初中数学公式、定理大全

合集下载

初中数学公式定理大全(高清完整版)

初中数学公式定理大全(高清完整版)

初中数学公式定理大全(高清完整版)一、初中数学运算符号1. 加法符号:+2. 减法符号:-3. 乘法符号:x 或×4. 除法符号:÷ 或 /5. 相等符号:=6. 不等符号:≠7. 大于符号:>8. 小于符号:<9. 大于等于符号:≥10. 小于等于符号:≤11. 百分号:%二、初中数学常用公式1. 一元一次方程:ax + b = c2. 二元一次方程组:{ a1x + b1y = c1{ a2x + b2y = c23. 一元二次方程:ax² + bx + c = 04. 解一元二次方程的公式:x = [-b ± √(b²– 4ac)] / 2a5. 等差数列通项公式:an = a1 + (n - 1)d6. 等差数列求和公式:Sn = [n(a1 + an)] / 27. 等比数列通项公式:an = a1 * q^(n - 1)8. 等比数列求和公式(首项为a1,公比为q,共有n 项):Sn = a1(1 - q^n) / (1 - q)9. 相邻角互补:两个角互补,当它们的和为90度时。

10. 相邻角补角:两个角补角,当它们的和为180度时。

11. 直角三角形勾股定理:a² + b² = c²三、初中数学定理1. 同位角定理:若两条直线被一条第三条直线所截,那么同位角相等。

2. 平行线定理:如果两条直线被一条横线所截,使内侧的交角互补,则这两条直线平行。

3. 外角定理:凸多边形的任意一个外角,等于它所对的内角的和。

4. 内角和定理:凸多边形n边的内角和为(n-2)×180度。

5. 等腰三角形底角定理:等腰三角形的底角相等。

6. 直角三角形定理:直角三角形中,斜边的长度等于底边和高的平方和的平方根。

7. 正比例定理:如果a与b成正比例,那么a/b = k,k 为常数。

8. 反比例定理:如果a与b成反比例,那么a×b=k,k 为常数。

初中数学定理公式定律大全

初中数学定理公式定律大全

初中数学定理公式定律大全1.代数定理-同号两数相乘为正,异号两数相乘为负。

-分配率:a×(b+c)=a×b+a×c。

-同底数幂相除,指数相减:(a^m)÷(a^n)=a^(m-n)。

-幂的乘法:(a^m)×(a^n)=a^(m+n)。

2.平方根公式-设a≥0,则√a×√a=a。

-若a≥0,则√(a^2)=a。

3.线性方程- 设a ≠ 0,方程 ax + b = 0 的解是 x = -b/a。

- 形如 ax + b = cx + d 的一次方程,有唯一解 x = (d - b)/(a -c)。

4.角度定理-外角和定理:一个三角形的外角等于它的两个不相邻内角的和。

-三角形内角和定理:一个三角形的内角之和等于180°。

-同位角定理:如果两条直线被一条截线分成两个内交角和两个外交角,则这两个内交角互为同位角,两个外交角互为同位角。

5.平行线和三角形定理-同位角、内错角定理:当两条直线被一条截线分成两个内交角和两个外交角时,同位角相等,内错角相等。

-平行线截割定理:当两条平行线被一条截线截断时,同位角相等,内错角相等。

-三角形内角和定理:一个三角形的内角之和等于180°。

-等腰三角形定理:两边相等的三角形中,两个对应的内角也相等。

6.几何定理-直角三角形定理:一个三角形中,如果一些角是直角,则它是直角三角形。

-直角边定理:在直角三角形中,斜边的平方等于各直角边的平方和。

-勾股定理:在直角三角形中,斜边的平方等于两个直角边的平方和。

-相似三角形定理:如果两个三角形的对应角相等,则这两个三角形相似。

-正方形的对角线垂直定理:正方形的对角线互相垂直且相等。

7.百分数与比例-百分数换分数:将百分数转化为分数,百分数除以100即可得到对应的分数。

-百分数的四则运算:百分数的加减乘除运算,先转化为分数进行计算,最后再转化为百分数。

-比例:设a:b=c:d,称a和b为比例的两个项,c和d为比例的两个对应项。

初中数学公式定理大全

初中数学公式定理大全

初中数学公式定理大全
一、比例
1、比例定义:两个量的比值称为比例。

2、反比例定理:如果两个数中,一个数的倒数与另一个数成正比,则称这两个数成反比。

3、比例的乘法定理:如果两个比例的乘积等于1,则称这两个比例互相等数。

4、比例的加法定理:若两个比例的和为1,则称这两个比例是相等数。

5、三比例定理:若有三个比例a:b:c,他们的和为1,那么
a+b:b+c:c+a=1
二、平行线定理
1、平行线定义:两条直线不相交,且均与同一平行线相平行,则称这两条直线相平行。

