海洋环境下混凝土的腐蚀性介绍

海洋环境下混凝土的腐蚀性介绍
海洋环境下混凝土的腐蚀性介绍

海洋环境下混凝土的腐蚀性介绍

上海海事大学尹若元摘编2010-04-22

关键字:混凝土腐蚀海洋环境浏览量:113

作为一种节能、经济、用途极为广泛的人工耐久性材料,混凝土是目前世界上使用最广泛的建筑材料之一,在工业、运输、民用等领域有着广泛的应用。用混凝土建造的建筑物和构筑物在使用期间常常受到腐蚀介质的侵蚀,特别是在海洋环境中。海洋环境是混凝土结构所处的最恶劣的外部环境之一。海水中的化学成分能引起混凝土溶蚀破坏、碱-骨料反应,在寒冷地区可能出现冻融破坏,海浪及悬浮物对混凝土结构会造成机械磨损和冲击作用,海水或海风中的氯离子能引起钢筋腐蚀。国内外大量调查表明:海洋恶劣环境下的混凝土构筑物经常过早损坏,寿命一般在20~30年,远达不到要求的服役寿命(一般要求服役寿命100年以上)。损坏的构筑物需花大量财力进行维修补强,且造成停工停产,带来巨大经济损失。因此,研究海洋环境下混凝土的腐蚀机理,提高海洋环境混凝土耐久性,保护内部钢筋免于腐蚀,建造低价格高性能的混凝土就显得尤为重要。

近年来,国内外的学者相继开展了一些针对混凝土材料化学腐蚀的研究,本文从试验研究和数值模拟两方面对当前受腐蚀混凝土的力学研究现状进行简要介绍。

一、试验研究

蒋钰鹏[1]通过对酸性地下水环境中不同配比的混凝土强度进行分析,并和标准养护的未腐蚀材料对比,研究酸性环境对不同配比混凝土强度的影响规律,提出对存在酸性腐蚀条件的土质,基础混凝土工程应采取以下预防措施:(1)混凝土的密实度和抗渗性是防止腐蚀的关键,提高基础混凝土的设计强度,合理选用水泥型号,使用高标号水泥,并适当掺用高效减水剂(缓凝型除外),降低水灰比。(2)加强混凝土施工中的现场管理,严格控制施工质量,确保混凝土按规程振捣,确保混凝土的密实度,表面必须抹光压实。

(3)施工前要制定混凝土养护方案,科学地进行养护。(4)适当增加钢筋保护层的厚度,厚度应大于50 mm,并在施工中严格控制。(5)混凝土基础施工前对基槽进行处理,加入石灰等降低酸度,并加厚垫层。(6)对完成的混凝土基础结构在回土覆盖前,可采用混凝土密封剂进行防护,使用前要对混凝土表面进行清理。张伟勤等[2]研究了混凝土在盐卤的干湿循环环境中,受单一化学腐蚀破坏材料的损伤及强度、质量损失的规律,研究表明研制的高性能混凝土(HPC)在淡水、卤水中干湿循环能力全部优于普通混凝土

(OPC),且干湿循环次数越多,混凝土越来越致密,其强度越大。

还有一些学者针对海洋环境的特点设计了腐蚀试验,如孙林柱等[3]通过对人工海水侵蚀后的钢筋混凝土试件进行试验,研究了不同腐蚀程度对结构承载力的影响。采用人工海水加速加速对15根钢筋混凝土试验梁进行浸-烘多循环腐蚀,按照不同的配合比以及不同的腐蚀循环次数,对腐蚀的钢筋混凝土梁进行斜截面受剪承载力试验,得到海水腐蚀条件下梁的斜截面承载力。根据神经网络原理,建立一个3层的BP网络模型,通过对实验数据的训练,得到腐蚀梁承载力和循环次数的拟合曲线,试验曲线和拟合曲线对比较好地反映了腐蚀梁的承载力和腐蚀循环次数的变化规律。该方法可以解决腐蚀梁的承载力和腐蚀循环等因素之间复杂的非线性关系,随着样本数据的增加,拟合精度将进一步提高,为分析和预测海水腐蚀条件下钢筋混凝土梁的受剪承载力以及它的智能设计提供参考。金祖权等[4]通过NaCl 溶液、Na2SO4溶液以及两者的复合溶液的浸泡腐蚀试验,研究了腐蚀溶液中的自由氯离子在混凝土中的扩散规律和损伤发展规律。结果表明:复合腐蚀下,C30的自由氯离子含量是C50的2倍左右;氯离子扩散系数为C50的1.7~1.95倍;混凝土相对动弹性模量先上升后下降。矿物掺合料提高了混凝土抗氯离子渗透和抗硫酸盐损伤能力,硫酸盐降低了混凝土抗氯离子腐蚀能力,氯盐减缓了硫酸盐对混凝土的损伤速度。邓德华等[5]用天然石灰石粉等质量取代水泥20%和30%,将制备的水泥净浆和砂浆试件常温浸泡在0.35 mol/L Na2SO4溶液中,测量试件的线长度和抗折强度随浸泡时间的变化。研究结果表明:石灰石粉对水泥基材料的抗硫酸盐性有严重的影响,它们使水泥基材料在硫酸盐环境中的强度急剧下降并导致水泥基材料产生较大体积膨胀,引起开裂。掺石灰石粉的水泥基材料主要因形成大量较大尺寸的石膏晶体而膨胀开裂。石膏的形成导致硫酸盐侵蚀水泥基材料产生膨胀开裂。因此,在硫酸盐侵蚀环境下,不宜采用含石灰石粉的复合水泥或将石灰石粉作为矿物掺合料制备的混凝土。阎西康等人[6]采用控制介质环境条件下的加速腐蚀试验和单轴加载试验,通过对钢筋混凝土梁的腐蚀试验和力学性能试验,研究了腐蚀后钢筋混凝土梁正截面承载力问题,提出了简化计算公式。

二、数值模拟

目前已有的混凝土本构数值模型主要基于两种研究思路:一是基于试验结果建立纯数学统计模型;二是基于力学理论建立理论本构模型,并通过试验分析确定所需参数。孙林柱等[3]和阎西康等[6]通过对钢筋混凝土梁的腐蚀试验和力学加载试验,分别采用神经网络的方法和对试验数据拟合曲线的方法,建立了纯数学统计模型,预测受腐蚀钢筋混凝土梁的承载力。翟运琼等[7]通过检测有机物和微生物、强酸、无机盐对混凝土的腐蚀作用的试验,研究受腐蚀混凝土的单轴受压本构关系变化规律。并引入了混凝土随腐蚀介质和时间变化的参数,结合基于损伤理论的混凝土本构模型,通过对实验数据的拟合提出了腐蚀混凝土单轴受压本构模型。最后并利用该模型对腐蚀构件进行有限元分析,证明其优于普通混凝土本构模型。陈卿等[8]采用恒电位方法,考虑pH值的影响,研究了不同电位下混凝土模拟孔隙液中氯离子浓度对钢筋腐蚀状态的影响,并用统计处理的

方法得到了不同的pH值和不同控制电位下具有95%保证率的临界氯离子浓度值。研究结果发现:pH值对临界氯离子浓度有比较大的影响,钢筋开始腐蚀时的氯离子浓度均值与模拟液的pH值呈指数关系;钢筋开始腐蚀时的氯离子浓度均值的对数与钢筋电位呈线性关系。

张研等[9,10]提出了混凝土化学损伤和力学损伤的耦合模型,用损伤变量表示的本构关系模拟混凝土力学性能,分析了化学侵蚀下混凝土损伤发展过程。研究表明,应力软化造成混凝土局部损伤是结构失效的根源,局部化学损伤出现的时候,平衡微分方程不能满足。为了解决这个问题,采用了非局部损伤模型。试验和有限元计算结果表明,混凝土化学-力学耦合作用的非局部损伤模型能够较好地描述受化学侵蚀与荷载共同作用的损伤状态。Shao J. F.等[11]首先将砂浆试样浸泡于硝酸钾溶液中一定时间,然后对腐蚀后的试样进行三轴压缩试验,并根据试验结果在混凝土损伤力学的基础上建立了弹塑性化学-力学耦合本构模型。

三、结语

开展海洋环境对混凝土腐蚀的研究,可以更好地揭示腐蚀的力学机理,并为海洋环境中混凝土结构的寿命预测,以及受腐蚀结构的承载力计算和结构加固计算提供理论依据,也可为防腐蚀研究和设计打下基础。因而,研究海洋环境对混凝土材料力学性质的影响不仅具有重要的科学价值,也具有广阔的应用前景。

参考文献:

[1] 蒋钰鹏. 酸性地质中的基础混凝土腐蚀预防措施[J]. 浙江建筑,2005,22 (3):50-51.

