三年级奥数鸡兔同笼问题例题及答案(20200907122942)

合集下载

小学鸡兔同笼问题练习题及答案解析

小学鸡兔同笼问题练习题及答案解析

小学鸡兔同笼问题练习题及答案解析1.题目:鸡比兔多13只,鸡腿比兔腿多16条,鸡和兔各有多少只?答案:鸡有25只,兔有12只。

解析:设兔有x只,则鸡有x+13只。

根据题意,鸡腿比兔腿多16条,即2(x+13) - 4x = 16,解得x=12,所以兔有12只,鸡有25只。

2.题目:笼子里有若干只鸡和兔。

从上面数,有35个头,从下面数,有94只脚,鸡和兔各有多少只?答案:鸡有23只,兔有12只。

解析:设兔有x只,则鸡有35-x只。

根据题意,4x + 2(35-x) = 94,解得x=12,所以兔有12只,鸡有23只。

3.题目:鸡比兔多3只,鸡腿比兔腿多2条,鸡和兔各有多少只?答案:鸡有7只,兔有4只。

解析:设兔有x只,则鸡有x+3只。

根据题意,2(x+3) - 4x = 2,解得x=4,所以兔有4只,鸡有7只。

4.题目:鸡和兔共有100只,腿共248只,鸡和兔各有多少只?答案:鸡有34只,兔有66只。

解析:设兔有x只,则鸡有100-x只。

根据题意,4x + 2(100-x) = 248,解得x=66,所以兔有66只,鸡有34只。

5.题目:鸡比兔少5只,鸡腿比兔腿少6条,鸡和兔各有多少只?答案:鸡有19只,兔有24只。

解析:设兔有x只,则鸡有x-5只。

根据题意,2(x-5) - 4x = -6,解得x=24,所以兔有24只,鸡有19只。

6.题目:鸡和兔共有15只,腿共40条,鸡和兔各有多少只?答案:鸡有10只,兔有5只。

解析:设兔有x只,则鸡有15-x只。

根据题意,4x + 2(15-x) = 40,解得x=5,所以兔有5只,鸡有10只。

7.题目:鸡比兔多8只,鸡腿比兔腿多12条,鸡和兔各有多少只?答案:鸡有20只,兔有12只。

解析:设兔有x只,则鸡有x+8只。

根据题意,2(x+8) - 4x = 12,解得x=12,所以兔有12只,鸡有20只。

8.题目:笼子里有若干只鸡和兔。

从上面数,有28个头,从下面数,有76只脚,鸡和兔各有多少只?答案:鸡有10只,兔有18只。

小学奥数--鸡兔同笼(含答案解析)

小学奥数--鸡兔同笼(含答案解析)

小学奥数--鸡兔同笼(含答案解析)1.将文章中的选择题和解答题分开,方便阅读。

2.删除了第一题和第五题中的选项,因为没有必要。

3.改写了第一题和第二题的问题,使其更加清晰。

4.修改了第三题和第七题的答案,因为原来的答案是错误的。

5.修改了第六题的选项,因为原来的选项是重复的。

6.删除了第十一题和第十四题,因为它们的问题不清晰,难以理解。

7.修改了部分题目的语言,使其更加易懂。

选择题:1.一只笼子里有鸡和兔子,从上面数有29个头,从下面数有92只脚,那么笼子中有多少只鸡?答案:17解析:设鸡的数量为x,兔子的数量为y,则有x+y=29,2x+4y=92.解得x=17,y=12.因此,笼子中有17只鸡。

2.有鸡和兔子20只,共有46只脚,其中鸡有多少只?答案:15解析:设鸡的数量为x,兔子的数量为y,则有x+y=20,2x+4y=46.解得x=15,y=5.因此,鸡有15只。

3.每只蛐蛐有6条腿,每只蜘蛛有8条腿,蛐蛐和蜘蛛共有10只,一共有68条腿。

蛐蛐和蜘蛛各有多少只?答案:4,6解析:设蛐蛐的数量为x,蜘蛛的数量为y,则有x+y=10,6x+8y=68.解得x=4,y=6.因此,蛐蛐有4只,蜘蛛有6只。

XXX四(1)班12名学生参加植树活动,其中男生每人植树5棵,女生每人植株4棵,一共植树56棵,男生有多少人?答案:8解析:设男生的数量为x,女生的数量为y,则有x+y=12,5x+4y=56.解得x=8,y=4.因此,男生有8人。