2、平行线分割叉定理:若有两条平行线与另一直线相交,则这两条射线所成的四边形的面积是相等的。

3、垂直平分线定理:若有一条直线与另一条直线相垂直,则这二条直线的中垂线所成的四边形的面积是相等的。

4、向量平分定理:若有两条向量,它们的和所成的新向量与该向量成反比,则称这两条向量相平分。

三、三角形定理
1、三角形定义:三点不共线时,连接这三点构成的图形称为三角形。

2、勾股定理:在直角三角形中,斜边的平方等于两条直角边的平方和。

3、相似三角形定理:若两个三角形的各边按比例相等,则称这两个
三角形是相似的。

4、三角形的中线定理:在直角三角形中。

(完整版)初中数学公式定理大全

(完整版)初中数学公式定理大全

初中数学公式定理大全一、锐角三角函数:①∠A 是Rt △ABC 的任一锐角,则∠A 的正弦:,∠A的余弦:,sin A =∠A 的对边斜边cos A =∠A 的邻边斜边∠A 的正切:; 并且sin 2A +cos 2A =1. 0<sin A <1,0<cos A <1,tan A >0.tan A =∠A 的对边∠A 的邻边∠A 越大,∠A 的正弦和正切值越大,余弦值反而越小.②余角公式:sin(90º-A )=cos A ,cos(90º-A )=sin A .③斜坡的坡度:i =.设坡角为α,则i =tan α=.铅垂高度水平宽度=ℎl ℎl ④特殊角的三角函数值:a sina cosa tana cota 30°123233345°22221160°321233390°1不二、二次函数:1.定义:一般地,如果,那么y 叫做x 的二次函数.y =ax 2+bx +c(a,b,c 是常数,a ≠0)2.抛物线的三要素:开口方向、对称轴、顶点.①的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、a a >0a <0|a |形状相同。

②平行于y 轴(或重合)的直线记作特别地,y 轴记作直线。

x =ℎ,x =0几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标Y=ax 2X=0(y 轴)(0,0)Y=ax 2+k X=0(y 轴)(0, k)Y=a(x-h)2X=h (h,0)Y=a(x-h)2+k X=h (h,k)Y=ax 2+bx+c当a 时>0开口向上当a 时<0开口向下X=‒b2a()‒b 2a ,4ac ‒b 24a 3.求抛物线的顶点、对称轴的方法 (1)公式法:,∴顶点是,对称轴是直线y =ax 2+bx +c =a (x +b 2a )2+4ac ‒b 24a (‒b2a, 4ac ‒b 24a )x =‒b 2a(2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(h,k),对称轴是直y =a (x ‒ℎ)2+k 线x =ℎ(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。

初中数学常用公式和定理大全

初中数学常用公式和定理大全

初中数学常用公式和定理大全
一、一元二次方程公式
一元二次方程的解一般式:
$$ax^2+bx+c=0$$
解为: $$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
其中,a、b、c都是实数,且a≠0
二、立方根公式
定理:任意一个非负数都可以表示为三个整数立方根之和的形式也就是:$$a=x^3+y^3+z^3$$
其中,x,y,z都是整数
三、勾股定理
定理:在直角三角形中,斜边的平方等于两个直角边的平方和
也就是:
$$c^2=a^2+b^2$$
其中,a、b、c分别表示直角三角形的三边
四、三角函数公式
正弦定理:
在任意直角三角形中,有
$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$$
其中,a、b、c分别是直角三角形的三边,A、B、C是其对应的角,R
是三角形的外接圆半径。

余弦定理:
在任意直角三角形中,有
$$a^2=b^2 + c^2 -2bc\cos A $$
$$b^2=a^2 + c^2 -2ac\cos B $$
$$c^2=a^2 + b^2 -2ab\cos C $$
其中,a、b、c分别表示直角三角形的三边,A、B、C分别表示其对
应的角。