[2] 张伟勤,刘连新,代大虎. 混凝土在卤水、淡水中的干湿循环腐蚀试验研究[J]. 青海大学学报(自然科学版),2006,24 (4):25 - 29.

[3] 孙林柱,王铁成,张洪波. 海水腐蚀梁抗剪强度及其智能分析[J]. 天津大学学报,2006,39(3):284-288.

[4] 金祖权,孙伟,张云升,等. 氯盐、硫酸盐作用下高性能混凝土损伤研究[J]. 工业建筑,2005(35):5-7.

[5] 邓德华,肖佳,元强,等. 石灰石粉对水泥基材料抗硫酸盐侵蚀性的影响及其机理[J]. 硅酸盐学报,2006,34(10):1243-1248.

[6] 阎西康,赵少伟,许素兰. 钢筋混凝土梁遭受海水腐蚀后的受弯计算[J]. 河北工

业大学学报,2006,35(5):91-94.

[7] 翟运琼,陈朝晖,黄河. 基于损伤理论的腐蚀混凝土单轴受压本构模型[J]. 工程结构,2005,25(6):76-78.

[8] 陈卿,宋晓冰,翟之阳. 混凝土模拟孔隙液中钢筋腐蚀临界氯离子浓度试验研究[J]. 四川建筑科学研究,2008,34(6):156-162.

[9] 张研,张子明,宋智通. 混凝土化学-力学耦合作用的非局部损伤模型[J]. 土体力学学报,2007,28(2):172-177.

[10] 张研,张子明,邵建富. 混凝土化学-力学损伤本构模型[J]. 工程力

学,2006,23(9):153-156.

[11] Shao J F , Zhang Y, Sibai M ,et al. An elastoplastic damage model with chemical degradation for cement paste under compressive st resses [C] EUROMECH Colloquium 460: Numerical Modelling of ConcreteCracking. Innsbruck , Austria: s. n. ,2005.

关于提高海洋工程混凝土结构耐久性的思考

关于提高海洋工程混凝土结构耐久性的思考 一、前言 中国目前处于基础设施全面建设时期,为了建设全国乃至世界的物流中心和开发海洋自然资源,海洋工程的发展十分迅速。根据参考资料显示,临海城市深水港的建设已为世人瞩目,对沿海城市经济持续高速发展将起到十分重要的拉动作用。作为深水港重要组成之一的跨海大桥,无论是从跨度、连接功能,还是交通纽带而言,建设环境(海洋环境)是建筑物新的挑战。 由于跨海大桥是连接港区和大陆的集装箱物流输送动脉,对沿海城市深水港的正常运转起到不可或缺的支撑保障作用,为保证跨海大桥混凝土结构的耐久性,在国内有些超大型工程甚至采用了100年设计基准期,工程采取以高性能混凝土技术为核心的综合耐久性技术方案。然而我国目前大型海洋工程超长寿命服役的相关技术规范,高性能混凝土的设计、生产、施工技术在工程中的应用方面尚为空白,因此结合工程的具体需要,研究跨海大桥混凝土结构耐久性策略和高性能混凝土的应用技术极为迫切和重要。 二、国外情况、国内情况 国外情况 20世纪30年代建造的美国俄勒冈州Alsea海湾上的多拱大桥,施工质量很好,但因混凝土的水灰比太大,较短时间内大量氯离子侵入混凝土,导致钢筋严重锈蚀,引起结构损坏。用传统的方法局部修补破坏处,不久就发现修补处的附近钢筋又加剧腐蚀,不得不拆除、更换。 1962~1964年,Gjorv对挪威大约700座混凝土结构作了耐久性调查,当时已使用20~50年的钻2/3,在浪溅区,混凝土立柱显示破损的断面损失率大于30%的占14%,断面损失率为10%~30%的占24%,板和梁钢筋腐蚀引起严重破损的占20%。 在阿拉伯海湾和红海上建造的大量海工混凝土结构,由于气温高,在含盐、干热、多风的白昼,混凝土表面温度高达50℃,而晚上凉得结露,昼夜温差很大,构成了特别严重侵蚀环境,加上混凝土等级和混凝土保护层厚度不够,施工质量差等原因,往往在使用的第一年后钢筋就遭到严重腐蚀。 澳大利亚的Sharp对62座海岸混凝土结构进行调查,发现海岩混凝土结构的耐久性问题都是与浪溅区的钢筋异常严重的腐蚀有关。 印度某河上的第一座桥是后张预应力混凝土桥,上于预应力筋过早地发生严重腐蚀,不得不重修第二座桥。第二座桥预应力筋在安装前就为大气中的盐分所污染,灌注的水泥浆又用了咸水,因而不到10年所有的钢筋、预应力筋及其套管都遭到了严重腐蚀破坏。 国内情况 根据相关调查,处于浪溅区的海港码头,钢筋腐蚀引起的混凝土结构破坏是相当普遍和严重的。1986年以前我国已建港口混凝土结构因氯离子渗入混凝土内引发钢筋锈蚀,致使混凝土构件开裂破坏情况十分严重。其原因除了施工质量存在一定问题外,另一主要因素是当时对氯离子侵入引发钢筋锈蚀的严重性认识不足。当时执行的港口工程技术规范JTJ200 82和JTJ221 82,没有针对防止氯离子渗入引发的钢筋锈蚀制定有效的防护措施,关键技术指标如保护层厚度偏小,混凝土水灰比最大允许值严重偏大等。 三、海洋环境 海洋是氯离子的主要来源,海水中通常含有3%的盐,其中主要是氯离子。以Cl_计,海水中的含量约为19000mg/L。海风、海雾中也含有氯离子,海砂中更含有不等量的氯离子。我国的海岸线很长,大规模的基本建设多集中在沿海地区,尤其是海洋工程如码头、护坡和防护堤等由于氯离子引起的钢筋锈蚀破坏是十分突出的。同时,沿海地区已经出现河砂匮乏的情况,不经技术处理就使用海砂的现象亦日趋严重,这也为氯离子引起钢筋锈蚀破坏创造

