应力-应变曲线

合集下载

真实应力-应变曲线

真实应力-应变曲线

§3.6 真实应力-应变曲线
应力-应变曲线反映变形体变形时应力随应变强化的规律。
初始屈服应力S
一般屈服应力( 流动应力S ,Y ) 真实应力:变形体内实际承受应力的大小。
影响流动应力的因素
材料属性, 温度, 应变, 应变速率
建立真实应力-应变曲线方法
拉伸试验,
压缩试验,
扭转试验
流动应力S 的公式表达形式
失稳点b,Fb = Fmax。
dF A0 edS Sed 0
dS Sd 0
dS
d
b
Sb
二、 压缩试验曲线
拉伸试验曲线:失稳,精确范围( < 0.3); 压缩试验曲线:摩擦(S ),精确范围( 2);
1、直接消除摩擦的圆柱体压缩法
S
P A
P A0e
ln H0
H
2、外推法 摩擦力影响和式样尺寸D0/H0 有关,根据不同的D0/H0 , 外推出D0/H0 = 0时的S,得到 真实应力-应变曲线。
1 1
Fd F(0)
1、拉伸图和条件应力-应变曲线
0
F A0
l
l0
b d
c
Fb= Fmax
Fp Fc
三个变形阶段:
ph
特征点:弹性极限点p,屈服点c,失稳点b,断裂点k。
?
k
Δl()
2、真实应力-应变曲线 用真实应力与应变表示的曲线。
S( ) ; S( ) ; S( )
2 2t
24
1 3 平面应变问题
2
3
1 2 2 2 3 2 3 1 2
2 3
6 1 1.1551
S 800 0.25
8001.151 0.25 443

