通信原理实验——2PSK调制与解调
2PSK调制解调系统实验

实验四2PSK调制解调系统实验一、实验目的1、熟悉使用System View软件,了解各部分功能模块的操作和使用方法。
2、通过实验进一步掌握2PSK调制原理。
3、通过实验进一步掌握2PSK相干解调原理。
二、实验内容用System View建立一个2PSK调制解调系统仿真电路,信道中加入高斯噪声(均值为0,方差可调),调节噪声大小,观察输出端误码情况,同时观察各模块输出波形的功率谱,理解2PSK调制解调原理。
三、实验要求1、观察仿真电路中各模块输出波形的变化,理解2PSK调制解调原理。
2、观察比较仿真电路中各模块输出波形的功率谱、带宽变化,指出2PSK是线性调制还是非线性调制。
3、调节噪声大小,观察输出端误码情况,说明原因。
4、将解调端参考载波相位设置为与调制端载波相位相差180,观察解调波形有何变化,此现象为何现象。
四、电路构成参数设置:Token4:产生原始码元信号,随机产生(参数设置:Source——Noise/PN――Pn Seg ,幅度1V,频率50HZ,电平数2,偏移0V)Token5,7:Multiplier(乘法器)Token8,10:产生用于调制和解调的载波信号(参数设置:Source――Periodic――Sinusoid,幅度1V,频率200Hz)Token6:Adder(加法器)Token9:产生高斯噪声(参数设置:Source――Noise/PN――Gauss Noise,均值为0,均方差为0.1)Token11:产生一个模拟低通滤波器(参数设置:Operator――Filters/Systems――Linear Sys Filters,选择:Analog,频率50,极点个数3,低通滤波器的截止频率=原始码元速率)Token12:产生抽样信号(参数设置:Operator——Sample/Hold——Sampler,Sample Rate=50Hz,抽样速率=码元速率)Token13:对抽样信号进行保持(参数设置:Operator——Sample/Hold——Hold,Hold Value=Last Sample Gain=1V)Token14:对低通滤波器输出的抽样值进行判决(参数设置:Operator——Logic——Compare 选择:Select Comparison为a>=b)Token15:产生比较判决器的另一个输入,将抽样判决输出与此输入进行比较(参数设置:Source――Periodic――Sinusoid,幅度0V,频率0Hz)系统定时设置:单击工具条中的系统定时按钮,打开System Time Specification 对话框,设置Start Time:0 ,Stop Time:0.5,Sample Rate:10000HZ,单击OK完成系统定时设置。
通信系统实训报告2psk的调制与解调

目录一.摘要和关键词 ..... 错误!未定义书签。
二.小组成员与分工 ... 错误!未定义书签。
三.设计的主要原理 ... 错误!未定义书签。
四.设计的系统仿真 .. 错误!未定义书签。
五.仿真系统的结论 .. 错误!未定义书签。
六.总结和体会: ..... 错误!未定义书签。
七.致谢 ............. 错误!未定义书签。
八.参考文献 ......... 错误!未定义书签。
2PSK的调制与解调一.摘要和关键词2PSK中文是:二进制相移键控,其有两种调制方法,模拟调制法和键控法,解调是用相干解调法。
我们这次做的是2PSK的调制与解调,在实现的过程中,使用了MATLAB的M文件的程序和SIMULINK 实现。
关键词:2PSK 调制解调 MATLAB二.小组成员与分工小组成员分工:确定题目:,查找资料:全部,设计程序: Simulink模拟图:;PPT,演讲:,演示:旁观:三.设计的主要原理二进制相移键控中,通常用相位0和π来分别表示“0”或“1”。
2PSK已调信号的时域表达式为e(t)=s(t)cosωt 。
因此,在某一个码元持续时间内观察时,有0,或π。
当码元宽度为载波周期的整数倍时,2PSK信号的典型波形如下图,2PSK信号的模拟调制法框图;如下图是产生2PSK信号的键控法框图,就模拟调制法而言,与产生2ASK信号的方法比较,只是对s(t)要求不同,因此2PSK信号可以看作是双极性基带信号作用下的DSB调幅信号。
