理解材料特性,也可以帮助优化结构设计,是一种十分有用的实验方法。

但是,实验中也有一定的危险性,因此实验中应加强安全注意。

薄壁圆管弯扭组合变形测定实验报告数据

薄壁圆管弯扭组合变形测定实验报告数据

薄壁圆管弯扭组合变形测定实验报告数据近年来,薄壁圆管的弯扭组合变形测定实验受到了广泛的重视,因此,作为研究该项技术的一个基本实验,我们就此进行了一项实验,数据详述如下:实验参数:该实验中,研究对象为薄壁圆管,材料为不锈钢,直径为150mm,厚度为2mm。

实验所用的工具包括:一台动力转子台,一台扭矩传感器,一台测力仪和一台凸轮钳。

实验中设定的参数:初始扭矩为10N.m,递增步长为0.2N.m,扭矩最大值为50N.m,扭矩比值为0.6,频率为30r/min,弯曲角度的最小变化量为0.2°。

实验结果:实验中,以扭矩为变量,以形变量(弯曲角度)为因变量,于是我们获得了以下实验数据:扭矩/N.m 弯曲角度/°10.0 -2.210.2 -2.510.4 -2.810.6 -3.010.8 -3.211.0 -3.411.2 -3.511.4 -3.711.6 -3.811.8 -4.0……50.0 -20.5根据以上实验数据,可以看出,随着扭矩的增大,薄壁圆管的弯曲角度也随着增大。

实验分析:从上文的实验数据可以看出,当扭矩增加时,薄壁圆管的弯曲角度也会随之增加,这表明薄壁圆管具有较强的弯曲变形能力。

因此,利用该材料可以制造出更加精致的零件,为自动化制造、精密机械等领域提供参考依据。

结论:通过本次实验,我们可以得出结论:1、薄壁圆管具有较强的弯曲变形能力,这表明其可以用来制作精致的零件。

2、实验结果可以作为自动化制造、精密机械等领域的参考依据。

3、未来可以增大实验范围,收集更多的实验数据,以深化对薄壁圆管弯扭组合变形的研究。

本次实验为薄壁圆管弯扭组合变形提供了一份深入的数据报告,从这份报告中,我们可以更好地了解薄壁圆管变形性能,从而为未来的研究提供参考。

弯扭组合实验ZT2011

弯扭组合实验ZT2011

ε1( ε1F 、εT )
ε4( ε4F 、εT )
B
R1
读 1 4 1 F T 4 F T 1 F 4 FA
R4
C
方案3
读231 Ex
R
R
D
读 2 3 2 F T 3 F T 2 F 3 F 2 T
6 (5)
B4
a3 x
O
D
l
z
F
xz
A
x
x x
A
x
xz
B
x
x x
B
x
➢ 空心圆轴产生弯扭组合变形
➢ 在A点取一个单元体 ➢ 弯曲变形产生的正应力σx ➢ 扭转变形产生的切应力τxz
平面应力状态、主方向未知 需要粘贴三个应变片
应变片布置图
C
A1
2 (3)
S
6 (5)
B4
D
z
a2 a1 a3
E
半桥接桥方式
在两个桥臂上接入应变片,另外两 个桥臂上接入仪器内部的固定电阻。
读ABBC
全桥接桥方式
在四个桥臂上都接入应变片。
读 AB BC CD DA
举例:用半桥方式求正应力σ x
方案1
读14 E 2x
R1
消除温度影响,测出σ x 。
A
R
方案2
读251 Ex
排除τxz ,消除温度影响,测出σ x 。
用半桥和全桥接法测定弯曲正应力σx。 用半桥和全桥接法测定扭转切应力τxz。
测试 项目
接桥 方式
组桥方案
静定 (με)
静不定 (με)
纯扭转 (με)
x 半桥
全桥
xz 半桥全桥BR2R3A

弯扭组合变形主应力的测定

弯扭组合变形主应力的测定

弯扭组合变形主应力的测定
弯扭组合变形是指同时施加弯曲和扭转两种形变的一种变形方式,其主应力的测定可以通过以下步骤进行:
1. 确定弯曲和扭转的载荷:测定施加弯曲和扭转的载荷。