5.两个大人带几个小孩去公园游玩,大人门票每人10元,小孩门票每人5元,买门票一共花了45元,则这两个大人带了几个小孩?答案:5解析:设小孩的数量为x,大人的数量为y,则有5x+10y=45.解得x=5,y=2.因此,这两个大人带了5个小孩。

6.一次数学竞赛XXX得了86分,这次竞赛一共20题,答对一题得5分,答错一题或不做扣2分,XXX答对多少题?答案:18解析:设小华答对的题数为x,则有5x-2(20-x)=86.解得x=18.因此,XXX答对了18题。

鸡兔同笼题目练习及解答

鸡兔同笼题目练习及解答

鸡兔同笼题目练习及解答鸡兔同笼是中国古代著名的数学趣题之一,也是小学数学中常见的一类问题。

它对于培养孩子们的逻辑思维和解题能力有着重要的作用。

下面我们就来通过一些题目练习及解答,深入了解鸡兔同笼问题。

题目一:笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有 94 只脚,问鸡和兔各有多少只?解答:我们可以用假设法来解决这个问题。

假设笼子里全是鸡,那么每只鸡有 2 只脚,35 只鸡就应该有 35×2= 70 只脚。

但实际有 94 只脚,多出来的脚就是兔子的。

每只兔子比每只鸡多 4 2 = 2 只脚。

所以兔子的数量就是(94 70)÷ 2 = 12(只)鸡的数量就是 35 12 = 23(只)题目二:一个笼子里鸡兔共有 20 只,脚共有 56 只,问鸡兔各有几只?解答:同样先假设全是鸡,20 只鸡就有 20×2 = 40 只脚。

实际有 56 只脚,多出的脚是兔子的,兔子数量为(56 40)÷ 2 = 8(只)鸡的数量就是 20 8 = 12(只)题目三:鸡兔同笼,鸡比兔多 10 只,共有脚 110 只,求鸡兔各有多少只?解答:设兔有 x 只,那么鸡就有 x + 10 只。

每只兔 4 只脚,每只鸡 2 只脚,可列出方程:4x + 2×(x + 10) = 1104x + 2x + 20 = 1106x = 90x = 15 ,即兔有 15 只。

鸡的数量就是 15 + 10 = 25 只。

题目四:有鸡兔同笼,它们共有 48 个头,132 只脚,鸡和兔各有几只?解答:假设全是鸡,48 只鸡共有脚 48×2 = 96 只。

实际 132 只脚,多出的是兔子的,兔子数量为(132 96)÷ 2 = 18 只。

鸡的数量为 48 18 = 30 只。

题目五:笼子里鸡兔的数量相同,它们的脚一共有 90 只,鸡兔各有几只?解答:因为鸡兔数量相同,设鸡兔各有 x 只。

鸡兔同笼的练习题及答案

鸡兔同笼的练习题及答案

鸡兔同笼的练习题及答案鸡兔同笼问题是一种经典的数学问题,通常用于训练学生的逻辑推理能力。

这种问题要求学生通过已知的头和脚的总数来确定鸡和兔子的数量。

以下是一些练习题及答案,供学生练习。

练习题1:一个笼子里有鸡和兔子共35个头,94只脚。

问鸡和兔子各有多少只?答案1:设鸡有x只,兔子有y只。

根据题目,我们有以下两个方程:x + y = 35 (头的总数)2x + 4y = 94 (脚的总数)通过解方程组,我们可以得到:2x = 94 - 4yx = (94 - 4y) / 2将x的表达式代入第一个方程:(94 - 4y) / 2 + y = 3594 - 4y + 2y = 70y = 24将y的值代入x的表达式:x = (94 - 4 * 24) / 2x = 11所以,鸡有11只,兔子有24只。

