二年级奥数间隔问题 间隔

合集下载

二年级奥数间隔问题间隔

二年级奥数间隔问题间隔

(间隔趣谈3 )
例1两幢楼之间每隔2米种一棵树,共种了5棵树,这两幢楼之间相距多少米?
练习1 两幢楼之间每隔1米种一棵树,一共种了8棵树,这两幢楼之间相距多少米?
练习2 两根栏杆之间,每隔5米放一辆自行车,一共放了19辆,这两根栏杆之间相距多少米?
例2 两幢楼之间相距12米,每隔2米种一棵树,一共种了几棵树?
练习1 两幢楼之间相距18米,每隔3米种一棵广玉兰,一共种了几棵广玉兰?
练习2 学校前后楼之间相距10米,为迎接校庆,准备每隔10分米插一面彩旗,一共需要多少面彩旗?
综合练习
1、两幢房子之间相距50米,每隔1米站一个小朋友,一共可以站几个小朋友?
2、在两幢房之间每隔2米放置宣传广告牌,一共放了10个,两幢楼之间相距多少米?
3、绳子长1米,每隔10厘米打一个结,一共要打几个结?
4、小明把9粒棋子横着摆放在桌上,每两粒的距离是5厘米,从第一粒到第九粒之间的距离是多少厘米?
5、小新把7粒纽扣放在桌上,每两粒之间的距离是5厘米,从第一粒到第七粒的距离是多少厘米?
6、一座桥长30米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有几盏灯?
7、两根柱子相距27分米,在两根柱子之间每隔3分米挂1个彩球,柱子上不挂,挂两排,一共需要多少个彩球?
8、两棵树之间相距20米,每隔2米插一面彩旗,一共可以插多少面?
9、一条路长100米,工人叔叔要在路两旁每隔10米竖一根电线杆,从头到尾一共要竖多少根电线杆?。

二年级奥数 间隔问题练习

二年级奥数  间隔问题练习

二年级奥数间隔问题一、植树问题:植树问题是最典型的间隔问题。

植树问题,要牢记四要素:①路线长②间距(棵距)长③棵数④间隔数关于植树的路线,有封闭与不封闭两种路线。

1.不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1。

如图把总长平均分成5段,但植树棵数是6棵。

全长、棵数、间距三者之间的关系是:棵数=间隔数+1 / 间隔数=棵数-1全长=间距×(棵数-1)间距=全长÷(棵数-1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等。

全长、棵数、株距之间的关系就为:全长=间距×棵数;棵数=间隔数=全长÷间距;间距=全长÷棵数。

③如果植树路线的两端都不植树,则棵数就比②中还少1棵。

棵数=间隔数-1=全长÷间距-1间距=全长÷(棵数+1)2.封闭的植树路线例如:在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数。

如右图所示。

棵数=间隔数=周长÷间距周长=株距×棵数(段数)株距=周长÷棵数(段数)为了更直观,我们用图示法来说明。

树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。

明确植树方式,在题目标记,题目很少直接给出种树方式。

往往有陷阱比如说:门前、门口、电线杆......都是不能种树类型一: 非封闭线的两端都有“点”时,“点数”(棵数)=“段数”(间隔数)+1例:1、一座桥长30米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有几盏灯2、小明在马路的一边种树,每隔3米种一棵树,共种了11棵,问这段马路有多长3、晾晒1块手帕需要2个夹子,2块手帕要3个夹子,3块手帕要4个夹子,照这样的规律,晾晒8块手帕需要几个夹子练习1、学校门前的一条路长42米,从头到尾栽树,每7米栽一棵,一共能栽几棵树2、在一条长15米的水泥路上,从头开始每隔3米摆一盆花,一共摆了多少盆花3、少先队员在路的两旁每隔5米栽一棵树,起点和终点都栽了,一共栽了72棵树,这条路长多少米4、在一段路边每隔50米埋设一根路灯杆,包括这段路两端埋设的路灯杆,共埋设了10根。

二年级下册数学奥数教案2间隔问题(第一课时)

二年级下册数学奥数教案2间隔问题(第一课时)