五、椭圆面积公式
定理:椭圆的面积可以用下面公式计算:
$$S=\pi ab$$
其中,a和b分别表示椭圆的长半轴和短半轴的长度,π表示圆周率。

(完整版)初中数学公式、定理大全

(完整版)初中数学公式、定理大全
互相重合(三线合一) 3、等边三角形的各角都相等,并且每一个角都等于 60° 1、 全等三角形的对应边相等、对应角相等 2、 全等三角形的周长相等、面积相等
1、 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比
2、 相似三角形对应角相等、对应边成比例 3、 相似三角形周长的比等于相似比 4、 相似三角形面积的比等于相似比的平方 5、 相似多边形周长的比等于相似比 6、 相似多边形面积的比等于相似比的平方 7、 相似多边形对应角相等、对应边成比例
a c ad bc
2、 b d
bd 。
a c ac 3、 b d bd .
m
a
am
5、 b
bm
a c ad 4、 b d bc
A
6、 B
AC ,A = A C ( A,B,C 为整式,且 B 、C≠0)
BC B B C
a aa
7、 b b
b
1、几组勾股数(不含扩大同一倍数的) :
3、4、 5;
5、12、13; 7、24、25; 8、 15、 17。
章节 线 平行线 角 图形对称 三角形
直角三角形 等腰三角形 全等三角形
相似三角形
比例线段
性质 1、过两点有且只有一条直线。 2、两点之间线段最短。 3、过一点有且只有一条直线和已知直线垂直。 4、直线外一点与直线上任意点连接的线段中,垂线段最短 5、线段垂直平分线上的点到这条线段两个端点的距离相等 1、平行公理 经过直线外一点, 有且只有一条直线与这条直
,并且被对称中心平分 1、 定理 三角形两边的和大于第三边 2、 推论 三角形两边的差小于第三边 3、 直角三角形的两个锐角互余 4、 三角形的一个外角等于和它不相邻的两个内角的和 5、 三角形的一个外角大于任何一个和它不相邻的内角 6、 经过三角形一边的中点与另一边平行的直线, 必平分第

初中数学公式定理大全

初中数学公式定理大全

初中数学公式定理大全1.代数公式- 两个数的乘积等于它们的积:ab = ba- 两个数乘积的倒数等于它们的倒数的乘积:(ab)^-1 = a^-1 * b^-1- 两个数的平方和等于它们的平方和的两倍加上它们的积:(a + b)^2 = a^2 + 2ab + b^2- 两个数的平方差等于它们的平方差的两倍减去它们的积:(a -b)^2 = a^2 - 2ab + b^22.平面几何定理- 锐角三角形的三条边的平方之和等于两倍的三个角的余弦值之和:a^2 + b^2 + c^2 = 2(abcosC + bccosA + cacosB)-三角形内角和定理:三角形的三个内角的和等于180度:A+B+C=180度-等腰三角形底角定理:等腰三角形的底角等于顶角的一半:A=B/2 -相似三角形的对应边成比例:a/b=c/d3.空间几何定理-空间直角三角形的斜边的平方等于两个直角边的平方的和:c^2=a^2+b^2-空间三角形内角和定理:空间三角形的三个内角的和等于180度:A+B+C=180度-垂直平分线定理:平面内相交的两条直线的垂直平分线互相垂直4.数列与数学归纳法-等差数列的通项公式:an = a1 + (n - 1)d-等差数列的前n项和公式:Sn = (n/2)(a1 + an)-等比数列的通项公式:an = a1 * r^(n - 1)-等比数列的前n项和公式(当r不等于1时):Sn=a1*(1-r^n)/(1-r) -数学归纳法:若数学命题在数的一部分上成立且下一部分数的成立是依赖于上一部分数的成立,则该数学命题在全体正整数上成立5.概率-事件的概率:P(A)=n(A)/n(S),其中n(A)表示事件A中的有利结果数,n(S)表示样本空间中的总结果数-互斥事件的概率和:P(A+B)=P(A)+P(B),其中A和B是互斥事件- 事件的相对频率概率:P(A) = lim(n(A) / n),其中n表示试验次数6.函数- 一次函数的解析式:y = kx + b,其中k表示斜率,b表示截距- 二次函数的解析式:y = ax^2 + bx + c,其中a表示二次项系数,b表示一次项系数,c表示常数项这只是初中数学常用的一些公式和定理的简要介绍,数学含有广泛且深奥的知识。

初中数学公式定理大全

初中数学公式定理大全

初中数学公式定理大全一、数的除法原则1.互除性:若a能整除b,b能整除c,那么a必然能整除c。

2.整除原理:给定两个整数a和b,如果a整除b且b整除c,则a 整除c。

二、运算定律1.加法和减法法则:(a+b)+c=a+(b+c)(加法结合律)a+b=b+a(加法交换律)a+0=0+a=a(加零律)a+(-a)=0(加法逆元)(a-b)-c=a-(b+c)(减法结合律)a-b≠b-a(减法不可交换)a-0=a(减零律)a-a=0(减法逆元)2.乘法法则:(a*b)*c=a*(b*c)(乘法结合律)a*b=b*a(乘法交换律)a*1=1*a=a(乘一律)a*0=0*a=0(乘零律)a*(b+c)=a*b+a*c(分配律)(a-b)*c=a*c-b*c(差的积)3.除法法则:a÷b=c且b≠0,那么a=b*c(乘法的逆运算)三、阿基米德原理阿基米德原理(也被称为浮力原理)表明任何浸没在液体中的物体所受到的浮力等于所排开的液体的重量,即Fb=ρVg,其中Fb为浮力,ρ为液体密度,V为液体中排开的体积,g为重力加速度。