应力 应变 曲线

应力 应变 曲线

应力应变曲线
应力-应变曲线描述了材料在受到外部力作用下的应力和应变之间的关系。

应力(stress)指的是材料在单位面积上受到的力的大小,通常以强度(N/m^2)作为单位。

应力-应变曲线的横轴通常表示材料的应变(strain),应变指的是材料在受到力后产生的形变程度,通常以长度的相对变化或者角度的相对变化表示。

应力-应变曲线通常可以分为四个阶段:
1. 弹性阶段(Elastic region):当材料受到小应力时,材料会表现出弹性行为,即应变与应力成正比。

在这个阶段,应力增加时材料会发生形变,但一旦外力消失,材料会恢复到原来的形状。

2. 屈服阶段(Yield Point):当材料受到足够大的应力时,材料会超过其弹性限度,开始发生可见的形变。

这个阶段的应力-应变曲线通常表现为一个明显的曲线,材料开始变得塑性。

3. 塑性阶段(Plastic region):在这个阶段,材料受到的应力继续增加,但应变的增加速度逐渐减慢。

材料开始发生不可逆的塑性变形。

4. 断裂阶段(Fracture point):当材料受到过大的应力时,材料会发生断裂,即完全失去其机械性能。

应力-应变曲线的形状和材料的性质,结构和处理方式等因素密切相关。

不同材料(如金属、塑料、陶瓷等)的应力-应变曲线会有所不同,也受到温度、湿度等环境条件的影响。

这在工程设计和材料选择中具有重要的意义,可以帮助工程师评估材料的强度、延展性、可塑性和抗断裂性等性能。

真应力-应变曲线介绍

真应力-应变曲线介绍

在应力-应变曲线中,应力是F除以试样的原始横截面积,应变是△L除以试样的标距L。

然而在拉伸过程中,试样原始截面逐渐变小,所以实际的应力应该是瞬时试验力F除以瞬时截面面积S。

而实际的真应变,则是瞬时伸长与瞬时长度之比的积分。

由此我们可以得到真应力-应变曲线。

真应力-应变曲线,横坐标为e,表示真实应变值,de=dl/l。

纵坐标为s,表示真应力,s=F/A。

其中F、A、l均表示瞬时值。

OP段仍为弹性变形部分。

PB段为产生颈缩前的均匀变形阶段,斜率D=ds/de为材料的形变强化模数,这个阶段的D随变形增加而减少。

BK段为局部变形阶段,试样开始发生颈缩。

BK前段部分,D为一常数,代表形变强化趋于稳定。

曲线最后发生翘曲,由于颈缩发展到一定程度之后,三向应力不利于变形造成的。

从真实应力-应变曲线可以看出,材料抵抗塑性变形的能力随应变增加而上升的,也就是发生加工硬化。

所以真实应力-应变曲线又称为硬化曲线。

应力应变曲线类型

应力应变曲线类型

应力-应变曲线是用来描述材料在受到外部力作用时,其应力和应变之间的关系的图形。

这些曲线可以用来了解材料的弹性和塑性行为,以及其破坏点等重要信息。

应力-应变曲线的类型可以分为几种常见的情况:
1. 弹性材料的应力-应变曲线:
-在弹性阶段,应力和应变成正比,遵循胡克定律。

-弹性材料在卸载后会完全恢复原始形状。

-典型的弹性曲线是线性上升的,没有明显的屈服点。

2. 塑性材料的应力-应变曲线:
-塑性材料在一定应力下会发生屈服,超过这一点后应变增加但应力基本稳定。

-塑性材料的曲线通常有明显的屈服点。

-塑性变形是不可逆的,材料在卸载后会有永久的变形。

3. 韧性材料的应力-应变曲线:
-韧性材料通常在屈服点之后继续延展,具有良好的抗断裂性能。

-曲线的下降部分较为缓和,表示能够吸收相对大的应变能量。

4. 脆性材料的应力-应变曲线:
-脆性材料通常在屈服点之后迅速断裂,没有明显的延展性。

-曲线的下降部分陡峭,表示应变能量较小,容易断裂。

应力-应变曲线的形状取决于材料的类型,因此不同的材料会具有不同的曲线类型。

这些曲线可以用来评估材料的性能、工程应用以及材料的破坏特性。

钢筋的应力—应变曲线分析

钢筋的应力—应变曲线分析

自开始加载至应力达到A点以前,应力应变成线性关系,A点称比例极限,OA段属于弹性工作阶段。

应力达到Bˊ点后,钢筋进入屈服阶段,产生很大的塑性形变,Bˊ点应力称为屈服强度(流限),在应力-应变曲线中呈现一水平段B〞B,称为流幅。

超过B点后,应力-应变关系重新表现为上升的曲线,B-C段为强化阶段。

曲线最高点C点的应力称为抗拉强度。

此后钢筋试件产生颈缩现象,应力应变关系成为下降曲线,应变继续增大,到D点钢筋被拉断。

D点所对应的横坐标称为伸长率,它标志钢筋的塑性。

伸长率越大,塑性越好。

钢筋塑性除用伸长率标志外,还用冷弯试验来检验。

冷弯就是把直径为D的钢辊转弯转α角而不发生裂纹。

钢筋塑性越好,钢辊直径D可越小,冷弯角α就越大。

屈服强度(流限)是软钢的主要强度指标。

在混凝土中的钢筋,当应力达到屈服强度后,荷载不增加,而应变会继续增大,使得混凝土开展过宽,构件变形过大,结构不能正常使用。

所以软钢钢筋的受拉强度限值以屈服强度为准,钢筋的强化阶段只作为一种安全储备考虑。

钢材中含碳量越高,屈服强度和抗拉强度就越高,伸长率就越小,流幅也相应缩短。

应力-应变曲线(重要知识)