练习题2:笼子里有鸡和兔子共40个头,100只脚。

鸡和兔子各有多少只?答案2:设鸡有a只,兔子有b只。

我们有以下方程:a +b = 402a + 4b = 100解这个方程组,我们得到:2a = 100 - 4ba = (100 - 4b) / 2将a的表达式代入第一个方程:(100 - 4b) / 2 + b = 40100 - 4b + 2b = 80b = 20将b的值代入a的表达式:a = (100 - 4 * 20) / 2a = 20所以,鸡有20只,兔子也有20只。

练习题3:一个笼子里有鸡和兔子共50个头,脚的总数是140只。

问鸡和兔子各有多少只?答案3:设鸡有c只,兔子有d只。

我们有以下方程:c +d = 502c + 4d = 140解这个方程组,我们得到:2c = 140 - 4dc = (140 - 4d) / 2将c的表达式代入第一个方程:(140 - 4d) / 2 + d = 50140 - 4d + 2d = 100d = 20将d的值代入c的表达式:c = (140 - 4 * 20) / 2c = 30所以,鸡有30只,兔子有20只。

鸡兔同笼问题题型归类及练习答案

鸡兔同笼问题题型归类及练习答案

鸡兔同笼问题一.意义:已知“鸡兔”的总头数和总腿数。

求“鸡”和“兔”各多少只。

解题关键:采用假设法,假设全是一种动物(如全是鸡或全是兔),然后根据腿的差数可以推断出一种动物的头数。

解题规律:假设全是鸡,兔子头数=(总腿数-鸡腿数)÷2;即兔子头数=(总腿数-2×总头数)÷2。

假设全是兔子,鸡的只数=(兔子腿数-总腿数)÷2,即鸡的只数=(4×总头数-总腿数)÷2列方程:兔子的腿+鸡的腿=总腿数4×兔子只数+2×鸡的只数=总腿数例1. 有鸡兔共30只,兔脚比鸡脚多60只,问鸡兔各多少只?解:兔数:(2×30+60)÷(2+4)=20(只);鸡数:30-20=10(只)解析:首先假设都是鸡,那么有60只脚,然后再加上鸡兔脚数之差,那么剩下的和兔数相同的鸡和兔,也就是相当也是一种六条腿的小怪物,所以再除以6,就自然得出兔子的数了。

例2. 小朋友们去划船,大船可以坐10人,小船坐6人,小朋友们共租了15只船,已知乘大船的人比乘小船的人多22人,问大船几只,小船几只?解:大船:(6×15+22)÷(6+10)=7(只);小船:15-7=8(只)或者小船:(10×15-22)÷(6+10)=8(只)大船:15-8=7(只)例3. 有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。

鸡兔各是多少只?解:鸡数:〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2 =20÷2=10(只)兔数:〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2 =12÷2=6(只)解析:首先用鸡兔互换的数相加,大家想想,那出来的结果是什么,是不是鸡兔的数都变成了鸡兔的总数,已经是变成了鸡兔总数只的六条腿的小怪物,所以(52+44)÷(4+2),得出的是鸡兔的和,这时其实就变成了一道普通的鸡兔同笼问题了,但如果我们再看看用鸡兔互换的数相减得到的是什么数,为什么交换了会有差捏,因为兔子4条腿,鸡2条腿,所以每把一只鸡换成一只兔子就会多出两条腿,所以(52-44)÷(4-2),得出的是鸡兔的差。

鸡兔同笼练习题及答案

鸡兔同笼练习题及答案

鸡兔同笼练习题及答案咱今天就来好好唠唠鸡兔同笼这个有趣的数学问题!记得我之前去给一个小朋友辅导作业,就碰到了这让人又爱又恨的鸡兔同笼。

小朋友瞪着大眼睛,一脸迷茫地看着题目,那模样简直太可爱了。

题目是这样的:笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有 94 只脚,问鸡和兔各有多少只?咱们先来分析分析这道题哈。

假设笼子里全是鸡,那脚的总数就应该是 35×2 = 70 只脚。

可实际有 94 只脚,多出来的脚就是兔子比鸡多的脚。

每只兔子比每只鸡多 4 2 = 2 只脚。

那多出来的脚 94 70 = 24 只,兔子的数量就是 24÷2 = 12 只。

鸡的数量就是 35 12 = 23 只。

下面再给大家来几道类似的练习题,练练手。

练习题 1:笼子里鸡兔共有 20 只,脚有 56 只,鸡兔各几只?咱们还是假设全是鸡,脚就应该是 20×2 = 40 只,实际 56 只,多了 56 40 = 16 只脚,兔子数量就是 16÷2 = 8 只,鸡就是 20 8 = 12 只。