2. 采用倾角法测定变形量:倾角法是一种常用的测定弯曲和扭转变形的方法。

在变形过程中,通过测量试件端面相对于初始状态发生的倾斜角度,计算出试件的弯曲和扭转变形量。

3. 计算主应力:根据材料的力学性质,可以利用测得的弯曲和扭转变形量计算出变形时试件所受的主应力。

4. 验证结果:通过与试验数据进行比较,验证计算结果的正确性。

需要注意的是,弯扭组合变形的主应力测定需要考虑弯曲和扭转两种载荷的相互影响。

同时,试件的几何形状、材料的力学性质等也会对测定结果产生影响。

弯扭组合变形实验

弯扭组合变形实验
2. 若预调平衡时,如发现为四个“0000”闪烁,应检查接线是否错 误
3. 测量电桥连接过程中要区分清楚连接导线的位置和方位 4. 加载时切勿过载。
九、实验报告要求
1、实验报告中必须绘出实验装置图、应力分析图、测量 电桥连接图
2、讨论误差的来源
由主应力的推导知 xy 45 45
可得
G x y 21 E 4 5 4 5
七、实验步骤
1、主应力大小和方向的测定
a、测量电桥连接:将圆管顶部B点的-45°、0°、45°三个方向的 引出线分别接在仪器后面板上三个不同通道的A、B接线孔内;将公共补 偿片上的引出导线接入仪器后面板上的“公共补偿片BC”位置的B、C号 接线孔内,并将应变仪前面板上的“全桥半桥”选择开关拨到半桥位置。
本实验采用合金铝制薄壁圆管为测量对象。当通过加载手轮给实验装 置加载时,薄壁圆管除承受弯距M作用外,还受扭距T的作用,且弯 距 M P L,扭距 TPa
四.主应力大小和方向的测定
为了测量圆管的应力大小和方向,在圆管某一截面的管顶
B点、D点各粘贴了一个45°应变花,若测得圆管管顶B点的-
45°、0°、45°三个方向的线应变为
a、测量电桥连接:将圆管管顶B点45°、 -45°方向的引出导线分别 连接在同一通道的A、B号,B、C号接线孔内,将管底D点的45°、 - 45方向的两对引出导线分别连接在该通道的C、D号,D、A号接线孔内。
b、灵敏系数设定 c、测量电桥预调平衡 d、进行实验。
八、注意事项
1. 预调平衡时,如发现调零困难、数据不稳定,应检查接线是否 接好(松动或虚接)
b、设定好灵敏系数; c、测量电桥预调平衡; d、进行实验。
2、弯距产生的应力大小测定
a、测量电桥连接:将圆管管顶B点的0°方向和管底D点0°方向的 两对引出导线分别连接在仪器后面板上同一通道的A、B号和B、C号 接线孔内。

弯扭组合变形的主应力测定

弯扭组合变形的主应力测定

实验八 弯扭组合变形的主应力测定一、实验目的1.测定平面应力状态下主应力的大小及方向。

2.掌握电阻应变花的使用。

二、实验设备1.弯扭组合实验装置。

2.静态电阻应变仪。

三、实验原理平面应力状态下任一点的主应力方向无法判断时,应力测量常采用电阻应变花。

应变花是把几个敏感栅制成特殊夹角形式,组合在同一基片上,如图8-1所示。

如果已知三个方向的应变a ε、b ε及c ε,根据这三个应变值可以计算出主应变1ε及3ε的大小和方向,因而主应力的方向亦可确定(与主应变方向重合)。

主应力的大小可由各向同性材料的广义胡克定律求得:⎪⎪⎭⎪⎪⎬⎫+-=+-=)()(1323312111μεεμσμεεμσE E (8-1) 式中,E 、μ分别为材料的弹性模量和泊松比。

图8-2为045直角应变花,所测得的应变分别为00ε、045ε及090ε,由下式计算出主应变1ε及3ε的大小和方向:2904524509003,1000000222)()(εεεεεεε-+-±+= (8-2) 0000090090045022an εεεεεα---=t (8-3)图8-1 图8-2图 8-3本实验以图8-3所示空心圆轴为测量对象,该空心圆轴一端固定,另一端固结一横杆,轴与杆的轴线彼此垂直,并且位于水平平面内。

今在横杆自由端加砝码,使空心圆轴发生扭转与弯曲的组合变形。

在A -A 截面的上表面A 点采用045直角应变花,如图8-4所示,如果测得三个应变值00ε、045ε和090ε,即可确定A 点处主应力的大小及方向的实验值。

图 8-4 图 8-5另由扭—弯组合理论可知,A -A 截面的上表面A 点的应力状态如图8-5所示,其主应力与主方向的理论值分别为:223122τσσσσ+±=⎭⎬⎫)( (8-4)和 στα22tan 0-=然后将计算所得的主应力及主方向理论值与实测值进行比较。