钢筋混凝土耐久性的影响因素及对策研究

钢筋混凝土耐久性的影响因素及对策研究 关键词:钢筋混凝土;耐久性;影响因素 长期以来,混凝土作为土建工程中用途最广,用量最大的建筑材料之一,在近百年的发展中,其强度不断提高。但是,在提出高强度的同时,混凝土结构的耐久性问题也愈来愈被人们所关注。 人们一直以为混凝土是非常耐久的材料,直到20世纪70年代末期,发达国家才逐渐发现原先建成的基础设施工程在一些环境下出现过早损坏。美国许多城市的混凝土基础设施工程和港口工程建成后20~30年,甚至在更短的时期内就出现劣化。 我国建设部的一项调查表明,国内大多数工业建筑物在使用25~30年后即需大修,处于严酷环境下的建筑物使用寿命仅15~20年。民用建筑和公共建筑的使用环境相对较好,一般可维持50 年以上,但室外的阳台、雨罩等露天构件的使用寿命通常仅有30~40年。桥梁、港口等基础设施工程的耐久性问题更为严重,由于钢筋的混凝土保护层过薄且密实性差,许多工程建成后几年就出现钢筋锈蚀、混凝土开裂。海港码头一般使用10年左右就因混凝土顺筋开裂和剥落,需要大修。 当前,我国的基础设施建设工程规模宏大,投入资金每年高达2万亿元人民币以上,约30~50 年后,这些工程将进入维修期,所需的维修费或重建费用将更为巨大。有专家估计,我国“大干”基础设施工程建设的高潮还可延续20年,由于忽视耐久性问题,迎接我们的还会有“大修”20 年的高潮,这个高潮可能不用很久就将到来,其耗费将倍增于当初这些工程施工建设时的投资。因此,提高混凝土耐久性,延长工程使用寿命,尽量减少维修重建费用是建筑行业实施可持续发展战略的关键。 1 影响钢筋混凝土耐久性的因素及其破坏机 1.1 混凝土耐久性的概念 混凝土耐久性是指混凝土在设计寿命周期内,在正常维护下,必须保持适合于使用,而不需要进行维修加固,即指混凝土在抵抗周围环境中各种物理和化学作用下,仍能保持原有性能的能力。混凝土工程的耐久性与工程的使用寿命相联系,是使用期内结构保持正常功能的能力,这一正常功能不仅仅包括结构的安全性,而且更多地体现在适用性上。混凝土耐久性主要包括以下几方面:一是抗渗性。即指混凝土抵抗水、油等液体在压力作用下渗透的性能。抗渗性对混凝土的耐久性起着重要的作用,因为抗渗性控制着水分渗入的速率,这些水可能含有侵蚀性的化合物,同时控制混凝土受热或受冷时水的移动。二是抗冻性。混凝土的抗冻性是指混凝土在饱水状态下,经受多次抵抗冻融循环作用,能保持强度和外观性的能力。在寒冷地区,尤其是在接触水又受冻的环境下的混凝土,要求具有较高的抗冻性能。三是抗侵蚀性。混凝土暴露在有化学物质的环境和介质中,有可能遭受化学侵蚀而破坏。一般的化学侵蚀有水泥浆体组分的浸出、硫酸盐侵蚀、氯化物侵蚀、碳化等。四是碱集料反应。某些含有活性组分的骨料与水泥水化析出的KOH和NaOH 相互作用,对混凝土产生破坏性膨胀,是影响混凝土耐久性最主要的因素之一。 1.2 影响混凝土耐久性的主要因素 一般混凝土工程的使用年限约为50~100年,但实际中有不少工程在使用10~20年,有的甚至在使用几年后即需要维修,这就是由于混凝土耐久性低(不足)造成的。影响混凝土耐久性的原因错综复杂,除去社会因素、人为因素外,技术方面的主要因素有以下几点。 1.2.2 混凝土的碳化 混凝土的碳化又称为混凝土的中性化,几乎所有混凝土表面都处在碳化过程中。它是空

海洋腐蚀环境与换热器表面处理选型

海洋腐蚀环境 海洋腐蚀环境包括海洋大气腐蚀环境和海水腐蚀环境, 1﹑海水腐蚀环境 海水是一种复杂的多组分水溶液,海水中各种元素都以一定的物理化学形态存在。海水是一种含盐量相当大的腐蚀性介质,表层海水含盐量一般在3.20%-3.75%之间,随水深的增加,海水含盐量略有增加。盐分中主要为氯化物,占总盐量的88.7%.由于海水总盐度高,所以具有很高的电导率,海水中pH值通常为8.1-8.2,且随海水深度变化而变化。若植物非常茂盛,CO2减少,溶解氧浓度上升,pH值可接近10;在有厌氧性细菌繁殖的情况下,溶解氧量低,而且含有H2S,此时pH值常低于7。海水中的氧含量是海水腐蚀的主要影响因素之一,正常情况下,表面海水氧浓度随水温大体在5~10mg/L范围内变化。海水温度一般在-2℃-35℃之间,热带浅水区可能更高。海水中氯离子含量约占总离子数的55%,海水腐蚀的特点与氯离子密切相关。氯离子可增加腐蚀活性,破坏金属表面的钝化膜。 2﹑海洋大气腐蚀环境 大气腐蚀一般被分成乡村大气腐蚀,工业大气腐蚀和海洋大气腐蚀。乡村地区的大气比较纯净;工业地区的大气中则含有SO2,H2S, NH2和NO2等。大气中盐雾含量较高,对金属有很强的腐蚀作用。 海洋环境对金属腐蚀同其它环境中的大气腐蚀一样是由于潮湿的

气体在物体表面形成一个薄水膜而引起的。这种腐蚀大多发生在海上的船只、海上平台以及沿岸码头设施上,腐蚀现象是非常严重的,除了在强风暴的天气中,在距离海岸近的大气中的金属材料也强烈的受到海洋大气的影响。海洋大气中相对湿度较大,同时由于海水飞沫中含有氯化钠粒子,空气的相对湿度都高于它的临界值。空气中所含杂质对大气腐蚀影响很大,海洋大气中富含大量的海盐粒子,这些盐粒子杂质溶于铜带表面的水膜中,使这层水膜变为腐蚀性很强的电解质,加速了腐蚀的进行,与干净大气的冷凝水膜比,被海雾周期饱和的空气能使铜的腐蚀速度增加几倍。 海洋环境对金属腐蚀的影响因素 1﹑盐度 盐度是指100克海水中溶解的固体盐类物质的总克数。一般在相通的海洋中总盐度和各种盐的相对比例并无明显改变,在公海的表层海水中,其盐度范围为3.20%~3.75%,这对一般金属的腐蚀无明显的差异。但海水的盐度波动却直接影响到海水的比电导率,比电导率又是影响金属腐蚀速度的一个重要因素,同时因海水中含有大量的氯离子,破坏金属的钝化,所以很多金属在海洋环境中遭到严重腐蚀。 2﹑含氧量 海洋环境对金属腐蚀是以阴极氧去极化控制为主的腐蚀过程。 海水中的含氧量是影响海洋环境对金属腐蚀性的重要因素。氧在海

提高混凝土结构耐久性的技术措施

提高混凝土结构耐久性的技术措施 混凝土结构的设计寿命要求一般为40~50年,有的要求上百年。而现实中,处于腐蚀环境中的混凝土远远达不到设计寿命要求,有的在15~20年就出现了钢筋锈蚀破坏,甚至不足五年就开始修复。此方面的花费是惊人的,已经是一个重大经济问题。因此,提高混凝土结构耐久性的意义是不言而喻的。 提高混凝土结构耐久性措施主要包括两大类:基本措施和补充措施。基本措施的基本内容是:通过仔细设计与施工,最大限度地提高混凝土本身的耐久性,在使用中保持低渗透性,以限制环境侵蚀介质渗透混凝土,从而预防钢筋锈蚀。 ①最大限度地改善混凝土本身性能,是提高混凝土结构耐久性的许多措施中最经济合理的。 (1)结构采用耐久性设计。 (2)提高混凝土保护层厚度和质量。 (3)采用高性能混凝土。 ②补充措施是指:环境侵蚀作用特别严重时,或设计、施工不当,单靠上述基本措施还不能保护混凝土结构必要的耐久性时,需要另外增加的其他防护措施。有以下几方面: (1)采用耐腐蚀钢筋。 (2)对混凝土进行表面处理。 (3)混凝土中掺加阻锈剂。 (4)电化学保护

