八年级上册数学公式定理

合集下载

数学公式定律大全

数学公式定律大全

数学公式定律大全1、定理:加法交换律两边加上相同的数都会得到同样的结果,即a+b=b+a2、定理:乘法交换律两边乘以相同的数也会得到同样的结果,即a*b=b*a3、定理:乘法分配律乘法可以分配给加法,即a*(b+c)=a*b+a*c4、定理:乘法结合律加法可以结合乘法,即a*(b*c)=(a*b)*c5、定理:乘方律数的平方等于这个数乘以它本身,即a^2=a*a6、定理:乘方公式三个数的乘方相加等于这三个数乘以它们的积,即a^3+b^3+c^3=(a*b*c)^37、定理:算术和的计算公式一个有n项的等差数列和可表示为 Sn = n * (a1 + an) / 28、定理:算术积的计算公式一个有n项的等差数列的积可表示为 Pn = (an - a1) * (a2 - a1) * (a3 - a1) *…* (an - an - 1)9、定理:立方和公式一个有n项的立方数列和可表示为 Sn = n * (a1^3 + an^3) / 210、定理:立方积公式一个有n项的立方数列的积可表示为 Pn = (an - a1)^3 * (a2 - a1)^3 * (a3 - a1)^3 *…* (an - an - 1)^311、定理:平方差公式设a1,a2,a3,…,an为n个数,则它们的平方差为:A2 = (a1 -a2)^2 + (a2 - a3)^2 + …+ (an - an - 1)^212、定理:立方差公式设a1,a2,a3,…,an为n个数,则它们的立方差为:A2 = (a1 -a2)^3 + (a2 - a3)^3 + … + (an - an - 1)^313、定理:二次根式定理一元二次方程的一般解为:ax^2 + bx + c = 0,其中a≠0。

八年级数学复习必背几何定理定义公式

八年级数学复习必背几何定理定义公式

在八年级数学中,几何定理和定义是学习几何学的基础。

掌握这些定理和定义对解决几何问题至关重要。

下面是八年级数学复习必背的几何定理、定义和公式,供你参考。

一、几何定义1.点:表示位置,没有大小和方向。

2.直线:由无数个点连成的路径,有长度但无宽度和厚度。

任意两点确定一条直线,两条直线的交点是一个点。

3.线段:由两个点和它们之间的路径组成,有长度,有起点和终点。

4.射线:有一个起点,由这个起点出发,沿着相同的方向延伸出去。

射线上的点有无数个,其中一个是起点。

5.角:由两条射线共同点和与这两条射线相交但不在同一条线上的两个点组成。

我们用∠ABC表示角ABC,其中A是角的顶点,B、C分别是角的两边。

6.角分类:锐角(小于90°)、直角(等于90°)、钝角(大于90°)。

7.平行线:在同一个平面内,方向相同或者重合的直线。

8.垂直线:互不平行,且相交90°形成的线。

二、几何定理1.垂直线段定理:如果两条线段互相垂直,则它们的乘积等于两条线段的连线上的线段的乘积。

2.垂直线定理:如果两条线段互相垂直,则它们的斜率的乘积等于-13.同位角定理:如果两条平行线被一条截线所交,那么同位角是相等的。

4.内错角定理:如果两条平行线被一条截线所交,那么内错角互为补角。

5.三角形内角和定理:一个三角形的内角的和等于180°。

6.三角形外角定理:三角形的一个外角等于它对应的两个内角的和。

7.等腰三角形定理:等腰三角形的两底角相等,等腰三角形的两腰边相等。

8.相似三角形定理:如果两个三角形的对应角度相等,那么它们是相似的。

9.相似三角形比例定理:两个相似三角形的任意两条对应边的比值相等。

10.直角三角形勾股定理:直角三角形斜边的平方等于两个直角边平方的和。

11.正方形性质:四边相等,对角线相等且垂直,对边平行且垂直,对角线平分角。

12.等边三角形性质:三边相等,三个内角都是60°,三角形的高、中线和垂心重合。

数学八年级上册知识点第一章

数学八年级上册知识点第一章

数学八年级上册知识点第一章数学八年级上册知识点第一章1.勾股定理的内容:如果直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。