【教学内容】第12 讲好玩的手工课---- 间隔问题〔一〕第12 讲“好玩的手工课——间隔问题〔一〕”。

【教学目标】学问技能1.让学生经受有关间隔与点之间关系的探究过程,找到物体排列时,物体的个数比它们之间的间隔多 1,间隔的个数比物体的个数少 1 的这一规律。

2.培育学生用数学的眼光观看四周事物,初步学会用数学的观点分析日常生活中各种现象的意识。

数学思考在动手操作、自主探究与合作沟通中把握观看、分析、比较的方法。

问题解决能在教师的指引下,从日常生活中觉察并提出简洁的间隔问题,并利用所学学问加以解决。

情感态度能利用规律解释生活中的现象,解决生活中的问题。

在解决问题的过程中,感受解决问题的策略。

培育学生觉察与应用规律的乐观性和学习数学的兴趣。

【教学重难点】教学重点理解段数和点之间的关系,能够利用间隔问题进展解答题目。

教学难点理解生活中的现象,学会爬楼梯之间的学问,知道在解决问题是如何实际运用。

【教学预备】动画多媒体语言课件、彩纸、剪刀等。

第一课时教学路径学生活动方案说明一、师行谈话,引入课题。

师:同学们,你们知道吗在我们生活的四周处处都隐蔽着数学学问。

下面我们就来做一个“找数学”的玩耍。

师:请同学们伸出一只手,张开你的手指,然后认真观看,你能看到数学学问吗?①指名学生说一说自己的觉察。

生:我觉察有 5 个手指。

5 是数学学问。

生:我觉察有 4 个空。

4 也是数学学问。

师:你的觉察真宏大,这里的“4 个空”还可以说成4 个什么呢?生:还可以说是 4 个空格。

生:也可以说成是“4个间隔”。

〔教师板书;间隔〕1、提问:这 5 个手指之间有 4 个间隔,那 4 个手指之间有几个间隔呢?3 个、2 个手指之间呢?学生在自己的手上指一指,说一说。

师:通过刚刚的观看我们找到了手指数与间隔数。

从这②引导学生觉察:两个数量中你又能觉察什么呢?②间隔的个数比手生:我觉察5 个手指有4 个间隔;4 个手指就会有3 个指的个数少1 或手间隔,3 个手指间就会有 2 个间隔。

二年级奥数 间隔问题教师

二年级奥数  间隔问题教师

二年级奥数间隔问题一、植树问题:植树问题是最典型的间隔问题。

植树问题,要牢记四要素:①路线长②间距(棵距)长③棵数④间隔数关于植树的路线,有封闭与不封闭两种路线。

1.不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1。

如图把总长平均分成5段,但植树棵数是6棵。

全长、棵数、间距三者之间的关系是:棵数=间隔数+1 / 间隔数=棵数-1全长=间距×(棵数-1)间距=全长÷(棵数-1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等。

全长、棵数、株距之间的关系就为: 全长=间距×棵数; 棵数=间隔数=全长÷间距;间距=全长÷棵数。

③如果植树路线的两端都不植树,则棵数就比②中还少1棵。

棵数=间隔数-1=全长÷间距-1间距=全长÷(棵数+1)2.封闭的植树路线例如:在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数。

如右图所示。

棵数=间隔数=周长÷间距周长=株距×棵数(段数)株距=周长÷棵数(段数)为了更直观,我们用图示法来说明。

树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。

明确植树方式,在题目标记,题目很少直接给出种树方式。

往往有陷阱比如说:门前、门口、电线杆......都是不能种树类型一: 非封闭线的两端都有“点”时,“点数”(棵数)=“段数”(间隔数)+1例:1、一座桥长30米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有几盏灯?分析:两端种树:盏数(点数)=“段数”(间隔数)+12、小明在马路的一边种树,每隔3米种一棵树,共种了11棵,问这段马路有多长?分析:两端种树:全长=间距×(棵数-1)3、晾晒1块手帕需要2个夹子,2块手帕要3个夹子,3块手帕要4个夹子,照这样的规律,晾晒8块手帕需要几个夹子?练习1、学校门前的一条路长42米,从头到尾栽树,每7米栽一棵,一共能栽几棵树?2、在一条长15米的水泥路上,从头开始每隔3米摆一盆花,一共摆了多少盆花?3、少先队员在路的两旁每隔5米栽一棵树,起点和终点都栽了,一共栽了72棵树,这条路长多少米?4、在一段路边每隔50米埋设一根路灯杆,包括这段路两端埋设的路灯杆,共埋设了10根。

小学二年级奥数间隔问题练习

小学二年级奥数间隔问题练习

二年级奥数间隔问题一、植树问题:植树问题是最典型的间隔问题。

植树问题,要牢记四要素:①路线长②间距(棵距)长③棵数④间隔数关于植树的路线,有封闭与不封闭两种路线。

1.不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1。

如图把总长平均分成5段,但植树棵数是6棵。

全长、棵数、间距三者之间的关系是:棵数=间隔数+1 / 间隔数=棵数-1全长=间距×(棵数-1)间距=全长÷(棵数-1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等。

全长、棵数、株距之间的关系就为:全长=间距×棵数;棵数=间隔数=全长÷间距;间距=全长÷棵数。

③如果植树路线的两端都不植树,则棵数就比②中还少1棵。

棵数=间隔数-1=全长÷间距-1间距=全长÷(棵数+1)2.封闭的植树路线例如:在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数。