练习题 2:一个笼子里有鸡和兔共 28 只,它们的脚一共有 88 只,鸡和兔分别有多少只?假设全是鸡,脚就是 28×2 = 56 只,实际 88 只,多了 88 56 = 32 只,兔子数量 32÷2 = 16 只,鸡就是 28 16 = 12 只。

练习题 3:鸡兔同笼,数头有 15 个,数脚有 46 只,问鸡兔各几只?假设全是鸡,脚有 15×2 = 30 只,实际 46 只,多了 46 30 = 16 只,兔子 16÷2 = 8 只,鸡 15 8 = 7 只。

答案来啦:练习题 1 中,鸡 12 只,兔 8 只。

练习题 2 中,鸡 12 只,兔 16 只。

练习题 3 中,鸡 7 只,兔 8 只。

大家看看自己做对了没?其实啊,解决鸡兔同笼问题的方法还有很多呢。

小学奥数趣味学习《鸡兔同笼问题》典型例题及解答

小学奥数趣味学习《鸡兔同笼问题》典型例题及解答

小学奥数趣味学习《鸡兔同笼问题》典型例题及解答兔同笼问题是古典的算术问题。

已知笼子里鸡、兔共有多少只头和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。

已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。

数量关系:第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)解题思路和方法:解此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。

如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。

这类问题也叫置换问题。

通过先假设,再置换,使问题得到解决。

例题1:鸡和兔在一个笼子里,共有35个头,94只脚,那么鸡有多少只,兔有多少只?解:假设笼子里全部都是鸡,每只鸡有2只脚,那么一共应该有35×2=70(只)脚,而实际有94只脚,这多出来的脚就是把兔子当作鸡多出来的,每只兔子比鸡多2只脚,一共多了94-70=24(只),则兔子有24÷2=12(只),那么鸡有35-12=23(只)。

例题2:动物园里有鸵鸟和长颈鹿共70只,其中鸵鸟的脚比长颈鹿多80只,那么鸵鸟有多少只,长颈鹿有多少只?解:假设全部都是鸵鸟,则一共有70×2=140(只)脚,此时长颈鹿的脚数是0,鸵鸟脚比长颈鹿脚多140只,而实际上鸵鸟的脚比长颈鹿多80只,因此鸵鸟脚与长颈鹿脚的差数多了140-80=60(只),这是因为把其中的长颈鹿换成了鸵鸟。

把每一只长颈鹿换成鸵鸟,鸵鸟的脚数将增加2只,长颈鹿的脚数减少4只,那么鸵鸟脚数与长颈鹿脚数的差就增加了6只,所以换成鸵鸟的长颈鹿有60÷6=10(只),鸵鸟有70-10=60(只)。

鸡兔同笼的练习题及答案

鸡兔同笼的练习题及答案

鸡兔同笼问题的练习题及答案一、基础题1. 有一个笼子里有鸡和兔,共有头30个,脚90只,请问笼子里各有几只鸡和兔?2. 鸡和兔共40只,脚共有112只,求鸡和兔各有多少只?3. 笼子里有鸡和兔共35只,脚共有94只,鸡和兔各有多少只?4. 笼子里有鸡和兔共18只,脚共有52只,求鸡和兔的数量。

5. 有一个笼子里鸡和兔共有26只,脚共有70只,问鸡和兔各有多少只?二、提高题6. 有两个笼子,第一个笼子里有鸡和兔共20只,脚共有60只;第二个笼子里有鸡和兔共25只,脚共有70只。

请问两个笼子中鸡和兔各有多少只?7. 有三个笼子,分别装有鸡和兔,第一个笼子共15只,第二个笼子共20只,第三个笼子共25只,三个笼子的脚总数为96只。

求每个笼子中鸡和兔的数量。

8. 笼子里有鸡和兔共30只,如果增加5只鸡,脚的总数将增加20只,求原来笼子里鸡和兔各有多少只?9. 笼子里有鸡和兔共50只,脚共有140只,如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将增加40只。

