二年级奥数间隔问题 间隔
二年级奥数间隔问题间隔

(间隔趣谈3 )
例1两幢楼之间每隔2米种一棵树,共种了5棵树,这两幢楼之间相距多少米?
练习1 两幢楼之间每隔1米种一棵树,一共种了8棵树,这两幢楼之间相距多少米?
练习2 两根栏杆之间,每隔5米放一辆自行车,一共放了19辆,这两根栏杆之间相距多少米?
例2 两幢楼之间相距12米,每隔2米种一棵树,一共种了几棵树?
练习1 两幢楼之间相距18米,每隔3米种一棵广玉兰,一共种了几棵广玉兰?
练习2 学校前后楼之间相距10米,为迎接校庆,准备每隔10分米插一面彩旗,一共需要多少面彩旗?
综合练习
1、两幢房子之间相距50米,每隔1米站一个小朋友,一共可以站几个小朋友?
2、在两幢房之间每隔2米放置宣传广告牌,一共放了10个,两幢楼之间相距多少米?
3、绳子长1米,每隔10厘米打一个结,一共要打几个结?
4、小明把9粒棋子横着摆放在桌上,每两粒的距离是5厘米,从第一粒到第九粒之间的距离是多少厘米?
5、小新把7粒纽扣放在桌上,每两粒之间的距离是5厘米,从第一粒到第七粒的距离是多少厘米?
6、一座桥长30米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有几盏灯?
7、两根柱子相距27分米,在两根柱子之间每隔3分米挂1个彩球,柱子上不挂,挂两排,一共需要多少个彩球?
8、两棵树之间相距20米,每隔2米插一面彩旗,一共可以插多少面?
9、一条路长100米,工人叔叔要在路两旁每隔10米竖一根电线杆,从头到尾一共要竖多少根电线杆?。
二年级奥数 间隔问题练习

二年级奥数间隔问题一、植树问题:植树问题是最典型的间隔问题。
植树问题,要牢记四要素:①路线长②间距(棵距)长③棵数④间隔数关于植树的路线,有封闭与不封闭两种路线。
1.不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1。
如图把总长平均分成5段,但植树棵数是6棵。
全长、棵数、间距三者之间的关系是:棵数=间隔数+1 / 间隔数=棵数-1全长=间距×(棵数-1)间距=全长÷(棵数-1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等。
全长、棵数、株距之间的关系就为:全长=间距×棵数;棵数=间隔数=全长÷间距;间距=全长÷棵数。
③如果植树路线的两端都不植树,则棵数就比②中还少1棵。
棵数=间隔数-1=全长÷间距-1间距=全长÷(棵数+1)2.封闭的植树路线例如:在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数。
如右图所示。
棵数=间隔数=周长÷间距周长=株距×棵数(段数)株距=周长÷棵数(段数)为了更直观,我们用图示法来说明。
树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。
明确植树方式,在题目标记,题目很少直接给出种树方式。
往往有陷阱比如说:门前、门口、电线杆......都是不能种树类型一: 非封闭线的两端都有“点”时,“点数”(棵数)=“段数”(间隔数)+1例:1、一座桥长30米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有几盏灯2、小明在马路的一边种树,每隔3米种一棵树,共种了11棵,问这段马路有多长3、晾晒1块手帕需要2个夹子,2块手帕要3个夹子,3块手帕要4个夹子,照这样的规律,晾晒8块手帕需要几个夹子练习1、学校门前的一条路长42米,从头到尾栽树,每7米栽一棵,一共能栽几棵树2、在一条长15米的水泥路上,从头开始每隔3米摆一盆花,一共摆了多少盆花3、少先队员在路的两旁每隔5米栽一棵树,起点和终点都栽了,一共栽了72棵树,这条路长多少米4、在一段路边每隔50米埋设一根路灯杆,包括这段路两端埋设的路灯杆,共埋设了10根。
二年级下册数学奥数教案2间隔问题(第一课时)