如右图所示。

棵数=间隔数=周长÷间距周长=株距×棵数(段数)为了更直观,我们用图示法来说明。

树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。

明确植树方式,在题目标记,题目很少直接给出种树方式。

往往有陷阱比如说:门前、门口、电线杆......都是不能种树类型一: 非封闭线的两端都有“点”时,“点数”(棵数)=“段数”(间隔数)+1例:1、一座桥长30米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有几盏灯?2、小明在马路的一边种树,每隔3米种一棵树,共种了11棵,问这段马路有多长?3、晾晒1块手帕需要2个夹子,2块手帕要3个夹子,3块手帕要4个夹子,照这样的规律,晾晒8块手帕需要几个夹子?练习1、学校门前的一条路长42米,从头到尾栽树,每7米栽一棵,一共能栽几棵树?2、在一条长15米的水泥路上,从头开始每隔3米摆一盆花,一共摆了多少盆花?3、少先队员在路的两旁每隔5米栽一棵树,起点和终点都栽了,一共栽了72棵树,这条路长多少米?4、在一段路边每隔50米埋设一根路灯杆,包括这段路两端埋设的路灯杆,共埋设了10根。

最新二年级奥数--间隔问题练习

最新二年级奥数--间隔问题练习

二年级奥数间隔问题一、植树问题:植树问题是最典型的间隔问题。

植树问题,要牢记四要素:①路线长②间距(棵距)长③棵数④间隔数关于植树的路线,有封闭与不封闭两种路线。

1.不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1。

如图把总长平均分成5段,但植树棵数是6棵。

全长、棵数、间距三者之间的关系是:棵数=间隔数+1 / 间隔数=棵数-1全长=间距×(棵数-1)间距=全长÷(棵数-1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等。

全长、棵数、株距之间的关系就为:全长=间距×棵数;棵数=间隔数=全长÷间距;间距=全长÷棵数。

③如果植树路线的两端都不植树,则棵数就比②中还少1棵。

棵数=间隔数-1=全长÷间距-1间距=全长÷(棵数+1)2.封闭的植树路线例如:在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数。

如右图所示。

棵数=间隔数=周长÷间距周长=株距×棵数(段数)株距=周长÷棵数(段数)为了更直观,我们用图示法来说明。

树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。

明确植树方式,在题目标记,题目很少直接给出种树方式。

往往有陷阱比如说:门前、门口、电线杆......都是不能种树类型一: 非封闭线的两端都有“点”时,“点数”(棵数)=“段数”(间隔数)+1例:1、一座桥长30米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有几盏灯?2、小明在马路的一边种树,每隔3米种一棵树,共种了11棵,问这段马路有多长?3、晾晒1块手帕需要2个夹子,2块手帕要3个夹子,3块手帕要4个夹子,照这样的规律,晾晒8块手帕需要几个夹子?练习1、学校门前的一条路长42米,从头到尾栽树,每7米栽一棵,一共能栽几棵树?2、在一条长15米的水泥路上,从头开始每隔3米摆一盆花,一共摆了多少盆花?3、少先队员在路的两旁每隔5米栽一棵树,起点和终点都栽了,一共栽了72棵树,这条路长多少米?4、在一段路边每隔50米埋设一根路灯杆,包括这段路两端埋设的路灯杆,共埋设了10根。

小学二年级奥数间隔问题练习

小学二年级奥数间隔问题练习

小学二年级奥数间隔问题练习(共15页)-本页仅作为预览文档封面,使用时请删除本页-二年级奥数间隔问题一、植树问题:植树问题是最典型的间隔问题。

植树问题,要牢记四要素:①路线长②间距(棵距)长③棵数④间隔数关于植树的路线,有封闭与不封闭两种路线。

1.不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1。

如图把总长平均分成5段,但植树棵数是6棵。

全长、棵数、间距三者之间的关系是:棵数=间隔数+1 / 间隔数=棵数-1全长=间距×(棵数-1)间距=全长÷(棵数-1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等。

全长、棵数、株距之间的关系就为:全长=间距×棵数;棵数=间隔数=全长÷间距;间距=全长÷棵数。

③如果植树路线的两端都不植树,则棵数就比②中还少1棵。

棵数=间隔数-1=全长÷间距-1间距=全长÷(棵数+1)2.封闭的植树路线例如:在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数。