结构设计 1、结构选型和细部设计 频繁地干温交替会加剧钢筋锈蚀,所以在结构选型和细部设计时,应昼限制混凝土表面、接缝和密封处积水,加强排水,尽量减少受潮和溅湿的表面积。 由于环境侵蚀介质在构件棱角或突出部分可以同时从多方面侵入混凝土,而凹入部分易积存侵蚀介质、应力异常,因此从提高混凝土结构耐久性角度出发,混凝土构件选型应力戒单薄、复杂和多棱角。预计腐蚀破坏严重的构件应便于检测、维护和更换。 2、控制裂缝 不可控制的裂缝包括混凝土塑性收缩、沉降或过载造成的裂缝,常为较宽的裂缝,应针对成因采取措施预防开裂,即使难以预料也应加以引导,使其发生于次要部位或便于处理的位置。 可控制裂缝是靠传统的结构设计知识,按结构几何尺寸与荷载可以合理预防和控制的裂缝。 七、提高海工混凝土耐久性的技术措施 国内外相关科研成果和长期工程实践调研显示,当前较为成熟的提高海洋钢筋混凝土工程耐久性的主要技术措施有: (1)高性能海工混凝土 其技术途径是采用优质混凝土矿物掺和料和新型高效减水剂复合,配以与之相适应的水泥和级配良好的粗细骨料,形成低水胶比,低缺陷,高密实、高耐久的混凝土材料。高性能海工混凝土较高的抗

海洋环境下混凝土的腐蚀性介绍

海洋环境下混凝土的腐蚀性介绍 上海海事大学尹若元摘编2010-04-22 关键字:混凝土腐蚀海洋环境浏览量:113 作为一种节能、经济、用途极为广泛的人工耐久性材料,混凝土是目前世界上使用最广泛的建筑材料之一,在工业、运输、民用等领域有着广泛的应用。用混凝土建造的建筑物和构筑物在使用期间常常受到腐蚀介质的侵蚀,特别是在海洋环境中。海洋环境是混凝土结构所处的最恶劣的外部环境之一。海水中的化学成分能引起混凝土溶蚀破坏、碱-骨料反应,在寒冷地区可能出现冻融破坏,海浪及悬浮物对混凝土结构会造成机械磨损和冲击作用,海水或海风中的氯离子能引起钢筋腐蚀。国内外大量调查表明:海洋恶劣环境下的混凝土构筑物经常过早损坏,寿命一般在20~30年,远达不到要求的服役寿命(一般要求服役寿命100年以上)。损坏的构筑物需花大量财力进行维修补强,且造成停工停产,带来巨大经济损失。因此,研究海洋环境下混凝土的腐蚀机理,提高海洋环境混凝土耐久性,保护内部钢筋免于腐蚀,建造低价格高性能的混凝土就显得尤为重要。 近年来,国内外的学者相继开展了一些针对混凝土材料化学腐蚀的研究,本文从试验研究和数值模拟两方面对当前受腐蚀混凝土的力学研究现状进行简要介绍。 一、试验研究 蒋钰鹏[1]通过对酸性地下水环境中不同配比的混凝土强度进行分析,并和标准养护的未腐蚀材料对比,研究酸性环境对不同配比混凝土强度的影响规律,提出对存在酸性腐蚀条件的土质,基础混凝土工程应采取以下预防措施:(1)混凝土的密实度和抗渗性是防止腐蚀的关键,提高基础混凝土的设计强度,合理选用水泥型号,使用高标号水泥,并适当掺用高效减水剂(缓凝型除外),降低水灰比。(2)加强混凝土施工中的现场管理,严格控制施工质量,确保混凝土按规程振捣,确保混凝土的密实度,表面必须抹光压实。 (3)施工前要制定混凝土养护方案,科学地进行养护。(4)适当增加钢筋保护层的厚度,厚度应大于50 mm,并在施工中严格控制。(5)混凝土基础施工前对基槽进行处理,加入石灰等降低酸度,并加厚垫层。(6)对完成的混凝土基础结构在回土覆盖前,可采用混凝土密封剂进行防护,使用前要对混凝土表面进行清理。张伟勤等[2]研究了混凝土在盐卤的干湿循环环境中,受单一化学腐蚀破坏材料的损伤及强度、质量损失的规律,研究表明研制的高性能混凝土(HPC)在淡水、卤水中干湿循环能力全部优于普通混凝土

海工混凝土

一、前言 为了建设全国乃至世界的物流中心和开发海洋自然资源,海洋工程的发展十分迅速。作为世人瞩目的工程,深水港项目对经济持续高速发展将起到十分重要的拉动作用。而作为深水港重要组成之一的东海大桥南起崎岖列岛小洋山岛的深水港区,北至上汇芦潮港的海港新城,跨越湾北部海域,全长31公里,是我国较为罕见的大型海洋工程。由于东海大桥是连接港区和大陆的集装箱物流输送动脉,对深水港的正常运转起到不可或缺的支撑保障作用,因此在国首次采用100年设计基准期。为了保证大桥混凝土在海洋严酷的环境中有较高的耐用寿命,采用了高性能混凝土技术方案。 高性能海工混凝土即针对混凝土结构在海洋环境中的使用特点,通过合理的配制技术,形成耐久性能、施工性能、物理力学性能以及相关性能俱佳的混凝土材料。高性能海工混凝土的突出特点表现在其高耐久和耐腐蚀性能,尤其是混凝土抵抗氯离子侵蚀的性能方面。 高性能海工混凝土与普通混凝土在原材料、配合比以及生产和施工工艺等方面有所差别。具体表现在,(1)高性能海工混凝土胶凝材料的原材料除水泥外,还要掺用至少一种矿物细掺料,并保证一定的胶凝材料用量,从而使得混凝土微结构得以优化,孔隙结构得以改善。(2)高性能海工混凝土通过高性能混凝土减水剂的合理使用,降低混凝土单方用水量,有利于形成混凝土致密结构。(3)高性能海工混凝土在保证其良好的施工性能和物理力学性能的同时,最大化地提高其耐久性能,尤其是抵抗海洋环境中的氯离子侵蚀作用。 本文根据课题组在深水港东海大桥高性能海工混凝土技术的研制结论,着重分析矿物掺和材料在其中的应用。 二、高性能海工混凝土专用掺和料的研究开发 使用粉煤灰、硅粉和磨细矿渣等矿物掺和材料作为混凝土掺和料,并保证一定的掺量,可大幅度提高混凝土的部结构致密性,降低混凝土的渗透性,改善混凝土的耐久性能。研究首先选用地区有稳定供应源的高炉矿渣微粉、低钙粉煤灰以及硅灰材料,考察其与水泥复合胶凝体系的力学及耐久性能。 2.1 原材料及试验 试验用水泥为H牌52.5RP.Ⅱ水泥,其主要物理性能指标见表1,主要化学成分见表2。 表1 水泥其主要物理性能指标