应力-应变曲线(重要知识)

bt
o
σbt—拉伸强度极限(约为140MPa)。它是 衡量脆性材料(铸铁)重拉点辅伸导 的唯一强度指标。 13
二、压缩时的应力——应变曲线 1、试样及试验条件
§9-5
重点辅导
常 温 、 静 载
14
2、低碳钢压缩实验
(MPa) 400
低碳钢压缩 应力应变曲线
E(b)
C(s上)
f1(f)
低碳钢拉伸
服 阶 段 。 屈 服 阶 段 曲 线 最 低 点 所 对 应 的 应 力 s
称为屈服点(或屈服极限)。在屈服阶段卸载,将 出现不能消失的塑性变形。工程上一般不允许构 件发生塑性变形,并把塑性变形作为塑性材料破
坏的标志,所以屈服点 s是衡量材料强度的一
个重要指标。
重点辅导
9
(3)强化阶段 抗拉强度 b
b — 强度极限
4、局部径缩阶段ef
明显的四个阶段
1、弹性阶段ob E
P — 比例极限 e — 弹性极限
E tan
重点辅导
7
(1)弹性阶段 比例极限σp
oa段是直线,应力与应变在此段成正比关系,材
料符合虎克定律,直线oa的斜率 tan E 就是材
料的弹性模量,直线部分最高点所对应的应力值 记作σp,称为材料的比例极限。曲线超过a点,图 上ab段已不再是直线,说明材料已不符合虎克定 律。但在ab段内卸载,变形也随之消失,说明ab 段也发生弹性变形,所以ab段称为弹性阶段。b点 所对应的应力值记作σe ,称为材料的弹性极限。
曲线到达e点,在试件比较薄弱的某一局部(材
质不均匀或有缺陷处),变形显著增加,有效横
截面急剧减小,出现了缩颈现象,试件很快被
拉断,所以ef段称为缩颈断裂阶段。

应力-应变全曲线

应力-应变全曲线
对于不同原材料和强度等级的结构混凝土,甚至是约束混凝 土,选用了合适的参数值,都可以得到与试验结果相符的理论曲 线。过镇海等建议的参数值见表,可供结构分析和设计应用。
混凝土的受压应力-应变曲线方程是其最基本的本构关系, 又是多轴本构模型的基础。在钢筋混凝土结构的非线性分析中, 是不可或缺的物理方程,对计算结果的准确性起决定性作用。
1.3.1 试验方法
棱柱体抗压试验若应用普通液压式材料试验机加载,可获 得应力应变曲线的上升段。但试件在达到最大承载力后急速破 裂,量测不到有效的下降段曲线。
第1章 基本力学性能
1.1 材料组成和材性特点 1.2 抗压强度 1.3 受压应力—应变全曲线 1.4 抗拉强度和变形 1.5 抗剪强度和变形
1.3 受压应力-应变全曲线
混凝土受压应力-应变全曲线包括上升段和下降段,是其力 学性能的全面宏观反应:
◆曲线峰点处的最大应力即棱柱体抗压强度,相应的应变为峰值 应变εp ; ◆曲线的(割线或切线)斜率为其弹性(变形)模量,初始斜率 即初始弹性模量Ec ; ◆下降段表明其峰值应力后的残余强度;曲线的形状和曲线下的 面积反映了其塑性变形的能力,等等。
上升段理论曲线随参数αa的变化: αa>3,曲线局部y>1,
显然违背试验结果; 1.1<αa<1.5,曲线的初始
段(x<0.3)内有拐点,单 曲度不明显,在y≤0.5~0.6范 围内接近一直线;
αa<1.1,上升段曲线上 拐点明显,与混凝土材性不 符。
下降段曲线方程为: αd下降段参数
对参数取αa 和αd 赋予不等的数值,可得变化的理论曲线。
对于曲线的上升段和下降段,有的用统一方程,有的则 给出分段公式。其中比较简单、实用的曲线形式如图。
我国《规范》采用曲线方程为: 上升段曲线方程为:

金属材料应力-应变曲线

金属材料应力-应变曲线
坏的标志,所以屈服点 s是衡量材料强度的一
个重要指标。
• (3)强化阶段 抗拉强度 b
经过屈服阶段后,曲线从c点又开始逐渐上升,说
明要使应变增加,必须增加应力,材料又恢复了抵抗变 形的能力,这种现象称作强化,ce段称为强化阶段(加 工硬化)。曲线最高点所对应的应力值记作, 称为材
料个重的要抗指拉标强。度(或强度极限),b 它是衡量材料强度的又一
bt
o
σbt—拉伸强度极限(约为140MPa)。它是 衡量脆性材料(铸铁)拉伸的唯一强度指标。
二、压缩时的应力——应变曲线 1、试样及试验条件
常 温 、 静 载
§9-5
2、低碳钢压缩实验
(MPa) 400
低碳钢压缩 应力应变曲线
E(b)
C(s上)
f1(f)
低碳钢拉伸
g
(e) B
D(s下)
应力应变曲线
力学性质:在外力作用下材料在变形和破坏方面所 表现出的力学性能
一、拉伸时的应力——应变曲线




验 条 件
常 温 、


1、 试件
(1)材料类型:
低碳钢: 塑性材料的典型代表; 灰铸铁: 脆性材料的典型代表;
标距
L0
(2)标准试件:
d0
标点
尺寸符合国标的试件;
2.标用标距于准:测试试件的:等截面部分长度;
(4)缩颈断裂阶段
曲线到达e点前,试件的变形是均匀发生的, 曲线到达e点,在试件比较薄弱的某一局部(材 质不均匀或有缺陷处),变形显著增加,有效横 截面急剧减小,出现了缩颈现象,试件很快被 拉断,所以ef段称为缩颈断裂阶段。
4.塑性指标 试件拉断后,弹性变形消失,但塑性变形仍保 留标。常用的塑性指标有两个:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应力-应变曲线(stress-strain curves)
根据圆柱试件静力拉伸试验所得拉伸图(图a),对曲线上各对应点用试件原始尺寸除拉伸力与绝对伸长所得出的应力与延伸率的关系曲线(图6)。

应力一应变曲线是金属塑性加工工作中最重要的参考资料之一。

应力及应变值按下式计算:
式中σ
i 表示拉伸图上任意点的应力值,δ
i
为i点的延伸率,P
i
及Δl
i
为该
点的拉力与绝对伸长值,F
0及l
为试件的断面积和计算长度。

试件受拉伸时,先产生弹性变形,这时应力应变成比例,当出现二者不能保
持线性关系的点时,表示材料已屈服而将发生塑性变形,这时的应力定义为屈服应力或流变应力,用σ
s
表示,其求法见屈服点。

拉伸时当试件计算长度上的均匀变形阶段结束而产生细颈时,变形将集中在
细颈部分。

出现细颈前材料所能承受的应力名为强度极限或抗拉强度,用σ
b
表示
σ
b =P
max
/F
式中P
max
为拉伸图上所记录的最大载荷值。

试件出现细颈后很快即断裂,断裂应力σ
f
σ
f =P
f
/T
f
式中P
f 是断裂时的拉力,F
f
是断口面积。

试件拉断时的延伸率δ
f
(%)或断面收缩率ψ(%)是表示材料可承受最大塑性变形能力的指标:
矾一牮×100(4)£fPf=盐≯×100(5)』’0式中厶和Ff是将断开的试件对合后测定的试件长度和断口处的面积。

抗拉强度靠及延伸率d或断面收缩率妒是材料性能的两个基本指标,在工程上有着广泛的应用。

屈服应力民(或乱:)是金属塑性加工时变形体开始产生塑性变形所必需的最小应力,它是计算变形力的一个重要参数。

应力-应变曲线表征材料受外力作用时的行为。

材料受力后即发生弹性变形,这时应力应变呈简单的线性关系,继续增加作用力至一定大小后材料将出现塑性变形,以后变形与应力的关系复杂,当塑性变形至一定程度以后,试件破断则变
形过程终结。

所以任何变形过程均包括弹性变形、塑性变形及破断3个典型阶段。

金属的塑性加工过程处于弹性变形与破断二者之间。

首先要创造一定的应力状态条件使金属能发生塑性变形,其次是安排一个使塑性变形尽可能大又不致发生破坏的热力学条件。

相关文档
最新文档