注:勾最短的边、股较长的直角边、弦斜边。

勾股定理又叫毕达哥拉斯定理2.勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

3.勾股数:满足a2 +b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。

4.勾股定理常常用来算线段长度,对于初中阶段的线段的计算起到很大的作用例题精讲:练习:例1:若一个直角三角形三边的.长分别是三个连续的自然数,则这个三角形的周长为解析:可知三边长度为3,4,5,因此周长为12(变式)一个直角三角形的三边为三个连续偶数,则它的三边长分别为解析:可知三边长度为6,8,10,则周长为24例2:已知直角三角形的两边长分别为3、4,求第三边长.解析:第一种情况:当直角边为3和4时,则斜边为5第二种情况:当斜边长度为4时,一条直角边为3,则另一边为根号7例3:一个直角三角形中,两直角边长分别为3和4,以下说法正确的是( )A.斜边长为25B.三角形周长为25C.斜边长为5D.三角形面积为20解析:根据勾股定理,可知斜边长度为5,选择C数学学习方法诀窍1细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。

例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式〞。

二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。

这样就不能很好的将学到的知识点与解题联系起来。

三是,一部分同学不重视对数学公式的记忆。

记忆是理解的基础。

如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

八年级上册数学公式法

八年级上册数学公式法

八年级上册数学公式法
1.勾股定理:直角三角形中,直角边的平方和等于斜边的平方。

公式:$a^2 + b^2 = c^2$
其中,$a$ 和 $b$ 是直角三角形的两条直角边,$c$ 是斜边。

2.平方差公式:$(a+b)(a-b) = a^2 - b^2$
用于计算两个数的平方差。

3.完全平方公式:$(a+b)^2 = a^2 + 2ab + b^2$ 和$(a-b)^2 = a^2 -
2ab + b^2$
用于计算一个数的平方,加上或减去两倍的该数与另一数的乘积,再加或减另一数的平方。

4.二次根式的乘法法则:$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ (其中$a
\geq 0, b \geq 0$)
用于计算两个非负数的平方根的乘积。

5.二次根式的除法法则:$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$ (其
中 $a \geq 0, b > 0$)
用于计算一个非负数的平方根除以另一个非负数的平方根。

6.分式的乘法法则:$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$
用于计算两个分式的乘积。

7.分式的除法法则:$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times
\frac{d}{c} = \frac{ad}{bc}$
用于计算一个分式除以另一个分式。

初中数学必背公式及定理

初中数学必背公式及定理

初中数学必背公式及定理数学是一门重要的学科,也是一门需要掌握公式和定理的学科。

初中数学中的公式和定理是学习数学的基础,掌握了这些公式和定理,能够更好地解题和理解数学知识。

下面是初中数学必背的公式和定理。

一、代数中的公式1. 二次方程的求根公式:对于一元二次方程ax²+bx+c=0,其根可以通过以下公式求得:x = (-b ± √(b²-4ac))/(2a)2. 平方差公式:(a±b)² = a²±2ab+b²3. 二次完全平方公式:a²+2ab+b²=(a+b)²4. 立方差公式:(a±b)³=a³±3a²b+3ab²±b³5.平方根的乘法公式:√a*√b=√(a*b)二、几何中的公式1.矩形的周长和面积:对于矩形,其周长C=2(l+w),面积S=l*w,其中l表示矩形的长度,w表示矩形的宽度。