而就键控法来说,用数字基带信号s(t)控制开关电路,选择不同相位的载波输出,这时s(t)为单极性NRZ 或双极性NRZ脉冲序列信号均可。
2PSK信号属于DSB信号,它的解调,不再能采用包络检测的方法,只能进行相干解调。
在这次通信系统仿真实训中,我们使用了MATLAB中的M文件实现,也使用了SIMULINK模块实现了2PSK的调制与解调。
而我负责的是SIMULINK的解调部分,Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。
通信系统实训报告2psk的调制与解调

目录一.摘要和关键词 ..... 错误!未定义书签。
二.小组成员与分工 ... 错误!未定义书签。
三.设计的主要原理 ... 错误!未定义书签。
四.设计的系统仿真 .. 错误!未定义书签。
五.仿真系统的结论 .. 错误!未定义书签。
六.总结和体会: ..... 错误!未定义书签。
七.致谢 ............. 错误!未定义书签。
八.参考文献 ......... 错误!未定义书签。
2PSK的调制与解调一.摘要和关键词2PSK中文是:二进制相移键控,其有两种调制方法,模拟调制法和键控法,解调是用相干解调法。
我们这次做的是2PSK的调制与解调,在实现的过程中,使用了MATLAB的M文件的程序和SIMULINK 实现。
关键词:2PSK 调制解调 MATLAB二.小组成员与分工小组成员分工:确定题目:,查找资料:全部,设计程序: Simulink模拟图:;PPT,演讲:,演示:旁观:三.设计的主要原理二进制相移键控中,通常用相位0和π来分别表示“0”或“1”。
2PSK已调信号的时域表达式为e(t)=s(t)cosωt 。
因此,在某一个码元持续时间内观察时,有0,或π。
当码元宽度为载波周期的整数倍时,2PSK信号的典型波形如下图,2PSK信号的模拟调制法框图;如下图是产生2PSK信号的键控法框图,就模拟调制法而言,与产生2ASK信号的方法比较,只是对s(t)要求不同,因此2PSK信号可以看作是双极性基带信号作用下的DSB调幅信号。
而就键控法来说,用数字基带信号s(t)控制开关电路,选择不同相位的载波输出,这时s(t)为单极性NRZ 或双极性NRZ脉冲序列信号均可。
2PSK信号属于DSB信号,它的解调,不再能采用包络检测的方法,只能进行相干解调。
在这次通信系统仿真实训中,我们使用了MATLAB中的M文件实现,也使用了SIMULINK模块实现了2PSK的调制与解调。
而我负责的是SIMULINK的解调部分,Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。
2psk调制解调的原理

2psk调制解调的原理2PSK调制(2-Phase Shift Keying)是一种基本的数字调制方式。
它通过改变载波的相位来传输数字信号,每个数字比特对应两个不同的相位。
以下将详细解析2PSK调制的原理。
2PSK调制主要涉及到两个过程:调制和解调。
调制过程:1. 文字编码:将要传输的信息进行数字编码,例如使用二进制编码方式,将每个数字比特用0和1代表。
2. 符号分配:每个数字比特对应一个相位,通常选择相位0和相位π来表示0和1。
3. 载波生成:产生一个恒定频率和幅度的正弦波,这个波被称为载波信号。
4. 相位调制:根据编码的数字比特,将相应的相位信息融入到载波信号中。
比如,相位0可以对应载波信号的相位不变,而相位π可以对应载波信号的相位反转。
5. 调制信号生成:得到相位调制后的信号,该信号即为调制信号。
解调过程:1. 接收信号采样:接收到经过信道传输的调制信号,并对信号进行采样。
2. 相位判决:根据接收到的信号的相位信息,进行相位判决以确定每个数字比特的数值。
例如,如果接收到的信号相位为0,则判定为0;如果接收到的信号相位为π,则判定为1。
3. 数字解码:将解调的数字比特翻译回原始的信息字符。
2PSK调制的优点:1. 简单性:2PSK调制的实现比较简单,仅需要改变相位即可。
2. 抗噪声性能:2PSK调制的抗噪声性能较好,因为每个数字比特对应的相位差异明显,相位误差引起的误码率较低。
2PSK调制的局限:1. 带宽效率:2PSK调制一次只能传输一个比特,相比其他复杂调制方式,其带宽利用率较低。
2. 灵活性:2PSK调制只能传输二进制信号,不能传输多元信号。