海洋环境下混凝土耐久性

海洋环境下混凝土耐久性 摘要:由于海洋环境的复杂性,跨海通道混凝土的耐久性也受到多方面因素的影响和机理作用。在总结海洋环境下混凝土的耐久性影响因素和作用机理的同时,结合杭州湾跨海大桥工程实际应用,提出了混凝土耐久性的有效技术措施。 关键词:海洋混凝土耐久性杭州湾跨海大桥 改革开放以来,东部沿海城市的经济迅速发展,高层结构、跨海大桥、海港码头、海底隧道乃至海上采油平台等重要工程迅速涌现。通常认为混凝土建筑物的无修补安全使用期可达100年,然而,海洋环境下混凝土由于受到海洋环境的冻融破坏、海水侵蚀、钢筋锈蚀、冰浪撞击、磨损等各种因素的影响使其过早被破坏,实际使用年限远远低于设计要求,使用寿命最短的不到10 年,因此,海洋环境下混凝土服役寿命的过早衰减和失效已成为当今面临的世界性难题,引起国内外混凝土科学与工程界的密切关注。 海洋环境下耐久性的影响因素和作用机理 1.1 冻融作用 海工混凝土抗冻耐久性方面存在的问题,一部分是混凝土材料共同的问题(如引气、孔结构和强度等),另一些则是海洋环境中产生的特殊问题如盐结晶和海水化学腐蚀等。试验表明,在有盐溶液存在的情况下混凝土的饱水程度很高,因此,海工混凝土的冻融破坏更为严重,应从抗裂防渗和耐海水化学腐蚀两方面来保证海工混凝土抗海水冻融耐久性。 1.2 钢筋锈蚀破坏 钢筋的锈蚀在混凝土耐久性问题中的地位日益突出。钢筋锈蚀破坏最严重是潮汐区中部上部位,我国南方海洋环境下混凝土破坏以钢筋锈蚀为主。钢筋锈蚀属电化学反应,其产生和发展必须同时满足(1)钝化膜破坏(2)足够量的氧(3)足够量的水分,三者缺一不可。 1.2.1混凝土抗渗性对钢筋锈蚀的影响 抗渗性是影响混凝土耐久性的关键。提高混凝土的抗渗性是在一定范围内减小水灰比、增加养护期及掺砂渣、粉煤灰、硅灰等火山灰质材料,改善水泥石的孔径分布和孔结构,增加凝胶孔,使抗渗性提高, 1.2.2 混凝土碳化作用对钢筋锈蚀的影响 混凝土碳化是指混凝土中的碱性物质Ca(oH)2 与空气中CO2 作用生成CaCO3。,使结构变化、碱度下降。混凝土碳化后引起钝化膜破坏、产生钢筋锈蚀,碳化后产生的收缩会加快钢筋锈蚀决定混凝土碳化速度的根本因素一是混凝

沿海混凝土耐久性研究综述

沿海混凝土耐久性研究综述 四川建筑科学研究 SichuanBuildingScience 第33卷第1期 2007年2月 沿海混凝土耐久性研究综述 钟亚伟,李固华 (1.西南交通大学土木工程学院,四川成都610031: 2.铁道第二勘察设计院,四川成都610081) 摘要:处于海洋环境中的混凝士结构普遍存在腐蚀问题.氯盐的侵蚀引起钢筋锈蚀是导致沿海工程混凝士结构破坏的主 要原因.本文作者概述了氯离子侵蚀的破坏机理,混凝士耐久性测试与评定方法以及寿命评估,并提出有关防腐措施.对设 计,施工及维护方面具有较好的参考意义. 关键词:沿海混凝土;氯离子;耐久性 中图分类号,TU528.33文献标识码:A文章编号:1008—1933(2007)O1.0090—06 Reviewofresearchonconcreteformarineworksdurability ZH0NGYawei.LIGuhua' (1.SchoolofCivilEngineeringSouthwestJiaotongUniversity,ChengdOU610031,China; 2.TheSeeendRailwaysSurveyandDesigninstitute,Chengdu610081.China) Abstract:Concretestructuresunderoceanenvironmentsgenerallyfacethecorrosionproble ms.Corrosionofsteelreinforcementby chlorineionisthemostsignificantcause$ofdeteriorationofreinforceconcretestructuresinm arineenvironment.Thedestructive mechanismofcorrosionunderchlorineenvironment,thedurabilitytestandassessmentmeth odsofconcreteformarineworkswere

混凝土耐久性的主要因素与其提高的措施

混凝土耐久性的主要因素与其提高的措施 混凝土耐久性是指混凝土构件在长期使用条件下抵抗各种破坏因素作用而保持其原有性能的性质。近年来,随着混凝土技术的发展,高性能混凝土的研究与应用普遍得到人们的重视,混凝土耐久性的研究则是其核心的研究内容。 标签:混凝土耐久性;主要因素;提高措施 1.影响混凝土耐久性的主要因素 1.1混凝土的抗渗性 混凝土的抗渗性是指混凝土在压力水的作用下抵抗渗透的能力。如果混凝土的抗渗性不好、溶液性的物质能浸透混凝土、与混凝土的胶结材料发生化学反应而使混凝土的性能劣化。在钢筋混凝土中、由于水分与空气的渗透、会引起钢筋的锈蚀。钢筋的锈蚀导致其体积增大、造成钢筋周围的混凝土保护层的开裂与剥落、使钢筋混凝土结构失去其耐久性。渗透性对混凝土的抗冻性也有重要的影响。因为渗透性决定了混凝土可能为水饱和的程度。渗透性高的混凝土、其内部孔隙为水分充满、在水的冰冻压力作用下、混凝土内部结构更易于产生损伤与破坏。因此可以说、混凝土的抗渗性是其耐久性的第一道防线。混凝土与其微观结构的劣化和侵蚀性介质的传输有关、混凝土的渗透性取决于其自身的微结构和饱和水程度、是决定混凝土性能劣化的关键因素。因此可能通过检测混凝土的渗透性来评估其耐久性。 1.2混凝土的抗冻性 混凝土的抗冻性决定于水泥石的抗冻性和骨料的抗冻性。从冰冻对水泥石和骨料的作用可以看出诸多因素影响混凝土的抗冻性。这些因素包括:水分迁移路径的距离、混凝土的孔结构、混凝土的饱和度、混凝土的抗拉强度以及冷却速度等。提高混凝土的抗冻性可以采用以下措施; (1)引气:这是因为在水泥石受到冻融作用时、水分迁移所引起的压力、可以由引入的微细气泡得到释放。一般说来、混凝土的抗冻性随着阴气量的增加而增加。而当含气量一定时、气泡尺寸、气泡数量和气泡的间距都会影响混凝土的抗冻性能。 (2)控制水灰比:水泥石内的大孔隙量与水灰比和水化程度有关。一般说来、水灰比小、水化程度高则水泥石中的孔隙越少。由于表面张力的原因、大孔隙内的水比小孔隙内的水更易于結冰、因此、在同等条件下、水灰比大的水泥石内可结冰的水更多、发生冻融破坏的几率更大。 (3)降低饱和度:混凝土的饱和度对冻融破坏有很大的影响、干燥的或部分干燥的混凝土不容易受到冻融破坏。一般存在一个临界饱和度、当混凝土的含

配合比对海工混凝土耐久性影响的试验研究

配合比对海工混凝土耐久性影响的试验研究 [摘要] 相当数量的海工混凝土结构因为耐久性不足而达不到 预定服役年限,而氯离子是“罪魁祸首”。目前,矿物掺加料对于提高混凝土的抗渗性,尤其是提高抗氯离子扩散性能有着显著效果。文章结合具体实验,研究了矿物掺合料对混凝土强度的影响和氯离子扩散系数随矿物掺合料掺量的变化规律,并探讨矿物掺合料的最优掺量问题,为海工混凝土配合比设计提供了一些建议。 [关键词] 海工混凝土矿物掺合料氯离子扩散系数配合比设计[abstract] a considerable number of marine concrete structures because of insufficient durability and reach the scheduled service time, while the chloride ion is the “culprit”. at present, the mineral admixture materials to improve the impermeability of concrete, in particular, is to improve the resistance to chloride ion diffusion properties have a significant effect. based on specific experiments studied the influence of mineral admixtures on the strength of concrete and chloride ion diffusion coefficient variation with the mineral admixture content, and to explore the optimal dosage of mineral admixtures for marine concrete with than the design of a number of recommendations. [key words] marine concrete, mineral admixture, the chloride

