系统函数零极点∽时域特性和稳定性

合集下载

由系统函数的零极点决定时域特性

由系统函数的零极点决定时域特性

(3): 由因果关系决定:
完全解= z.i.r +z.s.r z.i.r: 没有外加的激励信号,只由起 始状态(起始时刻系统储能)所产生 的响应。 z.s.r: 不考虑起始时刻系统的储能(起 始状态为零),由系统外加激励信号产 生的响应。
*自由响应与强迫响应
R( s ) E ( s ).H ( s )
h ( t ) 2e
t t 3t
rzi (t ) c1e c2 e
例:求下列各系统函数的z-p点分布及h(t)的 波形。
s 1 1. H ( s ) 2 2 ( s 1) 2 s 2. H ( s ) 2 2 ( s 1) 2 ( s 1) 3. H ( s ) 2 2 ( s 1) 2
2.极-零图(见p209所示图) 二.零极点与时域波形的对应关系 1.左半开平面的极点(在负实轴上,一,二,m阶); 不在负实轴上(复数共 轭成对。)
极 零图
a0 e t
a0 s

( 2)

a1 s a0 t [(a0 a1 )t a1 ]e ...... t 0 2 (s )
z-p点都受约束。 i1
4个转移函数:
u1

System
i2
u2

I 2 ( s) u 2 ( s) YT ( s) , Z T ( s) u1 ( s) I 1 ( s) u 2 ( s) I 2 ( s) k u ( s) , k i ( s) u1 ( s) I1 ( s)
极点影响小结:
• 极点落在左半平面— h(t) 逞衰减趋势 • 极点落在右半平面— h(t)逞增长趣势 • 极点落在虚轴上只有一阶极点— h(t) 等幅振荡,不能有重极点 • 极点落在原点— h(t)等于 u(t)

由系统函数零、极点分布决定时域特性

由系统函数零、极点分布决定时域特性

m
(s zj )
j 1
K n (s pk ) k 1
z1 , z2 zn 系统函数的零点
p1 , p2 pn 系统函数的极点
在s平面上,画出H(s)的零极点图:
极点:用×表示,零点:用○表示
2.H(s)极点分布与原函数的对应关系
几种典型情况
j
jω0
α
瞬态响应是指激励信号接入以后,完全响应中瞬时出现 的有关成分,随着t增大,将消失。 稳态响应=完全响应-瞬态响应 左半平面的极点产生的函数项和瞬态响应对应。
例4-7-1
H(s)

s(s 1 j1)( s 1 (s 1)2(s j2)( s
j1) j 2)
极点:p1 p2 1, p3 j2, p4 j2 零点:z1 0, z2 1 j1, z3 1 j1, z4
即零状态响应为: rzs (t) 0.5 e2t 2et 1.5 (t 0)
稳态响应/暂态响应,自由响应/强迫响应
Rs 1.5 1 2 1 2.5 1
s s1 s2
极点位于虚轴 极点位于s左半平面
r(t) 1.5 2et 2.5e2t (t 0)
•定义系统行列式(特征方程)的根为系统的固有频率 (或称“自然频率”、“自由频率”)。 H(s)的极点都是系统的固有频率; H(s)零、极点相消时,某些固有频率将丢失。 •自由响应的极点只由系统本身的特性所决定,与激励
函数的形式无关,然而系数 Ai , Ak与Hs, Es都有关。
暂态响应和稳态响应
i 1
R(s)
v Ak k1 s pk
n

i 1

自动控制原理时域指标

自动控制原理时域指标

自动控制原理时域指标自动控制原理是研究如何设计和优化自动控制系统的学科。

在自动控制系统设计中,需要对系统在时域上的行为进行分析和评估。

时域是指系统随时间变化的过程,在自动控制中通常关注系统的稳定性、动态响应和误差性能等指标。

自动控制系统的时域指标主要包括系统的稳定性、阶跃响应、过渡过程、超调量和稳态误差等。

首先,系统的稳定性是指系统在输入信号与外部干扰的作用下,输出信号是否趋向于稳定的状态。

稳定性是一个基本的要求,对于开环控制系统来说,需要系统的传递函数的所有极点的实部都小于0;对于闭环控制系统来说,需要系统的传递函数的所有极点的实部都小于零,且没有极点位于虚轴上。