四、平均数定理给定n个数a₁,a₂,...,aₙ,则它们的平均值为(a₁+a₂+...+aₙ)/n。

五、百分比和比例定理1.百分比定理:百分比指的是以100为基数进行计算的比例。

若a是一个数的百分之b,则a=b/100。

2.百分比的四则运算:a%=a/100a%+b%=(a+b)%(两个百分数的和)a%-b%=(a-b)%(两个百分数之差)a%×b%=(a×b)/100%(百分数的乘积)a%÷b%=(a/b)%(百分数的商)六、勾股定理在直角三角形中,设直角边分别为a和b,斜边为c,则有a²+b²=c²。

七、乘除法的分配律对于任意三个数a、b、c,有以下分配律成立:a×(b+c)=a×b+a×c(乘法对加法分配律)a×(b-c)=a×b-a×c(乘法对减法分配律)a÷(b+c)=a÷b+a÷c(除法对加法分配律)a÷(b-c)≠a÷b-a÷c(除法不可对减法分配律)八、线段分割定理线段分割定理也称为比例分割定理,对于线段AB上的一点M,有以下公式成立:AM/MB=AN/NB(如果N是另一个分割点)九、角的性质1.锐角:小于90°的角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、四边都相等的四边形是菱形
2、对角线互相垂直的平行四边形是菱形
正方形
1、正方形的四个角都是直角,四条边都相等
2、正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
1、有一个直角的菱形是正方形
2、对角线互相垂直平分且相等的四边形是正方形
正多边形
1、任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
6、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
比例线段
1、平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
2、两条直线被三条平行线所截,所得的线段对应成比例
梯形
1、等腰梯形在同一底上的两个角相等
2、等腰梯形的两条对角线相等
3、经过梯形一腰的中点与底平行的直线,必平分另一腰
全等三角形
1、全等三角形的对应边相等、对应角相等
2、全等三角形的周长相等、面积相等
1、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
2、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
3、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
4、边边边公理(SSS) 有三边对应相等的两个三角形全等
5、常用公式:
二次函数
1、一般式: y=ax2+bx+c(a≠0),其对应的顶点坐标: , 对称轴:
2、顶点式:y=a(x+h)2+k(a≠0),其对应的顶点坐标(-h,k),对称轴x= —h
3、交点式:y=a(x-x1)(x-x2)其中x1、x2是二次函数与x轴的两个交点的横坐标,其对应的对称轴x=
7、相似多边形对应角相等、对应边成比例
1、两角对应相等,两三角形相似(AA)
2、两边对应成比例且夹角相等,两三角形相似(SAS)
3、三边对应成比例,两三角形相似(SSS)
4、如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似(HL)
5、平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
7、一条弧所对的圆周角等于它所对的圆心角的一半
8、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
9、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
10、圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
11、直线和圆:d=圆心到直线距离,r=圆的半径
16、圆的外切四边形的两组对边的和相等
17、两个圆:d=两圆的圆心距,R、r两个圆的半径
①两圆外离d>R+r
②两圆外切d=R+r
③两圆相交R-r<d<R+r(R>r)
④两圆内切d=R-r(R>r)
⑤两圆内含d<R-r(R>r)
1、圆是定点的距离等于定长的点的集合
2、圆的内部可以看作是圆心的距离小于半径的点的集合
面积
1、S三角形= (a=底,h=高)2、
3、 (对角线乘积的一半),4、 (底高)
5、 (a=上底,b=下底,h=高)6、S正方形=a2(a=边长)
7、 (l=弧长,R=半径,n=扇形的圆心角度数)8、S圆=πR2
9、S环形=π(R2-r2),(R=大圆半径,r=小圆半径)10、S圆柱侧=2rh(r=底面圆半径,h=圆柱高)
5、 6、(x+a)(x+b)=x2+(a+b)x+ab
分式性质
1、 。2、 。
3、 . 4、
5、 6、 (A,B,C为整式,且B、C≠0)
7、
特殊自然数
1、几组勾股数(不含扩大同一倍数的):
3、4、5;5、12、13;7、24、25;8、15、17。
2、平方数:112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,
2、推论 三角形两边的差小于第三边
3、直角三角形的两个锐角互余
4、三角形的一个外角等于和它不相邻的两个内角的和
5、三角形的一个外角大于ห้องสมุดไป่ตู้何一个和它不相邻的内角
6、经过三角形一边的中点与另一边平行的直线,必平分第三边
7、三角形中位线定理 三角形的中位线平行于第三边,并且等于它
8、三角形的三边中线交于一点,这一点叫重心
1、任意两边的和大于第三边的三边能构成三角形
直角三角形
1、直角三角形的两锐角互余
2、直角三角形斜边上的中线等于斜边上的一半
3、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
1、如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
等腰三角形
1、等腰三角形的两个底角相等(即等边对等角)
2、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(三线合一)
3、等边三角形的各角都相等,并且每一个角都等于60°
1、如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
2、三个角都相等的三角形是等边三角形
3、有一角等于60°的等腰三角形是等边三角形
2、两直线平行,同位角相等
3、两直线平行,内错角相等
4、两直线平行,同旁内角互补
1、平行与同一条直线的两条直线平行
2、同位角相等,两直线平行
3、内错角相等,两直线平行
4、同旁内角互补,两直线平行
5、垂直于同一条直线的两条直线平行