海洋工程混凝土结构耐久性

海洋工程混凝土结构耐久性 我国海域辽阔,海岸线很长,大规模的基本建设集中于沿海地区,而海边的混凝土工程由于长期受氯离子侵蚀,混凝土中的钢筋锈蚀现象非常严重,已建的海港码头等工程多数都达不到设计寿命的要求。“当今世界混凝土破坏原因,按重要性递减顺序排列是:钢筋锈蚀、冻害、物理化学作用。”而来自海洋环境和使用防冰盐中的氯离子,又是造成钢筋锈蚀的主要原因。我国大型海洋工程的耐久性逐渐成为迫在眉睫的问题。 国外情况 20世纪30年代建造的美国俄勒冈州Alsea海湾上的多拱大桥,施工质量很好,但因混凝土的水灰比太大,较短时间内大量氯离子侵入混凝土,导致钢筋严重锈蚀,引起结构损坏。用传统的方法局部修补破坏处,不久就发现修补处的附近钢筋又加剧腐蚀,不得不拆除、更换。1962~1964年,Gjorv对挪威大约700座混凝土结构作了耐久性调查,当时已使用20~50年的钻2/3,在浪溅区,混凝土立柱显示破损的断面损失率大于30%的占14%,断面损失率为10%~30%的占24%,板和梁钢筋腐蚀引起严重破损的占20%。澳大利亚的Sharp对62座海岸混凝土结构进行调查,发现海岩混凝土结构的耐久性问题都是与浪溅区的钢筋异常严重的腐蚀有关。印度孟买某河上的第一座桥是后张预应力混凝土桥,上于预应力筋过早地发生严重腐蚀,不得不重修第二座桥。第二座桥预应力筋在安装前就为大气中的盐分所污染,灌注的水泥浆又用了咸水,因而不到10年所有的钢筋、预应力筋及其套管都遭到了严重腐蚀破坏。 国内情况 根据相关调查,处于浪溅区的海港码头,钢筋腐蚀引起的混凝土结构破坏是相当普遍和严重的。1986年以前我国已建港口混凝土结构因氯离子渗入混凝土内引发钢筋锈蚀,致使混凝土构件开裂破坏情况十分严重。其原因除了施工质量存在一定问题外,另一主要因素是当时对氯离子侵入引发钢筋锈蚀的严重性认识不足。当时执行的港口工程技术规范JTJ200-82和JTJ221-82,没有针对防止氯离子渗入引发的钢筋锈蚀制定有效的防护措施,关键技术指标如保护层厚度偏小,混凝土水灰比最大允许值严重偏大等。 三、海洋环境 海洋是氯离子的主要来源,海水中通常含有3%的盐,其中主要是氯离子。以Cl计,海水中的含量约为19000mg/L。海风、海雾中也含有氯离子,海砂中更含有不等量的氯离子。我国的海岸线很长,大规模的基本建设多集中在沿海地区,尤其是海洋工程如码头、护坡和防护堤等由于氯离子引起的钢筋锈蚀破坏是十分突出的。同时,沿海地区已经出现河砂匮乏的情况,不经技术处理就使用海砂的现象亦日趋严重,这也为氯离子引起钢筋锈蚀破坏创造了条件。国外的工程经验教训表明,海水、海风和海雾中的氯离子和不合理的使用海砂,是影响混凝土结构耐久性的主要原因之一。混凝土中钢筋锈蚀可由两种因素诱发,一是海水中Cl-侵蚀,二是大气中的CO2使混凝土中性化。国内外大量工程调查和科学研究结果表明,海洋环境下导致混凝土结构中钢筋锈蚀破坏的主要因素是Cl-进入混凝土中,并在钢筋表面集聚,促使钢筋产生电化学腐蚀。在跨海大桥周边沿海码头调查中亦证实,海洋环境中混凝土的碳化速度远远低于Cl-渗透速度,中等质量的混凝土自然碳化速度平均为3mm/10年。因此,影响跨海大桥结构混凝土耐久性的首要因素是混凝土的Cl-渗透速度。 1、大桥混凝土结构布置 跨海大桥跨海段通航孔部分预应力连续梁、桥塔、墩柱和承台均采用现浇混凝土;非通航孔部分以预制混凝土构件为主,其中50~70m的预应力混凝土箱梁是重量超过1000吨的巨型构件;陆上段梁、柱和承台亦采用现浇混凝土。混凝土的设计强度根据不同部位在C30~C60之间。 2、跨海大桥附近海域气象环境 我国跨海大桥多地处北亚热带南缘、东北季风盛行区,受季风影响冬冷夏热,四季分明,降水充沛,气候变化复杂,多年平均气温为偏低,海区全年盐度一般在10.00~32.00‰之间变化,属强混合型海区,海洋环境特征明显。 3、跨海大桥面临的耐久性问题 在海洋环境下结构混凝土的腐蚀荷载主要由气候和环境介质侵蚀引起。主要表现形式有钢筋锈蚀、冻融循环、盐类侵蚀、溶蚀、碱-集料反应和冲击磨损等。 我国跨海大桥多位于典型的亚热带地区,严重的冻融破环和浮冰的冲击磨损可不予考虑;镁盐、硫酸盐等盐类侵蚀和碱骨料反应破坏则可以通过控制混凝土组分来避免;这样钢筋锈蚀破环就成为最主要的腐蚀荷载。 氯离子对钢筋的锈蚀

土木工程毕业论文浅谈钢筋锈蚀对钢筋混凝土桥梁耐久性的影响

浅谈钢筋锈蚀对钢筋混凝土桥梁耐久性的影响 论文摘要:钢筋锈蚀是造成钢筋混凝土桥梁耐久性损伤的最主要和最直接因素,也是混凝土桥梁耐久性破坏的主要形式之一。本文从锈蚀机理、影响因素和影响后果等方面进行了综述性讨论。 钢筋锈蚀是一个比较普遍、并且严重威胁结构安全的耐久性问题。它在影响结构物耐久性因素中,占据主导地位。美国、英国、德国和日本等国每年均花费巨资用于混凝土结构的耐久性修复,其中钢筋锈蚀占有相当大的比例。我国也有相当数量的钢筋混凝土桥梁相继进入老化期,钢筋锈蚀的研究和防治显得非常重要。 钢筋锈蚀是造成钢筋混凝土桥梁耐久性损伤的最主要和最直接因素,也是混凝土桥梁耐久性破坏的主要形式之一。钢筋锈蚀对桥梁结构的破坏分为三个时期:前期是钢筋表面局部锈蚀出现锈斑、锈片等;中期是钢筋整个表面锈蚀,并产生膨胀,与保护层脱离,发生层裂;后期表现为钢筋铁锈进一步膨胀,混凝土本身发生破坏,出现顺筋胀裂,混凝土脱离,直至钢筋不断锈蚀,有效截面不断减小,桥梁结构承载力不断下降,钢筋混凝土构件丧失基本承载能力。 一、钢筋混凝土桥梁中钢筋锈蚀机理 正常情况下,由于初始混凝土的高碱性,钢筋混凝土桥梁结构力筋表面形成一层致密的钝化膜,使其处于钝化状态。但随着环境介质的侵入,钝化膜逐渐遭到破坏,从而导致腐蚀的发