【教学内容】第12 讲好玩的手工课---- 间隔问题〔一〕第12 讲“好玩的手工课——间隔问题〔一〕”。
【教学目标】学问技能1.让学生经受有关间隔与点之间关系的探究过程,找到物体排列时,物体的个数比它们之间的间隔多 1,间隔的个数比物体的个数少 1 的这一规律。
2.培育学生用数学的眼光观看四周事物,初步学会用数学的观点分析日常生活中各种现象的意识。
数学思考在动手操作、自主探究与合作沟通中把握观看、分析、比较的方法。
问题解决能在教师的指引下,从日常生活中觉察并提出简洁的间隔问题,并利用所学学问加以解决。
情感态度能利用规律解释生活中的现象,解决生活中的问题。
在解决问题的过程中,感受解决问题的策略。
培育学生觉察与应用规律的乐观性和学习数学的兴趣。
【教学重难点】教学重点理解段数和点之间的关系,能够利用间隔问题进展解答题目。
教学难点理解生活中的现象,学会爬楼梯之间的学问,知道在解决问题是如何实际运用。
【教学预备】动画多媒体语言课件、彩纸、剪刀等。
第一课时教学路径学生活动方案说明一、师行谈话,引入课题。
师:同学们,你们知道吗在我们生活的四周处处都隐蔽着数学学问。
下面我们就来做一个“找数学”的玩耍。
师:请同学们伸出一只手,张开你的手指,然后认真观看,你能看到数学学问吗?①指名学生说一说自己的觉察。
生:我觉察有 5 个手指。
5 是数学学问。
生:我觉察有 4 个空。
4 也是数学学问。
师:你的觉察真宏大,这里的“4 个空”还可以说成4 个什么呢?生:还可以说是 4 个空格。
生:也可以说成是“4个间隔”。
〔教师板书;间隔〕1、提问:这 5 个手指之间有 4 个间隔,那 4 个手指之间有几个间隔呢?3 个、2 个手指之间呢?学生在自己的手上指一指,说一说。
师:通过刚刚的观看我们找到了手指数与间隔数。
从这②引导学生觉察:两个数量中你又能觉察什么呢?②间隔的个数比手生:我觉察5 个手指有4 个间隔;4 个手指就会有3 个指的个数少1 或手间隔,3 个手指间就会有 2 个间隔。
二年级奥数 间隔问题教师

二年级奥数间隔问题一、植树问题:植树问题是最典型的间隔问题。
植树问题,要牢记四要素:①路线长②间距(棵距)长③棵数④间隔数关于植树的路线,有封闭与不封闭两种路线。
1.不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1。
如图把总长平均分成5段,但植树棵数是6棵。
全长、棵数、间距三者之间的关系是:棵数=间隔数+1 / 间隔数=棵数-1全长=间距×(棵数-1)间距=全长÷(棵数-1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等。
全长、棵数、株距之间的关系就为: 全长=间距×棵数; 棵数=间隔数=全长÷间距;间距=全长÷棵数。
③如果植树路线的两端都不植树,则棵数就比②中还少1棵。
棵数=间隔数-1=全长÷间距-1间距=全长÷(棵数+1)2.封闭的植树路线例如:在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数。
如右图所示。
棵数=间隔数=周长÷间距周长=株距×棵数(段数)株距=周长÷棵数(段数)为了更直观,我们用图示法来说明。
树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。
明确植树方式,在题目标记,题目很少直接给出种树方式。
往往有陷阱比如说:门前、门口、电线杆......都是不能种树类型一: 非封闭线的两端都有“点”时,“点数”(棵数)=“段数”(间隔数)+1例:1、一座桥长30米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有几盏灯?分析:两端种树:盏数(点数)=“段数”(间隔数)+12、小明在马路的一边种树,每隔3米种一棵树,共种了11棵,问这段马路有多长?分析:两端种树:全长=间距×(棵数-1)3、晾晒1块手帕需要2个夹子,2块手帕要3个夹子,3块手帕要4个夹子,照这样的规律,晾晒8块手帕需要几个夹子?练习1、学校门前的一条路长42米,从头到尾栽树,每7米栽一棵,一共能栽几棵树?2、在一条长15米的水泥路上,从头开始每隔3米摆一盆花,一共摆了多少盆花?3、少先队员在路的两旁每隔5米栽一棵树,起点和终点都栽了,一共栽了72棵树,这条路长多少米?4、在一段路边每隔50米埋设一根路灯杆,包括这段路两端埋设的路灯杆,共埋设了10根。
小学二年级奥数间隔问题练习