2.三角形的周长和面积:对于三角形,其周长C=a+b+c,面积S=1/2*b*h,其中a、b、c表示三角形的三边长,h表示三角形的高。

3.圆的周长和面积:对于圆,其周长C=2πr,面积S=πr²,其中π取近似值3.14,r表示圆的半径。

4.直角三角形的勾股定理:对于直角三角形,设c为斜边,a、b为两直角边,则满足a²+b²=c²。

5.同心圆弦的等分定理:如果两条弦(或弦和直径)在同一个圆的同一边相交,那么它们所夹的弧(或弧和弦所夹的角)相等。

三、概率与统计中的公式1.事件的概率:设S为一个随机试验的样本空间,E为S的子集(即事件),则事件E的概率P(E)定义为E中的样本点数除以S中的样本点数。

2.互斥事件的概率:设A、B为两个事件,如果A和B不可能同时发生,称A和B为互斥事件,概率计算公式为P(A∪B)=P(A)+P(B)。

八年级上册数学公式大全总结

八年级上册数学公式大全总结

八年级上册数学公式大全总结八年级上册数学公式大全的总结如下:
1.平均数的计算公式:
平均数=总和/个数
2.百分数的计算公式:
百分数= (部分/总数) × 100%
3.百分数的四则运算公式:
a.加法:百分数+百分数= (百分数1 +百分数2)%
b.减法:百分数-百分数= (百分数1 -百分数2)%
c.乘法:百分数×数值=数值× (百分数/ 100%)
d.除法:百分数÷数值= (百分数/数值) × 100%
4.百分数与小数的转换公式:
a.百分数转小数:将百分数除以100%
b.小数转百分数:将小数乘以100%
5.比例的计算公式:
a.已知比例的两个值,求第三个值:已知比例的两个值之间的比值=第三个值与其中一个已知值之间的比值
b.比例的倒数:如果a:b是一个比例,那么b:a也是一个比例,且倒数关系成立
6.面积计算公式:
a.矩形的面积:面积=长×宽
b.正方形的面积:面积=边长×边长
c.三角形的面积:面积=底边×高/ 2
d.平行四边形的面积:面积=底边×高
7.体积计算公式:
a.立方体的体积:体积=边长×边长×边长
b.直方体的体积:体积=长×宽×高
以上是八年级上册数学公式的基本总结。

此外,还有许多其他的数学公式,如勾股定理、正弦定理、余弦定理等,在八年级上册可能还未涉及。

这些公式在高中数学等学科中将会更深入地学习,同时也需要用到更多的数学知识和技巧来应用和证明。

八年级数学公式总结大全

八年级数学公式总结大全

八年级数学公式总结大全八年级上册数学公式法总结二次函数抛物线顶点式&顶点坐标顶点式:y=a(x-h) +k(a≠0,k为常数,x≠h)顶点坐标公式顶点坐标:(-b/2a),(4ac-b )/4a)二次函数y=ax2;,y=a(x-h)2;,y=a(x-h)2;+k,y=ax2;+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:解析式y=ax2y=a(x-h)2y=a(x-h)2+ky=ax2+bx+c顶点坐标[0,0][h,0][h,k][-b/2a,(4ac-b2)/4a]对称轴x=0x=hx=hx=-b/2a当h>0时,y=a(x-h)2的图象可由抛物线y=ax2;向右平行移动h个单位得到,当h0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k 的图象;当h>0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h0时,开口向上”当a0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x2-x1|=.当△=0.图象与x轴只有一个交点;当△0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a0(a0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c__h 斜棱柱侧面积 S=c’__h正棱锥侧面积 S=1/2c__h’正棱台侧面积 S=1/2(c+c’)h’圆台侧面积 S=1/2(c+c’)l=pi(R+r)l 球的表面积 S=4pi__r2圆柱侧面积 S=c__h=2pi__h 圆锥侧面积 S=1/2__c__l=pi__r__l弧长公式 l=a__r a是圆心角的弧度数r >0 扇形面积公式 s=1/2__l__r 锥体体积公式 V=1/3__S__H 圆锥体体积公式 V=1/3__pi__r2h斜棱柱体积 V=S’L 注:其中,S’是直截面面积, L是侧棱长柱体体积公式 V=s__h 圆柱体 V=pi__r2h初中八年级数学所有公式1、点线之间的关系①过一点有且只有一条直线和已知直线垂直②直线外一点与直线上各点连接的所有线段中,垂线段最短2、平行定理与公理①经过直线外一点,有且只有一条直线与这条直线平行②如果两条直线都和第三条直线平行,这两条直线也互相平行③同位角相等,两直线平行④内错角相等,两直线平行⑤同旁内角互补,两直线平行3、三角形内角和定理与四边形内角和定理三角形三个内角的和等于180°,四边形的外角和等于360°4、平行四边形、矩形、菱形、正方形和等腰梯形的判定定理与性质定理①平行四边形判定定理1两组对角分别相等的四边形是平行四边形②平行四边形判定定理2两组对边分别相等的四边形是平行四边形③平行四边形判定定理3对角线互相平分的四边形是平行四边形④平行四边形判定定理4一组对边平行相等的四边形是平行四边形⑤矩形性质定理1矩形的四个角都是直角⑥矩形性质定理2矩形的对角线相等⑦矩形判定定理1有三个角是直角的四边形是矩形⑧矩形判定定理2对角线相等的平行四边形是矩形⑨菱形性质定理1菱形的四条边都相等⑩菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角……5、圆的一些定理与推论①圆的两条平行弦所夹的弧相等②在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等③在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都相等④一条弧所对的圆周角等于它所对的圆心角的一半⑤同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等⑥半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径⑦如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形⑧圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角6、直线与圆的位置关系①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r7、两圆之间的位置关系①两圆外离d﹥R+r②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)。