生。 力筋发生锈蚀需要三大基本要素: (一)力筋表面钝化膜的破坏; (二)充足氧的供应; (三)适宜的湿度(RH=60~80%)。 三个要素缺一不可,第一要素为诱发条件,而腐蚀速度则取 决于氧气及水分的供应。 钢筋的锈蚀一般为电化学锈蚀。发生电化学锈蚀必须具备3 个条件: 1、在钢筋表面形成电位差; 2、在阴极部位钢筋表面存在足够的氧气和水; 3、在阳极区,使阳极部位的钢筋表面处于活化状态,即钢筋 表面的钝化膜遭到破坏。 在氧气和水的共同作用下,钢筋表面不断失去电子发生电化 学反应,逐渐被锈蚀,在钢筋表面生成红锈,引起混凝土开 裂。 对于钢筋混凝土桥梁,在一般环境条件下,钢筋的锈蚀通常 由两种作用引起:一种是混凝土碳化作用;一种是氯离子的侵蚀。二氧化碳和氯离子对混凝土本身都没有严重的破坏作用,但是这 两种环境物质都是混凝土中钢筋钝化膜破坏的最重要又最常遇到 的环境介质:混凝土碳化使混凝土孔隙溶液中的Ca(OH)2含量逐 渐减少,PH值逐渐下降,钝化膜逐渐变得不再稳定以至于完全被 破坏,使钢筋处于脱钝状态;周围环境中的氯离子从混凝土表面 逐渐渗入到混凝土内部,当到达钢筋表面的混凝土孔溶液中的游 离氯离子浓度超过一定值(临界浓度)时,即使混凝土碱度再高,pH值大于11.5值,Cl-也能破坏钝化膜,从而使钢筋发生锈蚀。 氯盐引起钢筋锈蚀的发展速度很快,远比碳化锈蚀严重,这种情 况常发生在近海或海洋环境以及冬季经常使用除冰盐的环境。

海工混凝土耐久性摘要

闫乙鹏,山宏宇,叶青.复掺矿物掺合料海工混凝土氯离子抗渗性机理分析及寿命预测[J].公路,2012,(1):148-151. 降低水胶比及复掺粉煤灰和矿粉能有效提高混凝土的氯离子抗渗性,使混凝土的设计寿命得到延长。采取控制海工混凝土原材料中的氯离子含量和提高混凝土的致密性等方法可有效防止氯离子对混凝土结构和钢筋的侵蚀,粉煤灰和矿粉中的活性物质能有效改善水泥水化产物的组成和含量,优化界面过渡区的结构,提高了混凝土的密实性,使混凝土的氯离子抗渗性得到改善。在一定的掺量范围内,水胶比越小,胶凝材料用量越大,粉煤灰和矿粉掺量越大时,氯离子渗透系数越小,海工混凝土预测使用寿命越长。 彭伟.粉煤灰和矿渣粉对海工混凝土性能的影响[J].四川建材,2009,35(4):6-7. 粉煤灰掺入到混凝土中,取代部分水泥,由于粉煤灰由大小不等的球状玻璃体组成,表面致密光滑,在混凝土拌和物中可以起到滚珠效益;新拌混凝土拌和物的水泥颗粒易聚集成团,掺入粉煤灰,由于表面负电性作用,可以有效地分散水泥颗粒,释放更多的浆体来包裹骨料颗粒;能降低用水量,使混凝土的水灰比降低到更低水平,减少混凝土拌和物的离析和泌水。 矿渣粉在水泥水化初期,矿渣粉分布并包裹在水泥颗粒的表面,阻碍了水泥与水的接触,减小了水泥水化速度,起到了延缓和减少水泥初期水化物相互搭接的隔离作用,使得掺有矿渣粉的海工混凝土坍落度经时损失比普通混凝土小,凝结时间比普通混凝土长,有利于本工程桩基海工混凝土的泵送施工。 粉煤灰与矿渣粉复合掺加,两种材料的火山灰效应、形态效应和微集料效应互相叠加,形成工作性能互补效应,使得混凝土具有良好的抗渗性和可泵性,同时粉煤灰中富含的球状玻璃体的润滑作用可以改善由于矿渣粉的掺入所导致的海工混凝土粘聚性提高、泌水性增加的趋势,使新拌海工混凝土得到最佳的流动性和粘聚性。粉煤灰与矿渣粉一起按比例掺入混凝土中,配有高效减水剂得到的海工耐久混凝土,较好的利用了两种掺合料的优点,使之产生强度互补效应,兼顾了混凝土早期强度与后期强度,早期发挥矿渣粉的火山灰效应,改善浆体和集料的界面结构,弥补由于粉煤灰的火山灰效应滞后,产生的凝胶数量不足导致与未反应的粉煤灰之间的界面粘结不牢引起的早期强度损失;后期发挥粉煤灰的火山灰效应所带来的孔径细化作用以及未反应的粉煤灰的内核作用使得混凝土的强度持续提高。 无论是粉煤灰与矿渣粉的火山灰效应生成的更致密的胶凝体,提高海工混凝土的强度和抗渗性,还是粉煤灰与矿渣粉的微集料效应减小了海工混凝土的毛细孔径,提高抗氯离子扩散的能力,还是粉煤灰与矿渣粉的等量取代降低了海工混凝土的初始温度,减少了温度裂缝,提高了结构物钢筋腐蚀时间等等都是在直接或间接的提高海工混凝土的耐久性。 徐忠琨.关于海工混凝土耐久性问题的探讨[J].水运工程,2008,(11):73. 根据《海港工程混凝土防腐蚀技术规范》,高性能混凝土应具有高耐久性、高抗氯离子渗透性、高尺寸稳定性和较高的强度。

海洋生态环境的重要性有哪

海洋生态环境的重要性有哪些 海洋生态环境的重要性 由于海水中生活条件的特殊,海洋中生物种类的成分与陆地成分迥然不同。就植物而言,陆地植物以种子植物占绝对优势,而海洋植物中却以孢子植物占优势。海洋中的孢子植物主要是各种藻类。由于水生环境的均一性,海洋植物的生态类型比较单纯,群落结构也比较简单。多数海洋植物是浮游的或漂浮的。但有一些固着于水底,或是附生的。 海洋植物区系的地理分布也服从地带性规律。与陆地植物区系不同的是寒冷的海域区系成分较为丰富,热带海洋中种属反而比较贫乏,这一点与陆地植物区系恰好相反。 海洋生物群落也像湖泊群落一样分为若干带: 1.潮间带(intertidal) 或沿岸带(1ittoralzone) 即与陆地相接的地区。虽然该带内的生物几乎都是海洋生物,但那里实际上是海陆之间的群落交错区,其特点是有周期性的潮汐。生活在潮间带的生物除要防止海浪冲击外,还要经受温度和水淹与暴露的急剧变化,发展出许多有趣的形态和生理适应。潮间带的底栖生物又因底质为沙质、岩石和淤泥分化为不同类型。 2.浅海带或亚沿岸带(neritic 或sublittoralzone) 包括从几米深到200米左右的大陆架范围,世界主要经济渔场几乎都位于大陆架和大陆架附近,这里具有丰富多样的鱼类。 3.浅海带以下沿大陆坡之上为半深海带(bathylzone) ,而海洋底部的大部分地区为深海带(abyssalzone) 深海带的环境条件稳定,无光,温度在0~4℃左右,海水的化学组成也比较稳定,底土是软的和粘泥的,压力很大(水深每增10m,压力即增加101.325kPa) 。食物条件苛刻,全靠上层的食物颗粒下沉,因为深海中没有进行光合作用的植物。由于无光,深海动物视觉器官多退化,或者具发光的器官,也有的眼极大,位于长柄末端,对微弱的光有感觉能力。适应高压的特征如薄而透孔的皮肤,没