1、在角的平分线上的点到这个角的两边的距离相等
2、对顶角相等
3、同角(或等角)的余角相等
7、当n为正奇数时: (-a)n= -an或(a-b)n= - (b-a)n,
当n为正偶数时: (-a)n=an或(a-b)n=(b-a)n.
乘法公式
1、(a+b)(a-b)=a2—b2。2、(ab)2=a22ab+b2。
3、(a+b)(a2—ab+b2)=a3+b3。4、(a—b)(a2+ab+b2)=a3—b3。
202=400,212=441,222=484,232=529,242=576,252=625。
3、立方数:23=8,,33=27,43=64,53=125,63=216,73=343,83=512,93=729。
根式的性质
1、 2、
3、 ,(a≥0)4、
5、 6、 ,( )
7、 ,( )
比例性质
1、若 ,,则ad=bc2、若ad=bc,则 , 。
2、一元二次方程ax2+bx+c=0 (a≠0)的两个根 x1,x2:
3、一元二次方程ax2+bx+c=0 (a≠0)根的判别式 △=b2-4ac
①当△>0时,方程有两个不等根。②当△=0时,方程有两个相等根。③当△<0时,方程没有根。
4、以a和b为根的一元二次方程是:x2-(a+b)x+ab=0.
2、两组对边分别相等的四边形是平行四边形
3、对角线互相平分的四边形是平行四边形
4、一组对边平行相等的四边形是平行四边形
矩形
1、矩形的四个角都是直角
2、矩形的对角线相等
1、有三个角是直角的四边形是矩形
2、对角线相等的平行四边形是矩形
菱形
1、菱形的四条边都相等
2、菱形对角线互相垂直平分,并且平分每一组对角
3、推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
4、推论2 圆的两条平行弦所夹的弧相等
5、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
6、推论 在同圆或等圆中,如果两个圆心角、两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
1直线L和⊙O相交d<r
2直线L和⊙O相切d=r
3直线L和⊙O相离d>r
12、圆的切线垂直于经过切点的半径
13、推论1:经过圆心且垂直于切线的直线必经过切点
14、推论2:经过切点且垂直于切线的直线必经过圆心
15、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角
余角公式:sin(90º-A)=cosA,cos(90º-A)=sinA.
勾股定理:a2+b2=c2,
2、勾股定理的逆定理:若△ABC中A、B、C所对的边是 a、b、c,a2+b2=c2,则∠C=90°。
长度
1、正方形周长=边长4 2、矩形周长=(长+宽)2
3、圆周长=2πR4、弧长计算公式:
5、Rt△ABC的三条边分别为:a、b、c(c为斜边),则它的内切圆的半径
5、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
相似三角形
1、相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
2、相似三角形对应角相等、对应边成比例
3、相似三角形周长的比等于相似比
4、相似三角形面积的比等于相似比的平方
5、相似多边形周长的比等于相似比
6、相似多边形面积的比等于相似比的平方
3、反比: 4、更比: ,
5、 6、和比:
7、等比:
统计初步
1、平均数: 。2、加权平均数:
3、方差: 4、标准差:
概率
1、P(A)= (m=事件A包括的基本事件数或事件A长度、面积、体积,n=基本事件总数或总长度、总面积、总体积)
相关文档
最新文档