二年级奥数间隔问题一、植树问题:植树问题是最典型的间隔问题。
植树问题,要牢记四要素:①路线长②间距(棵距)长③棵数④间隔数关于植树的路线,有封闭与不封闭两种路线。
1.不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1。
如图把总长平均分成5段,但植树棵数是6棵。
全长、棵数、间距三者之间的关系是:棵数=间隔数+1 / 间隔数=棵数-1全长=间距×(棵数-1)间距=全长÷(棵数-1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等。
全长、棵数、株距之间的关系就为:全长=间距×棵数;棵数=间隔数=全长÷间距;间距=全长÷棵数。
③如果植树路线的两端都不植树,则棵数就比②中还少1棵。
棵数=间隔数-1=全长÷间距-1间距=全长÷(棵数+1)2.封闭的植树路线例如:在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数。
如右图所示。
棵数=间隔数=周长÷间距周长=株距×棵数(段数)为了更直观,我们用图示法来说明。
树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。
明确植树方式,在题目标记,题目很少直接给出种树方式。
往往有陷阱比如说:门前、门口、电线杆......都是不能种树类型一: 非封闭线的两端都有“点”时,“点数”(棵数)=“段数”(间隔数)+1例:1、一座桥长30米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有几盏灯?2、小明在马路的一边种树,每隔3米种一棵树,共种了11棵,问这段马路有多长?3、晾晒1块手帕需要2个夹子,2块手帕要3个夹子,3块手帕要4个夹子,照这样的规律,晾晒8块手帕需要几个夹子?练习1、学校门前的一条路长42米,从头到尾栽树,每7米栽一棵,一共能栽几棵树?2、在一条长15米的水泥路上,从头开始每隔3米摆一盆花,一共摆了多少盆花?3、少先队员在路的两旁每隔5米栽一棵树,起点和终点都栽了,一共栽了72棵树,这条路长多少米?4、在一段路边每隔50米埋设一根路灯杆,包括这段路两端埋设的路灯杆,共埋设了10根。
最新二年级奥数--间隔问题练习

二年级奥数间隔问题一、植树问题:植树问题是最典型的间隔问题。
植树问题,要牢记四要素:①路线长②间距(棵距)长③棵数④间隔数关于植树的路线,有封闭与不封闭两种路线。
1.不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1。
如图把总长平均分成5段,但植树棵数是6棵。
全长、棵数、间距三者之间的关系是:棵数=间隔数+1 / 间隔数=棵数-1全长=间距×(棵数-1)间距=全长÷(棵数-1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等。
全长、棵数、株距之间的关系就为:全长=间距×棵数;棵数=间隔数=全长÷间距;间距=全长÷棵数。
③如果植树路线的两端都不植树,则棵数就比②中还少1棵。
棵数=间隔数-1=全长÷间距-1间距=全长÷(棵数+1)2.封闭的植树路线例如:在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数。
如右图所示。
棵数=间隔数=周长÷间距周长=株距×棵数(段数)株距=周长÷棵数(段数)为了更直观,我们用图示法来说明。
树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。
明确植树方式,在题目标记,题目很少直接给出种树方式。
往往有陷阱比如说:门前、门口、电线杆......都是不能种树类型一: 非封闭线的两端都有“点”时,“点数”(棵数)=“段数”(间隔数)+1例:1、一座桥长30米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有几盏灯?2、小明在马路的一边种树,每隔3米种一棵树,共种了11棵,问这段马路有多长?3、晾晒1块手帕需要2个夹子,2块手帕要3个夹子,3块手帕要4个夹子,照这样的规律,晾晒8块手帕需要几个夹子?练习1、学校门前的一条路长42米,从头到尾栽树,每7米栽一棵,一共能栽几棵树?2、在一条长15米的水泥路上,从头开始每隔3米摆一盆花,一共摆了多少盆花?3、少先队员在路的两旁每隔5米栽一棵树,起点和终点都栽了,一共栽了72棵树,这条路长多少米?4、在一段路边每隔50米埋设一根路灯杆,包括这段路两端埋设的路灯杆,共埋设了10根。
小学二年级奥数间隔问题练习

小学二年级奥数间隔问题练习(共15页)-本页仅作为预览文档封面,使用时请删除本页-二年级奥数间隔问题一、植树问题:植树问题是最典型的间隔问题。
植树问题,要牢记四要素:①路线长②间距(棵距)长③棵数④间隔数关于植树的路线,有封闭与不封闭两种路线。
1.不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1。
如图把总长平均分成5段,但植树棵数是6棵。
全长、棵数、间距三者之间的关系是:棵数=间隔数+1 / 间隔数=棵数-1全长=间距×(棵数-1)间距=全长÷(棵数-1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等。
全长、棵数、株距之间的关系就为:全长=间距×棵数;棵数=间隔数=全长÷间距;间距=全长÷棵数。
③如果植树路线的两端都不植树,则棵数就比②中还少1棵。
棵数=间隔数-1=全长÷间距-1间距=全长÷(棵数+1)2.封闭的植树路线例如:在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数。
如右图所示。
棵数=间隔数=周长÷间距周长=株距×棵数(段数)株距=周长÷棵数(段数)为了更直观,我们用图示法来说明。
树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。
明确植树方式,在题目标记,题目很少直接给出种树方式。
往往有陷阱比如说:门前、门口、电线杆......都是不能种树类型一: 非封闭线的两端都有“点”时,“点数”(棵数)=“段数”(间隔数)+1例:1、一座桥长30米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有几盏灯?2、小明在马路的一边种树,每隔3米种一棵树,共种了11棵,问这段马路有多长?3、晾晒1块手帕需要2个夹子,2块手帕要3个夹子,3块手帕要4个夹子,照这样的规律,晾晒8块手帕需要几个夹子?练习1、学校门前的一条路长42米,从头到尾栽树,每7米栽一棵,一共能栽几棵树?2、在一条长15米的水泥路上,从头开始每隔3米摆一盆花,一共摆了多少盆花?3、少先队员在路的两旁每隔5米栽一棵树,起点和终点都栽了,一共栽了72棵树,这条路长多少米?4、在一段路边每隔50米埋设一根路灯杆,包括这段路两端埋设的路灯杆,共埋设了10根。
二年级奥数间隔问题 间隔