总结:2PSK调制通过改变载波的相位来传输数字信号。
在调制过程中,信号经过文字编码、符号分配、载波生成和相位调制等步骤。
在解调过程中,信号经过接收信号采样、相位判决和数字解码等步骤。
2PSK调制简单易实现,抗噪声性能好,但带宽利用率相对较低,适用于二进制信号的传输。
2psk调制与解调实验报告

竭诚为您提供优质文档/双击可除2psk调制与解调实验报告篇一:2psK解调实验报告实验二:2psK和QpsK(院、系)专业班课学号20XX20214420姓名谢显荣实验日期1、2psK实验一、实验目的运用mATLAb编程实现2psK调制过程,并且输出其调制过程中的波形,讨论其调制效果。
二、实验内容编写2psK调制仿真程序。
2psK二进制相移键控,简记为2psK或bpsK。
2psK信号码元的“0”和“1”分别用两个不同的初始相位0和π来表示,而其振幅和频率保持不变。
故2psK信号表示式可写为:s(t)=Acos(w0t+θ)式中,当发送“0”时,θ=0;当发送“1”时,θ=π。
或者写成:╱Acos(w0t)发送“0”时s(t)=╲Acos(w0t+π)发送“1”时由于上面两个码元的相位相反,故其波形的形状相同,但极性相反。
因此,2psK信号码元又可以表示成:╱Acosw0t发送“0”时s(t)=╲-Acosw0t发送“1”时任意给定一组二进制数,计算经过这种调制方式的输出信号。
程序书写要规范,加必要的注释;经过程序运行的调制波形要与理论计算出的波形一致。
三、实验原理数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。
为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。
这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。
数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。
这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(psK)基本的调制方式。
图1相应的信号波形的示例101调制原理数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,它们应处于"同相"状态;如果其中一个开始得迟了一点,就可能不相同了。
通信原理实验——2PSK调制与解调

贵州大学实验报告学院:计信学院专业:网络工程班级:101 姓名学号实验组实验时间2013.06.16 指导教师成绩实验项目名称实验二2PSK调制与解调实验目的1、掌握2PSK调制的原理及实现方法。
2、掌握2PSK解调的原理及实现方法。
实验原理1、2PSK调制2PSK信号产生的方法有两种:模拟调制法和数字调制法。
码型变换乘法器NRZ输入双极性NRZ调制输出载波输入图16-1 2PSK调制模拟相乘法原理框图上图16-1是2PSK调制模拟相乘法原理框图。
信号源模块提供码速率96K的NRZ 码和384K正弦载波。
在2ASK中数字基带信号是单极性的,而在2PSK中数字基带信号是双极性的。
故先将单极性NRZ码经码型变换电路转换为双极性NRZ码,然后与384K正弦载波相乘,便得2PSK调制信号。
乘法器的调制深度可由“调制深度调节”旋转电位器调节。
载波1384K开关电路2调制输出NRZ输入开关电路1反相器图16-2 2PSK调制数字键控法原理框图上图16-2是2PSK调制数字键控法原理框图。
为便于实验观测,由信号源模块提供码速率为96Kbit/s的NRZ码数字基带信号和384KHz正弦载波信号,NRZ码为“1”的一个码元对应0相位起始的正弦载波的4个周期,NRZ码为“0”的一个码元对应π相位起始的正弦载波的4个周期。
实验中采用模拟开关作为正弦载波的输出通/断控制门,数字基带信号NRZ码用来控制门的通/断。
当NRZ 码为高电平时,模拟开关1导通,模拟开关2截止,0相位起始的正弦载波通过门1输出;当NRZ 码为低电平时,模拟开关2导通,模拟开关1截止,π相位起始的正弦载波通过门2输出。
门的输出即为2FSK 调制信号,如下图16-3所示。
NRZ输入调制信号11001PSK图16-3 2PSK 调制信号波形2、2PSK 解调2PSK 信号的解调通常采用相干解调法,原理框图如下图16-4所示。