四、实验步骤1.拟定加载方案。

在0~20kg 的范围内分4级进行加载,每级的载荷增量kg P 5=∆。

薄壁圆管弯扭组合变形测定实验报告数据

薄壁圆管弯扭组合变形测定实验报告数据随着发展,薄壁圆管已经成为多个领域的重要元件,并可用于满足许多不同的需求。

以薄壁圆管为研究对象的变形实验的结果,可以深入了解圆管的变形特性,为薄壁圆管应用和研究作出科学可靠的贡献。

本文研究薄壁圆管弯扭组合变形测定实验。

实验准备实验准备包括选择正确的圆管,准备测试条件,准备测试仪器,以及安装测试仪器。

研究圆管的钢材为45#,表面阳极氧化处理。

圆管的外径为(50,60,70,80)mm,壁厚分别为(2,3,4)mm。

为了准确测量圆管弯扭变形,我们使用三轴张计测试仪器,安装在圆管上。

实验过程实验过程主要包括:首先设置实验条件(包括规定的外径、壁厚、弯曲角度等),将圆管垂直固定在实验台上,然后控制电动千分尺在给定的偏转角度范围内轻轻地弯曲圆管,并使用三轴张力计测量圆管的弯曲角度。

实验分别在温度20°C、 30°C和40°C下进行,每种温度下进行3次实验,对每种实验条件重复3次,以准确测定圆管在各种温度和角度条件下的变形情况。

实验结果实验结果表明:随着温度的升高,圆管的弯曲角度也随之增加,最大角度可达26°。

薄壁圆管的变形角度与外径、壁厚以及弯曲角度密切相关,当外径和壁厚不变时,圆管的变形角度越大,变形角度越大。

此外,圆管弯曲变形也与材料本身的性能有关,钢材的强度越高,圆管的变形角度越小。

结论薄壁圆管的弯扭变形实验表明:外径、壁厚与圆管弯曲角度的变化有直接的关系;随着温度的升高,圆管的变形角度增大;另外,材料性能也会影响圆管的变形性能,钢材强度越高,圆管变形角度越小。

本实验为薄壁圆管的研究开发和实际应用提供了科学可靠的参考,也为更深入相关研究提供了依据。

弯扭组合变形的主应力测定

弯扭组合变形的主应力测定一、实验目的1、测定薄壁圆管表面上一点的主应力的大小及方向。

2、验证弯扭组合变形理论公式。

3、通过现场对试验数据的分析,判断实验数据的准确性,加深对弯扭组合变形的理解。

二、实验设备1、微机控制电子万能试验机。

2、静态电阻应变仪。

三、实验原理1、薄壁圆管弯扭组和变形受力简图,如图1所示图1:薄壁圆管弯扭组和变形受力简图2、由试验确定主应力大小和方向由应力状态分析可知,薄壁圆管表面上各点均处于平面应力状态。

若在被测位置想x,y 平面内,沿x,y 方向的线应变x ε,y ε剪应力为xy γ,根据应变分析可知,该点任一方向a 的线应变的计算公式为aa xy yx yx a 2sin 212cos 22γεεεεε--++=由此得到的主应变和主方向分别为223,1)21()2(2xy yx yx γεεεεε+-±+=yx xya εεγ--=02tan对于各向同性材料,主应变1ε,3ε和主应力1σ,3σ方向一致,主应力的大小可由各向同性材料的广义胡克定律求得:)()(1323312111μεεμσμεεμσ+-=+-=EE(1)式中,E 、μ分别为材料的弹性模量和泊松比。

在主应力无法估计时,应力测量主要采用电阻应变花,应变化是把几个敏感栅制成特殊夹角形式,组合在同一基片上。

常用的应变花有450、600、900和1200等。

本实验采用的是45o 直角应变花,在A 、B 、C 、D 四点上各贴一片,分别沿着-450、00、450如图所示。

根据所测得的应变分别为00ε、045ε及090ε,由下式计算出主应变1ε,3ε的大小和方向:00εε=x 00004545εεεε-+=-y 004545εεγ-=-xy2045204545453,100000222)()(εεεεεεε-+-±+=-- (2)454504545022an εεεεεα---=--t⎥⎦⎤⎢⎣⎡-+--±++-=--24502045454523,100000021)(211)()(εεεεμεεμμσE3、理论计算主应力大小及方向 由材料力学公式)(3244d D PLD W M z -==πσ )(1644d D PaDW M pn n -==πτ223122nτσσσσ+±=⎭⎬⎫)(σταn22tan 0-=可以计算出各截面上各点主应力大小及方向的理论值,然后与实测值进行比较。