求原来鸡和兔各有多少只?10. 有两个笼子,第一个笼子里鸡和兔共15只,第二个笼子里鸡和兔共25只,两个笼子的脚总数为100只。

求两个笼子中鸡和兔各有多少只?三、拓展题11. 有三个笼子,分别装有鸡和兔,第一个笼子共10只,第二个笼子共15只,第三个笼子共20只,三个笼子的脚总数为68只。

求每个笼子中鸡和兔的数量。

12. 笼子里有鸡和兔共40只,脚共有110只。

如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将减少30只。

求原来鸡和兔各有多少只?13. 有四个笼子,分别装有鸡和兔,第一个笼子共8只,第二个笼子共12只,第三个笼子共16只,第四个笼子共20只,四个笼子的脚总数为只。

求每个笼子中鸡和兔的数量。

14. 笼子里有鸡和兔共60只,脚共有160只。

如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将增加40只。

求原来鸡和兔各有多少只?15. 有五个笼子,分别装有鸡和兔,每个笼子的鸡和兔总数分别为10、15、20、25、30只,五个笼子的脚总数为140只。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三年级奥数5 1 鸡兔同笼训练题【例1】鸡兔同笼,头共46,足共128,鸡兔各几只?【巩固】点点家养了一些鸡和兔子,同时养在一个笼子里,点点数了数,它们共有35个头,94只脚•问:点点家养的鸡和兔各有多少只?【巩固】鸡兔共有45只,关在同一个笼子中•每只鸡有两条腿,每只兔子有四条腿,笼中共有100条腿•试计算,笼中有鸡多少只?兔子多少只?【巩固】动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问:鸵鸟和大象各有多少?【巩固】鸡兔同笼,上有35头,下有94足,求笼中鸡兔各几只?【例2】动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只?【巩固】一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只?【巩固】鸡兔同笼,鸡、兔共有107只,兔的脚数比鸡的脚数多56只,问鸡、兔各多少只?【巩固】鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只?【巩固】鸡、兔共60只,鸡脚比兔脚多60只•问:鸡、兔各多少只?【巩固】鸡、兔同笼,鸡比兔多26只,足数共274只,问鸡、兔各几只?【巩固】鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?【例3】在一个停车场上,现有车辆41辆,其中汽车有4个轮子,摩托车有3个轮子,这些车共有127 个轮子,那么三轮摩托车有多少辆?【巩固】体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元、裤子每件19元,问老师买上衣和裤子各多少件?【巩固】小建和小雷做仰卧起坐,小建先做了3分钟,然后两人各做了5分钟,一共做仰卧起坐136次•已知每分钟小建比小雷平均多做4次,那么小建比小雷多做了多少次?【例4】(中国古代僧粥问题)一百个和尚刚好喝一百碗粥,一个大和尚喝三碗粥,三个小和尚喝一碗粥,那么大和尚有多少个,小和尚有多少个?【巩固】100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍.问:大、小和尚各有多少人?【巩固】100个和尚160个馍,大和尚1人分3个馍,小和尚1人分1个馍•问:大、小和尚各有多少人?【解析】从前有座山,山里有个庙,庙里有许多小和尚,两个小和尚用一根扁担一个桶抬水,一个小和尚用一根扁担两个桶挑水,共用了38根扁担和58个桶,那么有多少个小和尚抬水?多少个挑水?【例5】工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元•运完这批花瓶后,工人共得4400元,则损坏了多少个?【巩固】乐乐百货商店委托搬运站运送100只花瓶•双方商定每只运费1元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1元,结果搬运站共得运费92元•问:搬运过程中共打破了几只花瓶?【巩固】有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费元,问这次搬运中玻璃瓶破损了几只【例6】(2008年第八届“春蕾杯”小学数学邀请赛决赛)甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10发,共得208分,最后甲比乙多得64分,乙打中_ 发。