海洋生态环境现状调查

海洋生态环境现状调查 1 海洋生态环境调查内容及方法 现状调查内容包括:浮游植物、浮游动物(包括鱼卵及仔稚鱼)、底栖生物和游泳动物的种类组成、数量分布、群体组成、群落结构和生物多样性特征等各项目调查方法均按《海洋监测规范》进行。 ①浮游植物调查:采用浅水III型浮游生物网从底至表层垂直拖网获取和采水器采集表、底层水样500ml(水深>10m时,采表层和底层;水深≤10m时,只采表层样),现场 用5%福尔马林溶液固定,在实验室进行种类鉴定及按个体计数法进行计数、统计和分析,浮游植物丰度,网样单位:个/m3,水样单位:个/L。 ②浮游动物调查:采用浅水Ⅰ型和Ⅱ型浮游生物网从底至表层垂直拖网获取,所获标本均经5%福尔马林溶液固定带回实验室进行称重、分类、鉴定和计数。浮游动物生物量为湿重,单位:mg/m3,密度单位:个/m3。 ③底栖生物调查:用采泥器(0.025 m2)进行采集,每站采集4次,取4次平均值为该站的生物量和栖息密度。底栖动物样品在船上用5%福尔马林溶液固定保存后带回实验室称重(软体动物带壳称重)、分析,计数,鉴定到种,并换算成单位面积的生物量(mg/m2)和栖息密度(个/m2)。依据《全国海岸带和海涂资源调查简明规程》,用网口宽度为1.5米的阿氏拖网(Agassis trawl)进行拖曳,拖速为1.00 nmi-1,拖网时间为10分钟,采集底栖生物定性样品。 ④游泳动物调查: 用底层拖网和变水层拖网,每站拖网时间为1小时,拖网速度1kn。采集后进行分类、计数、称重和群体组成分析。 2 海洋生态环境评价方法 2.1优势度(Y)及计算 优势种的概念有两个方面,即一方面占有广泛的生态环境,可以利用较高的资源,有着广泛的适应性,在空间分布上表现为空间出现频率(f i)较高,另一方面,表现为个体数量(n i)庞大,密度n i/N较高。 设:f i为第i个种在各样方中出现频率;n i为群落中第i个种在空间中的个体数量;N为群落中所有种的个体数总和。 综合优势种概念的两个方面,得出优势种优势度(Y)的计算公式: Y=n i/N×f i 2.2种类丰富度(d)、均匀度指数(J′) 群落多样性的高低,除了受取样大小、数量的分布外,主要依赖于群落中种类数多少及个体分布是否均匀。丰富度(d)和均匀度指数(J′)计算公式如下: d=(S-1)/log2N 上2式中,为种类数,为第种的丰度,为总丰度,为实测Shannon-Weaver 多样性指数,。 2.3多样性指数 根据中国环境监测总站的《环境质量报告书(水质生物学评价部分)》的有关

海工混凝土

一、前言 上海为了建设全国乃至世界的物流中心和开发海洋自然资源,海洋工程的发展十分迅速。作为世人瞩目的工程,深水港项目对上海经济持续高速发展将起到十分重要的拉动作用。而作为上海深水港重要组成之一的东海大桥南起浙江崎岖列岛小洋山岛的深水港区,北至上海南汇芦潮港的海港新城,跨越杭州湾北部海域,全长31公里,是我国较为罕见的大型海洋工程。由于东海大桥是连接港区和大陆的集装箱物流输送动脉,对上海深水港的正常运转起到不可或缺的支撑保障作用,因此在国内首次采用100年设计基准期。为了保证大桥混凝土在海洋严酷的环境中有较高的耐用寿命,采用了高性能混凝土技术方案。 高性能海工混凝土即针对混凝土结构在海洋环境中的使用特点,通过合理的配制技术,形成耐久性能、施工性能、物理力学性能以及相关性能俱佳的混凝土材料。高性能海工混凝土的突出特点表现在其高耐久和耐腐蚀性能,尤其是混凝土抵抗氯离子侵蚀的性能方面。 高性能海工混凝土与普通混凝土在原材料、配合比以及生产和施工工艺等方面有所差别。具体表现在,(1)高性能海工混凝土胶凝材料的原材料除水泥外,还要掺用至少一种矿物细掺料,并保证一定的胶凝材料用量,从而使得混凝土微结构得以优化,孔隙结构得以改善。(2)高性能海工混凝土通过高性能混凝土减水剂的合理使用,降低混凝土单方用水量,有利于形成混凝土致密结构。(3)高性能海工混凝土在保证其良好的施工性能和物理力学性能的同时,最大化地提高其耐久性能,尤其是抵抗海洋环境中的氯离子侵蚀作用。 本文根据课题组在深水港东海大桥高性能海工混凝土技术的研制结论,着重分析矿物掺和材料在其中的应用。 二、高性能海工混凝土专用掺和料的研究开发 使用粉煤灰、硅粉和磨细矿渣等矿物掺和材料作为混凝土掺和料,并保证一定的掺量,可大幅度提高混凝土的内部结构致密性,降低混凝土的渗透性,改善混凝土的耐久性能。研究首先选用上海地区有稳定供应源的高炉矿渣微粉、低钙粉煤灰以及硅灰材料,考察其与水泥复合胶凝体系的力学及耐久性能。 2.1 原材料及试验 试验用水泥为H牌52.5RP.Ⅱ水泥,其主要物理性能指标见表1,主要化学成分见表2。 表1 水泥其主要物理性能指标

混凝土耐久性研究现状和研究方向

·综述· 混凝土耐久性研究现状和研究方向 卢 木 (清华大学土木工程系 100084) 摘 要: 阐述了混凝土耐久性研究的背景、意义和动态,从材料、构件和结构三个层次总结归纳了国内外混凝土耐久性研究的成果,并提出了今后的研究方向。 关键词: 混凝土耐久性 碳化 钢筋锈蚀 冻融 寿命预测 RECEN T STUDY AND RESEARC H DIRECTION S OF CONCRETE DURABILITY Lu M u (Dept.of Civil Eng rg.,Tsingh ua Univ. 100084) Abstract: Presented in this paper is a discription of th e background,significance and present dev elopm ent of concrete du rability s tudies.Recent accomplis hments are summ arized on th ree levels-material,component and structure.Directions of fu tu re res earch are also proposed. Keywords: concrete durability carbonation reinforcing s teel corrosion freeze-thaw s ervicelife p rediction 1 引 言 随着我国现代化进程的加快,各类社会基础设施的建设方兴未艾。这些构筑物大都为钢筋混凝土结构,其设计方法除了传统的强度、刚度等力学性能指标设计,还要考虑耐久性、经济性进行寿命设计。跨世纪的建筑不仅要求具有安全性、功能性,而且要求具有足够的耐久性[1]。 到本世纪末,我国现有房屋将有50%进入老化阶段,也就是说将有23.4亿m2的建筑面临耐久性问题[2]。如何对这些建筑进行科学的耐久性、经济性评定以及剩余寿命的预测,是当今土木工程领域的研究热点。 如何找到一种简便易行的钢筋混凝土结构剩余寿命的预测方法,该方法综合地考虑了结构的耐久性、安全性和经济性,并将其有机地结合起来,从而为在役结构的维修决策和新建结构的寿命设计提供依据,已成为当今混凝土研究的迫切任务。 2 混凝土耐久性研究的背景 所谓混凝土的耐久性,是指在使用过程中,在内部的或外部的,人为的或自然的因素作用下,混凝土保持自身工作能力的一种性 收稿日期: 1996-11-25

相关文档
最新文档