八年级上册数学公式定理知识点

八年级上册数学公式定理知识点

八年级上册数学公式定理知识点数学公式定理知识点数学是一门基础性学科,它是各个领域中必备的基础知识。

数学公式和定理是数学学习的重要内容,正确使用它们可以有效提升数学学习和应用的能力。

在本文中,我们将带领大家探讨八年级上册数学公式定理知识点。

一、点、线、面的关系1.点、线、面的概念:点是没有长度、宽度和高度的,只有位置的事物;线没有宽度,只有长度的事物;面是有长、宽的在平面上被限定的空间。

2.点、线、面的分类:根据点的位置关系,点可分为相交、重合、异面、非异面;线可分为平行、垂直、夹角、角平分线;面可分为相交、平行、垂直、三角形。

3.点、线、面的运用:在几何问题中,点、线、面的位置关系非常重要。

可以通过绘制图形,找出关键点、线、面,并进行综合运用,解决各种几何问题。

二、平行线及其性质1.平行线的定义:在同一平面内,不相交的两条直线,它们的方向相同,永不相交,被称为平行线。

2.平行线的判定:可以通过角度、重心、斜率、向量等多种方法进行判定。

3.平行线的性质:(1)平行线截向之间相等。

(2)平行线内角和为180°。

(3)平行线与横线或竖线所截的角相等。

(4)在平行线上,同旁内角相等,同旁外角互补。

三、等腰三角形及其性质1.等腰三角形的定义:两边相等的三角形称为等腰三角形。

2.等腰三角形的性质:(1)等腰三角形的底角相等。

(2)等腰三角形的底边中点与顶点连线为高线,高线也是中线和角平分线。

(3)等腰三角形的高线、中线和角平分线互相重合。

四、相似三角形及其性质1.相似三角形的定义:如果两个三角形的相应角度相等,那么这两个三角形就是相似三角形。

2.相似三角形的性质:(1)相似三角形的相应边比相等。

(2)相似三角形的对应角度相等。

(3)如果两个三角形相似,那么它们的高、中线、角平分线比相等。

五、勾股定理及其应用1.勾股定理的定义:如果一个三角形中,直角的两条直角边的长度分别为a、b,斜边的长度为c,则有a² + b² = c²。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学公式定理
1.全等形定义:能够完全重合的两个图形叫做全等形。

2.把两个全等的图形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

3.全等三角形的性质:
(1)全等三角形的对应边相等。

(2)全等三角形的对应角相等。

4.三角形全等的判定:
(1)三边对应相等的两个三角形全等。

(可以简写成“边边边”或“SSS”)
(2)两边和它们的夹角对应相等的两个三角形全等。

(可以简写成“边角边”或“SAS”)(3)两角和它们的夹边对应相等的两个三角形全等。

(可以简写成“角边角”或“ASA”)(4)两个角和其中一个角的对边对应相等的两个三角形全等。

(可以简写成“角角边”或“AAS”)5.直角三角形全等的判定:斜边和一条直角边对应相等的两个三角形全等。

(可以简写成“斜边直角边”或“HL”)
6.角平分线的性质:角的平分线上的点到角的两边的距离相等。

7.角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上。

8.轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。

9.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

10.垂直平分线的定义:经过线段中点而且垂直于这条线段的直线,叫做这条线段的垂直平分线。

11.线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。

12.线段垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

13.点(x,y)关于x轴对称的点的坐标为(x,-y)。

点()关于y轴对称的点的坐标为(-x,y)。

14.等腰三角形的性质:
(1)等腰三角形的两个底角相等(简写成“等边对等角”)。

(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

15.等腰三角形的判定:
(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)。

(2)如果一个三角形一边上的高线和该边上的中线重合,那么这个三角形是等腰三角形。

(3)如果一个三角形一边上的高线和所对的角平分线重合,那么这个三角形是等腰三角形。

(4)如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。

16.等边三角形的定义:三条边都相等的三角形叫做等边三角形。

17.等边三角形的性质:
(1)等边三角形的三条边都相等。

(2)等边三角形的三个内角都相等,而且每一个角都等于60°。

18.等边三角形的判定:
(1)三条边都相等的三角形是等边三角形。

(2)三个角都相等的三角形是等边三角形。

(3)有一个角是60°的等腰三角形是等边三角形。

19.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

相关文档
最新文档