LPF 相乘器电压判决抽样判决调制输入BS输入PSK/DPSK 判决电压调节载波输入相乘输出滤波输出解调输出判压输出图16-4 2PSK 解调相干解调法原理框图设已调信号表达式为1()cos(())s t A t t ωϕ=⨯+(A 1为调制信号的幅值), 经过模拟乘法器与载波信号A 2cos t ω(A2为载波的幅值)相乘,得0121()[cos(2())cos ()]2e t A A t t t ωϕϕ=++ 可知,相乘后包括二倍频分量121cos(2())2A A t t ωϕ+和cos ()t ϕ分量(()t ϕ为时间的函数)。
2psk调制通信系统

2psk调制通信系统一,设计任务与要求课程设计需要运用MA TLAB编程实现2PSK调制解调过程,并且输出其调制及解调过程中的波形,讨论其调制和解调效果。
二,实验基本原理数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理。
②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。
这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(2PSK)基本的调制方式。
相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。
在2PSK中,通常用初始相位0和π分别表示二进制“1”和“0”。
2psk调制器可以采用相乘器,也可以采用相位选择器就模拟调制法而言,与产生2ASK信号的方法比较,只是对s(t)要求不同,因此2PSK信号可以看作是双极性基带信号作用下的DSB 调幅信号。
而就键控法来说,用数字基带信号s(t)控制开关电路,选择不同相位的载波输出,这时s(t)为单极性NRZ或双极性NRZ脉冲序列信号均可。
2PSK信号属于DSB信号。
本次实验采用的的模拟相乘法即通过载波和双极性不归零码的相乘得到2psk信号,则2psk 信号产生的调制原理框图和时域表达式如下:图1时域表达式图2调制原理框图2psk典型波形如下:三,仿真方案和参数设置参数设置如下所示:每码元采样点数Fn=500;码元数m=50;载波频率fc=2;码元速率Rm=1;加入的白噪声的信噪比snr分别为10,30,50 MATLAB产生2psk信号的程序框图如下:四,实验结果与分析产生的双极性非归零码波形,2psk信号波形和频谱如下;T/s幅度2psk 调制信号T/s幅度F/hzs /d b分析如下:当二进制符号为“0”时,调制信号相位差为0,而当二进制符号为“1”时,调制信号相位差为π。
2PSK 信号的频谱由连续谱和离散谱构成。
当加入白噪声后,2psk 信号波形和频谱如下:T/s幅度F/hzs /d bsnr=30时2psk 调制信号T/s幅度snr=30时2psk 调制信号频谱F/hzs /d bsnr=50时2psk 调制信号T/s幅度snr=50时2psk 调制信号频谱F/hzs /d b由图可知加入白噪声后,2psk 信号发生了失真,随着信噪比的增加,2psk 失真越来越小。
实验六PSK调制与解调

实验六2PSK调制与解调一、实验目的1、理解二进制移相键控(Phase Shift Keying,PSK)调制和解调的基本原理;2、了解2PSK调制和解调的实现方法。
二、实验原理一个正弦载波。
如果它被一个双极性比特流按照图6-1所示的方案调制,它的极性将在每一次比特流极性改变时跟着改变。
图6-1对正弦波来说,极性的翻转就等价于反相。
因此,乘法器的输出就是BPSK(2PSK)信号。
二进制移相键控的解调可分两个步骤来考虑。
1、限带信号波形的恢复,使其转化到基带信号;2、从基带的限带波形里重建二进制消息比特流。
在本实验中,实现第一步依靠的是一个“窃取”的本地同步载波。
第二步的抽样判决由定标模块实现,最后还应线性解码,重建原始单极性基带信号。
解调原理如图6-2所示。