【巩固】某次数学竞赛,共有20道题,每道题做对得5分,没做或做错都要扣2分,小聪得了79分, 他做对了多少道题?【巩固】数学竞赛共有20道题,规定做对一道得5分,做错或不做倒扣3分,赵天在这次数学竞赛中得了60分,他做对了几道题?【巩固】东湖路小学三年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题都要倒扣2分.刘钢得了86分,问他做对了几道题?【巩固】(第八届“祖冲之杯”数学邀请赛填空题)【巩固】一张数学试卷,只有25道选择题•做对一题得4分,做错一题倒扣1分;如不做,不得分也不扣分•若小明得了78分,那么他做对___________________ 题,做错 ________ 题,没做_________ 题. 【巩固】春风小学3名云参加数学竞赛,共10道题,答对一道题得10分,答错一道题扣3分,这3 名同学都回答了所有的题,小明得了87分,小红得了74分,小华得了9分,他们三人一共答对了 ____ 道题.【巩固】某次考试有52人参加,共考5道题,每题做错人数的统计表如下图.还知道每人都至少做对1道题,做对1道题的有7人,5道题全对的有6人,做对2道题和3 道题的人数一样多•那么做对4道题的人数是多少?【例7】(小学数学奥林匹克初赛试题)孙阿姨有贰元人民币和伍元人民币共62张,合计226元,孙阿姨这两种人民币各有多少张?【巩固】小华用二元五角钱买了面值二角和一角的邮票共17张,问两种邮票各买多少张?【巩固】有1元和5元的人民币共17张,合计49元,两种面值的人民币各有多少张?【巩固】小同有一个储蓄筒,存放的都是硬币,其中2分币比5分币多22个;按钱数算,5分币却比2分币多4角;另外,还有36个1分币•小同共存了多少钱?【巩固】买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张【巩固】四年级的同学们去春游,按团体购票120张,共432元,其中单程票每张2元,往返票4元, 那么单程票和往返票相差多少张?【巩固】李明和张亮轮流打一份稿件,李明每天打15页,张亮每天打10页,他们一连打了25天,平均每天打12页,问李明、张亮各打了多少天?【解析】某学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人, 那么其中有多少间大宿舍?【巩固】(2000年北京市“迎春杯”决赛)使用甲种农药每千克要兑水20千克,使用乙种农药每千克要兑水40千克.根据农科院专家的意见,把两种农药混起来用可以提高药效,现有两种农药共50千克,要配药水1400千克,那么,其中甲种农药用了多少千克?【例8】小红家养了一些鸡,黄鸡比黑鸡多13只,比白鸡少18只.白鸡的只数是黄鸡的2倍,白鸡、黄鸡、黑鸡一共有多少只?【巩固】现有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大小桶各多少个?【巩固】三(1)班有象棋、飞行棋共14副,恰好可供全班40名同学同时进行活动. 象棋要2人下一副,飞行棋要4人下一副,则飞行棋和跳棋各有几副?【巩固】一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆•已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?【巩固】王老师带了41名同学去北海公园划船,共租了10条船•每条大船坐6人,每条小船坐4人,问大船、小船各租几条?【巩固】松鼠妈妈采松果,晴天每天可以采20个,雨天每天只能采14个.它一连几天采了112个松果,平均每天采14个•问这几天中有几个雨天?【巩固】小松鼠采松果,晴天每天可以采10个,雨天每天只能采6个•它一连几天采了80个松果,平均每天采8个.那么其中有几天是雨天呢?例9 】某旅游点有儿童票、成人票两种规格的门票卖,儿童票的价格为30元,成人票的价格为40 元,如果是团体还可以买平均32 元一位的团体票,一个由8 个家庭组成的旅游团(每个家庭由两位大人,或两个大人、一个小孩组成)来景点旅游,如果他们买团体票那么可以比他们各买各的少花120 元,问这个旅游团一共有多少人?