如右图所示。

棵数=间隔数=周长÷间距周长=株距×棵数(段数)株距=周长÷棵数(段数)为了更直观,我们用图示法来说明。

树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。

明确植树方式,在题目标记,题目很少直接给出种树方式。

往往有陷阱比如说:门前、门口、电线杆......都是不能种树类型一: 非封闭线的两端都有“点”时,“点数”(棵数)=“段数”(间隔数)+1例:1、一座桥长30米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有几盏灯?2、小明在马路的一边种树,每隔3米种一棵树,共种了11棵,问这段马路有多长?3、晾晒1块手帕需要2个夹子,2块手帕要3个夹子,3块手帕要4个夹子,照这样的规律,晾晒8块手帕需要几个夹子?练习1、学校门前的一条路长42米,从头到尾栽树,每7米栽一棵,一共能栽几棵树?2、在一条长15米的水泥路上,从头开始每隔3米摆一盆花,一共摆了多少盆花?3、少先队员在路的两旁每隔5米栽一棵树,起点和终点都栽了,一共栽了72棵树,这条路长多少米?4、在一段路边每隔50米埋设一根路灯杆,包括这段路两端埋设的路灯杆,共埋设了10根。

二年级奥数间隔问题 间隔

二年级奥数间隔问题 间隔

(间隔趣谈1 )
例1小明家住七楼,他从底楼到二楼用1分钟,那么他从底楼到七楼要几分钟?
练习1 张亮家住四楼,他从底楼到二楼需要2分钟,那么他从底楼到四楼需要几分钟?
练习2 李明家住五楼,他从四楼到五楼需要30秒,那么他从底楼走到五楼需要多少秒?
例2 蓉蓉住的这幢楼共七层,每层楼梯20级,她家住在五楼,你知道蓉蓉走多少级楼梯才能到自己住的那一层?
练习1 小冬家住在11层,他数了10层到11层有21级台阶,你能算出从底楼到小东家有多少级台阶吗?
例3 把一根粗细均匀的木料锯成6段,每锯一次需要3分钟,一共要多少分钟?
练习1 把一根粗细均匀的木料锯成5段,每锯一次要5分钟。

一共需要多少分钟?
练习2 把一根15米长的钢管锯成5段,每锯一次用6分钟,一共需要几分钟?
例4 把一根木头锯成6段,共用30分钟,每锯一次要用几分钟?
练习1 把一根木头锯成5段,一共用了28分钟,每锯一次要用多少分钟?
练习2 3根木料,每根锯成3段,一共用了18分钟,每锯一次要用几分钟?
综合练习
1、小宇家住三楼,他从底楼到二楼需要2分钟,那么他从底
楼回家要几分钟?
2、一根粗细均匀的木头锯成6段,每锯一次需要3分钟,一共要用多少分钟?
3、一根皮筋被剪3次后,平均每段长6分米,这根皮筋原来长多少分米?
4、李林家住在四楼,他从底楼到二楼要走20级楼梯,那么他从底楼到四楼要走几级楼梯?
5、根长30厘米的铁丝剪成6段,每剪一次要用2分钟,一共需要几分钟?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(间隔趣谈2)
例1学校门前的一条路长42米,从头到尾栽树,每7米栽一棵,一共能栽几棵树?
练习1 在一条长15米的水泥路上,从头开始每隔3米摆一盆花,一共摆了多少盆花?
练习2 平平在桌上摆小棒,每隔8厘米摆一根,到40厘米处可摆几根?
例2少先队员在路的两旁每隔5米栽一棵树,起点和终点都栽了,一共栽了72棵树,这条路长多少米?
练习1 少先队员在路的两旁每隔2米栽一棵树,起点和终点都栽,一共栽了42棵,这条路长多少米?
练习2 两根同样长的绳子上,每隔2米挂一个灯笼,起点和终点都挂,共挂了12个,每根绳子长多少米?
例3校门口的一条路长20米,路的两边从头到尾都栽树,每隔2米栽一棵,一共要栽多少棵?
练习1 一条路长100米,少先队员在路的两旁每隔5米栽一棵树,从头到尾一共要栽多少棵树?
练习2 一条路长200米,工人叔叔在路的两旁每隔10米竖一根电线杆,从头到尾一共要竖多少根电线杆?
综合练习
1、一条河堤40米,每隔4米栽一棵树,从头到尾一共要栽多少棵?
2、一条路长25米,少先队员在路的两旁栽树,起点终点都栽,一共栽了12棵树,每两棵树之间相隔多少米?
3、两幢楼之间相距10米,每隔2米种一棵树,一共种了几棵树?
4、在2根10米长的绳子上扎气球,从头开始每隔5米扎一个,一共扎了多少个气球?
5、一条路每隔2米有1根电线杆,连两端共有81根,这条路长多少米?
6、绿化小组在学校的过道两边摆放月季花,每隔1米摆一盆,一共摆了42盆,这条过道长多少米?。

相关文档
最新文档