图6-2三、实验设备1、主机TIMS-301F2、TIMS基本插入模块(1)TIMS-148音频振荡器(Audio Oscillator)(2)TIMS-150乘法器(Multiplier)或TIMS-425正交模块(Quadrature Utilities),此模块集成了2个乘法器和1个加法器(3)TIMS-151移相器(Phase Shifer)(4)TIMS-153序列产生器(Sequence Generator)(5)TIMS-154可调低通滤波(Tuneable LPF)(6)TIMS-402定标模块(decision-maker module)(7)TIMS-406线性编码器(Line Code Encoder)(8)TIMS-407线性译码器(Line Code Decoder)3、计算机4、Pico虚拟仪器四、实验步骤1、将Tims系统中音频振荡(Audio Oscillator)、移相器(Phase Shifter)、序列码产生器(Sequence Generator)、线性编码器(Line-code Encode)、乘法器(Multiplier)按图6-3连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贵州大学实验报告
学院:计信学院专业:网络工程班级:101 姓名学号实验组实验时间2013.06.16 指导教师成绩
实验项目名称实验二2PSK调制与解调
实
验目的1、掌握2PSK调制的原理及实现方法。
2、掌握2PSK解调的原理及实现方法。
实验原理
1、2PSK调制
2PSK信号产生的方法有两种:模拟调制法和数字调制法。
码型变换乘法器
NRZ输入双极性NRZ调制输出
载波输入
图16-1 2PSK调制模拟相乘法原理框图
上图16-1是2PSK调制模拟相乘法原理框图。
信号源模块提供码速率96K的NRZ 码和384K正弦载波。
在2ASK中数字基带信号是单极性的,而在2PSK中数字基带信号是双极性的。
故先将单极性NRZ码经码型变换电路转换为双极性NRZ码,然后与384K正弦载波相乘,便得2PSK调制信号。
乘法器的调制深度可由“调制深度调节”旋转电位器调节。
载波1
384K
开关电路2
调制输出
NRZ输入
开关电路1
反相器
图16-2 2PSK调制数字键控法原理框图
上图16-2是2PSK调制数字键控法原理框图。
为便于实验观测,由信号源模块提供码速率为96Kbit/s的NRZ码数字基带信号和384KHz正弦载波信号,NRZ码为“1”的一个码元对应0相位起始的正弦载波的4个周期,NRZ码为“0”的一个码元对应π相位起始的正弦载波的4个周期。
实验中采用模拟开关作为正弦载波的输出通/断控制门,数字基带信号NRZ码用来
控制门的通/断。
当NRZ 码为高电平时,模拟开关1导通,模拟开关2截止,0相位起始的正弦载波通过门1输出;当NRZ 码为低电平时,模拟开关2导通,模拟开关1截止,π相位起始的正弦载波通过门2输出。
门的输出即为2FSK 调制信号,如下图16-3所示。
NRZ输入
调制信号
1
1
00
1
PSK
图16-3 2PSK 调制信号波形
2、2PSK 解调
2PSK 信号的解调通常采用相干解调法,原理框图如下图16-4所示。
LPF 相乘器电压判决
抽样判决
调制输入
BS输入
PSK/DPSK 判决电压调节
载波输入相乘输出
滤波输出
解调输出
判压输出
图16-4 2PSK 解调相干解调法原理框图
设已调信号表达式为1()cos(())s t A t t ωϕ=⨯+(A 1为调制信号的幅值), 经过模拟乘法器与载波信号A 2cos t ω(A2为载波的幅值)相乘,得
0121
()[cos(2())cos ()]2
e t A A t t t ωϕϕ=
++ 可知,相乘后包括二倍频分量121
cos(2())2
A A t t ωϕ+和cos ()t ϕ分量(()t ϕ为时
间的函数)。
因此,需经低通滤波器除去高频成分cos(2())t t ωϕ+,得到包含基带信号的低频信号。
然后再进行电压判决和抽样判决。
此时,“解调类型选择”拨位开关拨到“PSK ”一端。
解调过程中各测试点波形如下图16-5所示。
判压输出
判决电平
解调输出
NRZ输入
调制信号
滤波输出
相乘输出
01
100
1
01
100
01
110
1
图16-5 2PSK 解调各测试点波形
实验仪器
1.信号源模块
2.模拟信号数字化模块
3.20M 双踪示波器
4.带话筒立体机耳机
实验步骤
1、将模块小心地固定在主机箱中,确保电源接触良好。
2、插上电源线,打开主机箱右侧的交流开关,再分别按下三个模块中的电源开关,对应的发光二极管灯亮,三个模块均开始工作。