弯扭组合变形实验

薄壁圆管弯扭组合变形应变测定实验SQ1001804A004 李扬一.实验目的1.用电测法测定平面应力状态下主应力的大小及方向;2.测定薄壁圆管在弯扭组合变形作用下,分别由弯矩、剪力和扭矩所引起的应力。

二.实验仪器和设备1.弯扭组合实验装置;2.YJ-4501A/SZ静态数字电阻应变仪。

三.实验原理弯扭组合实验装置如图1所示。

它由薄壁圆管1(已粘好应变片),扇臂2,钢索3,传感器4,加载手轮5,座体6,数字测力仪7等组成。

试验时,逆时针转动加载手轮,传感器受力,将信号传给数字测力仪,此时,数字测力仪显示的数字即为作用在扇臂顶端的载荷值,扇臂顶端作用力传递至薄壁圆管上,薄壁圆管产生弯图1扭组合变形。

薄壁圆管材料为铝合金,其弹GN, 泊松比μ性模量E为722m为0.33。

薄壁圆管截面尺寸、受力简图如图2所示,Ⅰ-Ⅰ截面为被测试截面,由材料力学可知,该截面上的内力有弯矩、剪力和扭矩。

取Ⅰ-Ⅰ截面的A、B、C、D四个被测点,其应力状态如图3所示。

每点处按–450、00、+450方向粘贴一枚三轴450应变花,如图4所示。

图2图3 图4 图5四.实验内容及方法1. 指定点的主应力大小和方向的测定受弯扭组合变形作用的薄壁圆管其表面各点处于平面应力状态,用应变花测出三个方向的线应变, 然后运用应变-应力换算关系求出主应力的大小和方向。

本实验用的是450应变花,若测得应变ε-45、ε0、ε45,则主应力大小的计算公式为()()()⎥⎦⎤⎢⎣⎡-+--±++-=--24502045454523121211εεεεμεεμμσσE主应力方向计算公式为 ()()04545045452εεεεεεα----=--tg2. 弯矩、剪力、扭矩所分别引起的应力的测定a. 弯矩M 引起的正应力的测定用B 、D 两被测点00方向的应变片组成图5(a )所示半桥线路,可测得弯矩M 引 的正应变 2MdM εε=由虎克定律可求得弯矩M 引起的正应力 2MdM M E E εεσ== b. 扭矩M n 引起的剪应力的测定用A 、C 两被测点-450、450方向的应变片组成图5(b )所示全桥线路,可测得扭矩M n在450方向所引起的应变为 4ndn εε=由广义虎克定律可求得剪力M n 引起的剪应力 ()214ndnd n G E εμετ=+= c. 剪力Q 引起的剪应力的测定用A 、C 两被测点-450、450方向的应变片组成图5(c )所示全桥线路,可测得剪力Q 在450方向所引起的应变为 4QdQ εε=由广义虎克定律可求得剪力Q 引起的剪应力 ()214QdQd Q G E εμετ=+=五.实验步骤1.将传感器与测力仪连接,接通测力仪电源,将测力仪开关置开。

弯扭组合变形实验(主应力)

弯扭组合变形实验——主应力的测定一、实验目的1.测量薄壁圆管在弯曲和扭转组合变形下,其表面一点的主应力大小及方位。

2.掌握用电阻应变花测量某一点主应力大小及方位的方法。

3.将测点主应力值与该点主应力的理论值进行分析比较。

二、预习思考要点1.试分析本实验装置是如何使薄壁圆管产生弯曲和扭转组合变形的。

2.薄壁圆管在弯扭组合变形下其横截面上有几种内力?哪几种?有几种应力?哪几种?3.薄壁圆管在弯扭组合变形下其表面一点处于什么应力状态?在主应力方位未知的情况下,确定该点的应力状态需求解几个未知量?哪几个?三、实验装置及仪器1.弯扭组合变形实验装置如图1-29所示,装置上的薄壁圆管一端固定,另一端自由。

在自由端装有与圆管轴线垂直的加力杆,该杆呈水平状态。

载荷F作用于加力杆的自由端。

此时,薄壁圆管发生弯曲和扭转的组合变形。

在距圆管自由端为L1的横截面的上、下表面B和D处各贴有一个45°应变花(或60°应变花)如图1-29。

设圆管的外径为D,内径为d,载荷作用点至圆管轴线的距离为L2。

图1-29 簿壁圆管主应力测量装置2.静态电阻应变仪。

3.游标卡尺、钢尺等。

四、实验原理理论分析表明,薄壁圆管发生弯扭组合变形时,其表面各点均处于平面应力状态,如图1-29所示的I-I 截面的上表面B 点和下表面D 点的应力状态分别如图1-30所示。