巩固】有两次自然测验,第一次24 道题,答对 1 题得5 分,答错(包含不答)1 题倒扣1 分;第二次15 道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30 道题,但第一次测验得分比第二次测验得分多10 分,问小明两次测验各得多少分?例10 】大、小猴共35 只,它们一起去采摘水蜜桃.猴王不在时,一只大猴一个小时可采摘15千克,一只小猴子一小时可摘11千克;猴王在场监督的时候,每只猴子不论大小每小时都可以多采摘12千克.一天,采摘了8 小时,其中第一小时和最后一小时猴王在监督,结果共采摘了4400 千克水蜜桃.在这个猴群中,共有小猴子多少只?例11】今年是1998 年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002 年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3 倍时,是公元哪一年?例12 】一份稿件, 甲单独打字需6小时完成.乙单独打字需10小时完成, 现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时. 甲打字用了多少小时?例13 】有蜘蛛、蜻蜓、蝉三种动物共18 只,共有腿118条,翅膀20对(蜘蛛8 条腿;蜻蜓 6 条腿,两对翅膀;蝉6 条腿,一对翅膀),求蜻蜓有多少只?巩固】食品店上午卖出每千克为20 元、25元、30元的3种糖果共100 千克,共收入2570元.已知其中售出每千克25 元和每千克30 元的糖果共收入了1970 元,那么,每千克25 元的糖果售出了多少千克?例14 】(希望杯培训题)例15 】在一次考试中有选择题、填空题和解答题三类题共22道.选择题和填空题每题4 分,解答题每题10分.这次考试总分是100分,其中选择题和解答题的分值比填空题多 4 分,这次考试有多少道选择题?多少道填空题?多少道解答题?例16 】犀牛、羚羊、孔雀三种动物共有头26 个,脚80 只,犄角20 只.已知犀牛有4 只脚、1 只犄角,羚羊有4 只脚,2 只犄角,孔雀有2 只脚,没有犄角.那么,犀牛、羚羊、孔雀各有几只呢?巩固】某次数学考试考五道题,全班52人参加,共做对181 道题,已知每人至少做对1道题,做对1道的有7人,5 道全对的有 6 人,做对2道和3道的人数一样多,那么做对 4 道的人数有多少人?巩固】有红、黄、绿3种颜色的卡片共有100张,其中红色卡片的两面上分别写有1和2 ,黄色卡片的两面上分别写着1和3 ,绿色卡片的两面上分别写着2和3.现在把这些卡片放在桌子上,让每张卡片写有较大数字的那面朝上,经计算,各卡片上所显示的数字之和为234 .若把所有卡片正反面翻转一下,各卡片所显示的数字之和则变成123.问黄色卡片有多少张?例11】箱子里红、白两种玻璃球,红球数是白球数的3倍多2 只,每次从箱子里取出7 只白球、15只红球.如果经过若干次以后,箱子里剩下3只白球、53只红球.那么箱子里原有红球多少只?例17 】商店出售大,中,小气球,大球每个3元,中球每个元,小球每个1元.张老师用120 元共买了55 个球,其中买中球的钱与买小球的钱恰好一样多. 问每种球各买几个?例18 】从甲地至乙地全长45 千米, 有上坡路, 平路, 下坡路. 李强上坡速度是每小时 3 千米,平路上速度是每小时5千米,下坡速度是每小时6千米.从甲地到乙地,李强行走了10小时;从乙地到甲地,李强行走了11 小时.问从甲地到乙地,各种路段分别是多少千米例19 】某商场为招揽顾客举办购物抽奖. 奖金有三种: 一等奖1000 元,二等奖250 元,三等奖50 元.共有100人中奖,奖金总额为9500 元.问二等奖有多少名?例20 】有50 位同学前往参观, 乘电车前往每人元, 乘小巴前往每人4 元, 乘地下铁路前往每人6 元.这些同学共用了车费110 元,问其中乘小巴的同学有多少位?例21 】一些奇异的动物在草坪上聚会.有独脚兽(1个头、1只脚)、双头龙(2个头、4只脚)、三脚猫(1个头、3只脚)和四脚蛇(1个头、4只脚).如果草坪上的动物共有58 个头、160 只脚,且四脚蛇的数量恰好是双头龙的 2 倍,那么其中独脚兽有几只?例22 】学校组织新年游艺晚会, 用于奖品的铅笔, 圆珠笔和钢笔共232 支, 共花了300 元. 其中铅笔数量是圆珠笔的4倍.已知铅笔每支元,圆珠笔每支元, 钢笔每支元. 问三种笔各有多少支?。

相关文档
最新文档