其次,阶跃响应是指系统对于单位阶跃输入信号的响应。

通过分析系统的阶跃响应,可以得到系统的动态性能指标,如上升时间、峰值时间、峰值过冲和调节时间等。

上升时间是指系统从初始状态到达稳态所需的时间;峰值时间是指系统输出达到峰值的时间;峰值过冲是指系统输出超过稳态值的最大幅度;调节时间是指系统从初始状态到达稳态的时间。

过渡过程是指系统由一个状态转移到另一个状态的过程,可以通过系统的阶跃响应曲线来观察。

过渡过程中,一般通过衡量系统的快速性、稳定性和平稳性来评估系统的性能。

超调量是指系统在过渡过程中,输出信号超过稳态值的最大幅度。

超调量的大小反映了系统的稳定性和响应速度之间的平衡关系。

稳态误差是指系统在稳态下,输出信号与期望信号的差值。

稳态误差用于评估系统对不同输入信号的跟踪能力和稳定性。

在实际的自动控制系统设计中,需要根据具体的应用要求,对不同的时域指标进行权衡和优化。

通过选择合适的控制器参数和调节算法,可以提高系统的稳定性、动态响应和误差性能。

同时,通过对系统的时域指标进行分析和优化,可以满足不同控制任务的要求,提高自动控制系统的性能和效果。

信号与系统4.7.8系统零极点分布决定时域和频域特性

信号与系统4.7.8系统零极点分布决定时域和频域特性


L1[
(s
2
2s 2
)2
]
t
sin(t
)
这是幅度按线性增长的正弦振荡。
j
t sin(t)
t
j
第4章 拉普拉斯变换、连续时间系统的S域分析
几种典型情况
j
jω0
α
O
jω0
α
第4章 拉普拉斯变换、连续时间系统的S域分析
结论:
若H(s)极点落于左半平面,则h(t)波形为衰减形式; 若H(s)极点落于右半平面,则h(t)增长; 落于虚轴上的一阶极点对应的h(t)成等幅振荡或阶跃; 而虚轴上的二阶极点将使h(t)呈增长形式。
在s域中,系统响应与激励信号、系统函数
之间满足
R(s) H (s)E(s)
(4-84)
第4章 拉普拉斯变换、连续时间系统的S域分析
系统响应的时域特性
r(t) L1[R(s)]
(4.7-4)
显然,R(s)的零、极点由H(s)与的E(s)零、极点所决定。 由前面可知,H(s)和E(s)可以分别写作以下形式:
第4章 拉普拉斯变换、连续时间系统的S域分析
为便于表征系统特性,定义系统行列式(特征方程) 的根为系统的“固有频率”(或称“自由频率”、“自 然频率”)。
由前节可看出,行列式△位于H(s)之分母,因而H(s) 的极点pi都是系统的固有频率,可以说, 自由响应的函 数形式应由系统的固有频率决定。
第4章 拉普拉斯变换、连续时间系统的S域分析
(1)位于s平面坐标原点的二阶或三阶极点分别给出时间
函数为t或t2/2。如H (S)
1 S2
j
h(t) t
t
第4章 拉普拉斯变换、连续时间系统的S域分析

典型系统的时域响应与稳定性分析

典型系统的时域响应与稳定性分析

典型系统的时域响应与稳定性分析1. 时域响应分析时域响应指的是系统在时间上的响应特性。

时间域分析主要是利用微分方程分析系统的时域响应。

对于一个线性时不变系统(LTI)来说,可以通过拉普拉斯变换来得到系统的微分方程和传递函数,然后通过求解微分方程或者使用传递函数的极点和零点分析系统的时域响应。

常见的系统时域响应包括阶跃响应、脉冲响应和正弦响应。

这里以阶跃响应为例:阶跃响应可以用系统的传递函数 H(s) 通过拉普拉斯逆变换来求得:h(t) = L^-1[H(s)]其中,L^-1表示拉普拉斯逆变换。

如果系统的传递函数可以表示为有理函数的形式,可以通过部分分式分解和拉普拉斯逆变换将传递函数分解为简单的分式形式,例如:H(s) = K / (s+a)(s+b)上述传递函数的分解形式可以根据不同的分母极点对系统的时域响应进行分析。