(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)
3、信号源模块设置
(1)“码速率选择”拨码开关设置为8分频,即拨为00000000 00001000。
24位“NRZ 码型选择”拨码开关任意设置。
(2)调节“384K 调幅”旋转电位器,使“384K 正弦载波”输出幅度为3.6V 左右。
4、2PSK 调制(数字键控法) (1)实验连线如下:
信号源模块 数字调制模块
NRZ ———————— NRZ 输入(数字键控法调制) 384K 正弦载波————载波1输入(数字键控法调制)
(2)数字调制模块“键控调制类型选择”拨码开关拨成1001,即选择2PSK 调制
方式。
(3)以数字调制模块“NRZ 输入”的信号为内触发源,示波器双踪观测“NRZ
输入”和“调制输出”测试点波形。
(4)改变信号源模块NRZ 码的码型,观察2PSK 调制信号波形的相应变化。
5、2PSK 解调
(1)以上模块设置和连线均不变,增加连线如下:
数字调制模块 数字解调模块
调制输出(数字键控法)——调制输入(PSK/DPSK 解调)
信号源模块 数字解调模块
384K 正弦载波——————载波输入(PSK/DPSK 解调) BS —————————— BS 输入(PSK/DPSK 解调)
(2)“解调类型选择”拨位开关拨到“PSK ”一端。
(3)示波器观测“相乘输出”、“滤波输出”测试点波形。
(4)调节“PSK/DPSK 判决电压调节”旋转电位器,示波器双踪观测“滤波输出”
与“判压输出”测试点波形,分析随判决电压值的不同,“判压输出”波形的变化。
(5)示波器双踪观测信号源模块“NRZ ”与数字解调模块PSK/DPSK 解调“解调
输出”测试点码型,对比2PSK 解调还原的效果。
(6)改变信号源模块NRZ 码的码型,重复上述实验步骤。
6、2PSK 调制与解调(模拟相乘法)
(1)信号源模块设置不变,拆除以上所有连线,实验重新连线如下:
信号源模块 数字调制模块
NRZ ———————— NRZ 输入(模拟相乘法调制) 384K 正弦载波————载波输入(模拟相乘法调制)
(2)示波器双踪观测“NRZ 输入”与“双极性NRZ ”测试点波形。
(3)以“双极性NRZ ”测试点信号为内触发源,示波器双踪观测“双极性NRZ ”
和“调制输出”测试点波形。
“调制输出”两不同起始相位的载波幅度如有不同,可通过调节“调制深度调节”旋转电位器P01,使“调制输出”信号幅度平坦。
说明:“双极性NRZ ”为正电平时,“调制输出”为π相位起始的384KHz 正弦载
波信号;“双极性NRZ ”为负电平时,“调制输出”为0相位起始的384KHz 正弦载波信号。
调制输出
t
2T S T S 3T S 4T S
双极性NRZ
t
2T S
T S
3T S 1
01
14T S
(4)改变信号源模块NRZ 码的码型,观察2PSK 调制信号波形的相应变化。
(5)重复实验步骤5,相干解调2PSK 调制信号。
实
验内容1、分别采用数字键控法、模拟相乘法2PSK调制,观测2PSK调制信号的波形。
2、采用相干解调法2PSK解调。
实验数据
3、信号源模块设置
(1)“码速率选择”拨码开关设置为8分频,即拨为00000000 00001000。
24位“NRZ码型选择”拨码开关任意设置。
(2)调节“384K调幅”旋转电位器,使“384K正弦载波”输出幅度为3.6V左右。
NEZ码型选择 01000011 00000001 00000001
4、2PSK调制(数字键控法)
(3)以数字调制模块“NRZ输入”的信号为内触发源,示波器双踪观测“NRZ 输入”和“调制输出”测试点波形。
(4)改变信号源模块NRZ码的码型,观察2PSK调制信号波形的相应变化。
DPSK 2ASK 2FSK
5、2PSK解调
(3)示波器观测“相乘输出”、“滤波输出”测试点波形。
(4)调节“PSK/DPSK判决电压调节”旋转电位器,示波器双踪观测“滤波输出”
与“判压输出”测试点波形,分析随判决电压值的不同,“判压输出”波形
的变化。
(5)示波器双踪观测信号源模块“NRZ”与数字解调模块PSK/DPSK解调“解调输出”测试点码型,对比2PSK解调还原的效果
实
验
基本达到实验要求,掌握2PSK调制与解制的方法。
总
结
指
导
教
师
意
见签名:年月日。