(间隔趣谈1 )
例1小明家住七楼,他从底楼到二楼用1分钟,那么他从底楼到七楼要几分钟?
练习1 张亮家住四楼,他从底楼到二楼需要2分钟,那么他从底楼到四楼需要几分钟?
练习2 李明家住五楼,他从四楼到五楼需要30秒,那么他从底楼走到五楼需要多少秒?
例2 蓉蓉住的这幢楼共七层,每层楼梯20级,她家住在五楼,你知道蓉蓉走多少级楼梯才能到自己住的那一层?
练习1 小冬家住在11层,他数了10层到11层有21级台阶,你能算出从底楼到小东家有多少级台阶吗?
例3 把一根粗细均匀的木料锯成6段,每锯一次需要3分钟,一共要多少分钟?
练习1 把一根粗细均匀的木料锯成5段,每锯一次要5分钟。
一共需要多少分钟?
练习2 把一根15米长的钢管锯成5段,每锯一次用6分钟,一共需要几分钟?
例4 把一根木头锯成6段,共用30分钟,每锯一次要用几分钟?
练习1 把一根木头锯成5段,一共用了28分钟,每锯一次要用多少分钟?
练习2 3根木料,每根锯成3段,一共用了18分钟,每锯一次要用几分钟?
综合练习
1、小宇家住三楼,他从底楼到二楼需要2分钟,那么他从底
楼回家要几分钟?
2、一根粗细均匀的木头锯成6段,每锯一次需要3分钟,一共要用多少分钟?
3、一根皮筋被剪3次后,平均每段长6分米,这根皮筋原来长多少分米?
4、李林家住在四楼,他从底楼到二楼要走20级楼梯,那么他从底楼到四楼要走几级楼梯?
5、根长30厘米的铁丝剪成6段,每剪一次要用2分钟,一共需要几分钟?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(间隔趣谈2)
例1学校门前的一条路长42米,从头到尾栽树,每7米栽一棵,一共能栽几棵树?
练习1 在一条长15米的水泥路上,从头开始每隔3米摆一盆花,一共摆了多少盆花?
练习2 平平在桌上摆小棒,每隔8厘米摆一根,到40厘米处可摆几根?
例2少先队员在路的两旁每隔5米栽一棵树,起点和终点都栽了,一共栽了72棵树,这条路长多少米?
练习1 少先队员在路的两旁每隔2米栽一棵树,起点和终点都栽,一共栽了42棵,这条路长多少米?
练习2 两根同样长的绳子上,每隔2米挂一个灯笼,起点和终点都挂,共挂了12个,每根绳子长多少米?
例3校门口的一条路长20米,路的两边从头到尾都栽树,每隔2米栽一棵,一共要栽多少棵?
练习1 一条路长100米,少先队员在路的两旁每隔5米栽一棵树,从头到尾一共要栽多少棵树?
练习2 一条路长200米,工人叔叔在路的两旁每隔10米竖一根电线杆,从头到尾一共要竖多少根电线杆?
综合练习
1、一条河堤40米,每隔4米栽一棵树,从头到尾一共要栽多少棵?
2、一条路长25米,少先队员在路的两旁栽树,起点终点都栽,一共栽了12棵树,每两棵树之间相隔多少米?
3、两幢楼之间相距10米,每隔2米种一棵树,一共种了几棵树?
4、在2根10米长的绳子上扎气球,从头开始每隔5米扎一个,一共扎了多少个气球?
5、一条路每隔2米有1根电线杆,连两端共有81根,这条路长多少米?
6、绿化小组在学校的过道两边摆放月季花,每隔1米摆一盆,一共摆了42盆,这条过道长多少米?。