例如,对于第一种分解形式,系统的时域响应可以表示为:h(t) = K1e^(-at) - K2e^(-bt)其中,K1和K2是待定系数,可以根据初值条件求解。

根据这个时域响应可以得到系统的稳定性分析结论:当a和b的实部均小于零时,系统是稳定的;当a和b的实部均大于零时,系统是不稳定的;当a和b的实部均等于零时,系统是临界稳定的。

2. 稳定性分析稳定性分析是对系统的稳定性进行判断和评价的过程。

系统的稳定性取决于时域响应的长期行为,可以通过系统的极点和零点的位置来进行判断。

对于一个单输入单输出(SISO)的线性时不变系统(LTI),系统的稳定性可以根据系统的传递函数 H(s) 的极点位置进行判断。

如果所有的极点都位于s平面的左半平面,也就是实部都小于零,则系统是稳定的。

如果存在一个或多个极点位于s平面的右半平面,则系统是不稳定的。

如果极点都位于s平面的虚轴上,则系统是临界稳定的。

稳定性分析是控制系统设计过程中必不可少的一步,它能够帮助控制工程师预测系统的行为并避免不稳定的结果。

在实际应用中,稳定性分析可以应用于飞行控制系统、机器人控制系统、电力系统等领域,为实际系统的设计和控制提供基础支持。

信号与系统第四章(2)

信号与系统第四章(2)

二. 零极点分布与h(t)的关系
∑ ∑ h(t)
=
L−1[H (s)] =
n
L−1 [
i =1
ki s− p
i
]=
n i=0
ki e pit
2 k1 eαt cos(ωt + θ )

正弦振荡 (等幅)
h(t) 减幅的自由振荡
h(t)
2 k1 eαt cos(ωt + θ )
0
t
p 位于左半平面
+
R1
+
R2
H (s)与U s (s)无关, 由网络结构和参数决定
∴H (s) = I2(s) =
R1CS
U (s) s
R1LCS 2 + (R1R2C + L)S + R1 + R2
转移导纳函数
3、H (s)的一般性质。
(1 ) h ( t ) = L − 1 [ H ( s )]
证 : Q H (s) = Rzs (s) E(s)
当e(t) = δ (t)时E(s) = 1,
故rzs (t) = h(t) = L−1[H (s)]
此时Rzs (s) = H (s)
例3、试求图示电路的冲激 响应u1(t)。

L
R1
SL
+ R1
2H
+ 1
is (t ) u1(t ) 1F
C
2Ω R2
Is (s) U1(s)
CS
R2


解:H (s) = R(s) = U1(s) — —策动点阻抗 E(s) Is (s)
+
Us (s) −

系统函数零极点分布决时域特性课件

系统函数零极点分布决时域特性课件

总结词
零点位置影响系统瞬态响应的速度和幅 度,极点位置影响系统阻尼和振荡特性 。
VS
详细描述
零点位置影响系统输出的初始状态。如果 存在接近虚轴的零点,系统的输出会迅速 达到稳定值。极点位置影响系统的阻尼特 性和振荡频率,靠近虚轴的极点会导致系 统阻尼慢,振荡时间长。
零极点分布与系统稳态误差的关系
总结词
零点位置对系统稳态误差的影响
总结词
零点位置影响系统稳态误差,靠近虚轴的零点导致稳态误差 增大。
详细描述
系统函数的零点位置也会影响系统的稳态误差。如果零点靠 近虚轴,系统的稳态误差会增大。这是因为这些零点使得系 统的极点在复平面的右侧,导致系统的极点远离虚轴,从而 使得系统的稳态误差增大。
04
极点分布对时域特性的影响
极点位置远离虚轴
系统瞬态响应较慢,因为远离虚轴的 极点会导致系统具有较小的时间常数 ,从而减缓瞬态响应。
极点位置对系统稳态误差的影响
极点位置靠近虚轴
系统稳态误差较小,因为虚轴附近的极点会导致系统具有较大的增益,从而减 小稳态误差。
极点位置远离虚轴
系统稳态误差较大,因为远离虚轴的极点会导致系统具有较小的增益,从而增 大稳态误差。
零点位置对系统瞬态响应的影响
总结词
零点位置影响系统瞬态响应,靠近虚轴的零点导致瞬态响应速度变慢。
详细描述
系统函数的零点位置也会影响系统的瞬态响应特性。如果零点靠近虚轴,系统的瞬态响应速度 会变慢。这是因为这些零点使得系统的极点在复平面的右侧,导致系统的极点远离虚轴,从而 使得系统的动态响应速度变慢。
稳态误差
系统在输入信号的作用下,实际 输出与理想输出之间的偏差。
误差类型
包括静态误差和动态误差,静态误 差是指系统在稳态下的误差,动态 误差是指系统在过渡过程中产生的 误差。