(a ) (b )图1-30 簿壁圆管上、下表面点的应力状态由应力状态理论可知,对于平面应力状态问题,要用实验方法测定某一点的主应力大小及方位,一般只要测得该点一对正交方向的应变分量εx 、εy 及γxy 即可。

用实验手段测定线应变ε较为容易,但角应变γxy 的测定却困难得多,而由平面应力状态下一点的应变分析可知平面上某点处的坐标应 变分量εx 、εy 及γxy 与该点处任一指定方向α的线应变εα有下列关系:αγαεαεεα2sin 21sin cos 22xy y x ++= (1-55)从理论上说可以测定过该点任意三个不同方向上的线应变εα、εβ、εγ,建立三个如式1-55那样的独立方程,解此方程组即可完全地、唯一地确定εx 、εy 、γxy ,但因方程中出现了三角函数,为了解算简便,在实验测试中,生产厂家已将三个应变片互相夹一特殊角,组合在同一基底上组成应变花,本实验采用互成45°的直角应变花,布设方式如图1-31所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


w 0
则有:
R标
R标
w 0
E
w 0
E
1

w
w 0
最后的公式为
电桥原理
读 AB BC CD DA
1 3
w
2
2
w
2
2 n
0
1 arctan - 2 n
2
n
实验步骤
测量轴AB的内外直径d1,d2,,B至电阻花中央距离l,B 端至C 端受力点的距离l 等尺寸
根据测量的尺寸,应用第三强度理论,计算试件可承受的最大载荷(取比例极限
R
R
D
E
采用半桥公共温度补偿桥路组桥。
计算公式
测出每个应变片的应变 0 、 45和 90 利用下列公式求解
主应力和主方向
1 3
E 2
[ 1
1
( 0
90 )
1
2
(0 45 )2 ( 45 90 )2
0
1 arctan - 2 45 0 90
2
0 90
利用组合半桥测量
首先单独测定单元剪应
n
45°
w
-45 °
45°

-45 °

桥路接法
R45 R标
根据电桥原理可得
读 AB BC CD DA
由于相应的桥路接法可知:
R45

45
- -45
2
n 45
根据广义胡克定律:
R标
45
E
1- 2
n 45
-n45
E .读 1 2
n 45
其次,单独测定单元体正应力 w 同样根据叠加原理, 0°和 90°的应变片受
R p =200Mpa)及应变仪的精度,确定加载量。
按照方法一,测点应变片的 0; 45; 90 按照方法二,测 n 按照方法三,测 w
计算处方法二的主应力和主应力,并与法一对比,同时将两种方法与理论值进行 对比,分析误差原因
弯扭组合变形的测定
y
L
a2
C
A1
2 (3)
S
6 (5)
B4
a1 a3
x
O
D
l
z
F
A点单元体
弯曲正应力
M
Wz
扭转剪应力 T
Wp
薄壁圆筒内外壁自由,为二向应力状态
主应力 主方向
1 3
2
ቤተ መጻሕፍቲ ባይዱ
1 2
2 4 2
0 1 arctan - 2
2
实验目的
通过用电阻应变片测定弯扭组合变形下薄壁圆筒表面的主应力大小和 方面,学会用电阻应变片复杂应力状态的方法
力 n 。根据叠加原理45 °
方向和-45 °方向受力情况
可以分为三种(受 n作用, 受 w作用以及温度变化)叠
加而成。
由如图的布片方式则有
- n 45
n - 45
w
w
45
-45
45
w 45
n 45
T 45
45
w 45
n 45
T 45
w
w
45
-45
45°
w
-45 °
n
45° -45 °
实验仪器
电子万能试验机,弯扭组合变形试件,静态电阻应变仪, 游标卡尺
y
L
A
S
x
O
l z
根据材料力学的内力平 衡条件,可以确定s截 面是危险截面,因此取 接近S的A点作为应力状 态的测试点。
实验原理
用温度补偿片将三个方向的单应变片按照
半桥桥路测出每个应变片的应变 0、 45 90
B
R补偿
A
C Uout
力情况可以由三种情况叠加而成(受 n作用,受 w 作用以及温度变化)
n 0
n 90
n 90
-0w
则有
T 0
T 90
0
w 0
n 0
T 0
90
w 90
n 90
T 90
= 90°0° w
n
+ 90°0°
n
90°0°
+w
90°0° 温

电桥接法:
按照如图桥路接法测量可得:
R0
R90

0
90
(1
相关文档
最新文档