第5章 系统函数与零、极点分析改

第5章 系统函数与零、极点分析改
电子与信息工程学院
解 研究表明,该系统的微分方程为 即 从而得系统函数
由上式可得该系统的模拟框图,如图 (b)所示。
电子与信息工程学院
k b
电子与信息工程学院
§5.2 系统函数的零、极点
5.2.1零、极点的概念
零点: H(s)分子多项式N(s)=0的根,z1,z2, zm 极点: H(s)分母多项式D(s)=0的根,p1,p2, pn
H (s) I2 (s) 转移电流比 I1(s)
H (s) U2 (s) 转移阻抗 I1(s)
H (s) I2 (s) 转移导纳 U1(s)
双口传递函数 (转移函数)
电子与信息工程学院
H(s)的特性: H(s)是联系输入和响应的纽带和桥梁,是系
统频率特性H(j)的S域表示;
H(s)取决于系统的结构和元件参数,与系统 的起始状态、激励和相应无关;
锁相环是一个相位负反馈控制系统,应用很广。当 输入相位与输出相位的瞬时相位差恒定时,称为系 统锁定。
电子与信息工程学院
例 锁相环及其阶跃响应:
三阶琐相环系统
电子与信息工程学院
该系统函数
显然
a1a2 > a0a3
故系统稳定,且阶跃响应
电子与信息工程学院
复习
一、系统函数的一般概念
即有如下关系:
电子与信息工程学院
H(s)的特性: H(s)是联系输入和响应的纽带和桥梁,是系
统频率特性H(j)的S域表示;
H(s)取决于系统的结构和元件参数,与系统 的起始状态、激励和相应无关;
H(s)是一个实系数有理分式,它决定了系统 的特征根(固有频率);
H(s)为系统冲激响应的拉氏变换。
电子与信息工程学院
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

系统稳定 h(t) dt有界
必 h(t) dt无界 系统不稳定

性 h(t) dt无界 至少对某种有界e(t), r(t)无界
1 h(t) 0 设:e(t) sgn[h(t)] 0 h(t) 0
1 h(t) 0
则 e(t) 1有界,e(t)h(t) h(t)
系统函数零极点∽时域特性和稳定性
teat
sin t
系统函数零极点∽时域特性和稳定性
总结: •极点左半平面→h(t)波形衰减
H (s)
•极点右半平面→h(t)波形增长 •虚轴上一阶极点→h(t)波形等幅振荡或阶跃
•虚轴上二阶或二阶以上极点→h(t)波形增幅振荡
系统函数零极点∽时域特性和稳定性
3.H(s)零点对h(t)波形影响
[例2]: s a eat cost (s a)2 2
稳定
有极点s右半平面,或虚轴上二阶以上极点:不稳定
虚轴上极点均为一阶,其它s左半平面:
临界稳定
参见P210,表4-4;P212,表4-5
4.稳定系统的另一定义方法:BIBO方法(包括非因果系统)
e(t) Me r(t) Mr
有界输入 有界输出
系统函数零极点∽时域特性和稳定性
5. 稳定系统(包括非因果系统)充要条件: h(t) dt M
§4.3 系统函数零极点∽时域特性和稳定性
一、系统函数H(s)零极点与h(t)波形关系
f(t)与 F(s) 之间存在一定对应关系,可从F(s)的典型 形式透视出f(t)内在性质
1.系统函数零极点概念
①极点:分母多项式之根
②零点:分子多项式之根 ③极点阶次:
lim H (s) ,
s p1
(s
p1)H (s) |s p1 有限值:一阶极点
(s p1)K H(s) |sp1直到 K = n 时才为有限值:n 阶极点
系统函数零极点∽时域特性和稳定性
④∞处: 分母次数 > 分子次数则为零点,阶次为分母次数减分子次数 分母次数 < 分子次数则为极点,阶次为分子次数减分母次数
注意:零、极点个数相同
⑤零极点图中:×表示极点;○表示零点
系统函数零极点∽时域特性和稳定性
即冲激响应h(t)绝对可积
证明:
r (t )
h(t) e(t)

h(t) dt M

e(t) M时e ,


r(t) h( ) e(t )d h( ) e(t ) d
h( ) M ed M e M M r
由BIBO可知系统稳定
系统函数零极点∽时域特性和稳定性
系统函数零极点∽时域特性和稳定性
②典型情况
ⅰ) pi =0(一阶)
j
h(t)
0
0t
1 h(t) u(t) s
pi =0 (二阶)
j
h(t)
0
0t
1 s2
h(t)
tu(t)
系统函数零极点∽时域特性和稳定性
ⅱ) pi<0(实一阶)
j
a
0
h(t)
0t
1 eatu(t) sa
pi<0(实二阶)
j
a
[例1]: ①
H
(s)
s[(s 1)2 (s 1)2 (s2
1] 4)
解:
极点:s = -1 (二阶) s = j2 (一阶) s = -j2(一阶)
j
j2
j1
零点:s = 0 (一阶) s = 1+j1(一阶) s = 1-j1 (一阶) s = ∞ (一阶)
1 0 1
j1
j2
复数极点 和零点成
2.h(t) 与系统稳定性关系
} lim h(t) 0
系统稳定
因果系统 h(t)=0
ltim h(t)
A或等幅振荡
系统临界稳定
(t<0)
t ltim
h(t)
不存在
系统不稳定
因果系统 的稳定性 划分
系统函数零极点∽时域特性和稳定性
3.H(s)与系统稳定性关系
考察因果系统H(s)
全部极点s左半平面:
(s
s a)2
2
eat (cost
a
sin t)
1
a2
2
形式
系统函数零极点∽时域特性和稳定性
二、H(s)极点与系统稳定性关系
1.稳定性:系统本身特性,与激励无关
时域和S域两方面出发:h(t)或H(s)集中表征了系统的本性, 当然它们也反映了系统是否稳定
m

H (s)
K (s zj )
j 1
n
(s pi )
,

mp1
p2 n
pn
i 1
则:H (s)
n i 1
ki s pi
h(t)
n
hi (t)
i 1
n
ki e Pi t
i 1
故: pi e pit
若 pi为k阶极点,则 pi Ki1tk1 Ki2tk2
Ki(k1)t Kik e pit
0
h(t)
0t
(s
1 a)2
teatu(t)
起始增加,最终收敛
系统函数零极点∽时域特性和稳定性
ⅲ) pi>0(实一阶)
j
h(t)
a
0 0 t
1 eatu(t) sa
pi>0(实二阶)
j
h(t)
a
0
0t
(s
1 a)2
teatu(t)
系统函数零极点∽时域特性和稳定性
ⅳ) pi, pj共轭虚轴(一阶)
j
eat sint
(s a)2 2
2(s a) [(s a)2 2 ]2
teat
sin t
系统函数零极点∽时域特性和稳定性
ⅵ) pi,pj共轭右半平面(一阶) pi,pj共轭右半平面(二阶)
j
h(t)
j
0 a 0
t
j
j
h(t)
j
0 a 0
j
t
(s a)2
2
eat
sin t
2(s a) [(s a)2 2 ]2
r(t) e(t) h(t) h( )e(t )d
r(0) h( )e( )d h( ) d
若 h(t) dt无界,则r(0)也无界 对某种有界e(t )
对出现
系统函数零极点∽时域特性和稳定性
[例1]: ②
H (s)
s(s 2)(s 3) (s 1)2
解: ②
j
极点: s = -1 (二阶)
s = ∞ (一阶)
零点: s = 0 (一阶) 3 2 1 0
s = -2(一阶)
s = -3(一阶)
系统函数零极点∽时域特性和稳定性
2.H(s) 极点与 h(t) 波形特征关系
j
h(t)
Pi j
0 0
t
Pj j
s2
2
sint
pi,pj共轭虚轴(二阶)
j
h(t)
j
0 0
t
j
2s t sin t (s2 2)2
系统函数零极点∽时域特性和稳定性
ⅴ) pi,pj共轭左半平面(一阶)
j
h(t)
j
a 0 0
t
j
pi,pj共轭左半平面(二阶)
j
h(t)
j
a 0 0
t
相关文档
最新文档