表面活性剂在色谱分析中的应用
表面活性剂在分析化学中的应用及其展望

三 、 面 活 性 剂 在 化 学 分 析 中 的具 体 应 用 表
我们主要介 绍表面活性剂在化 学分析 中的增溶 、 敏 、 择 、 稳 、 增 增 增
增速 、 色 、 化 、 散、 化 、 褪 催 分 乳 富集 等 各 种 作 用 。
31分光 光 度 中 的应 用 .
二 、 面 活 性 剂 的 分 类 、 构 及 其 性 质 表 结
21. 00 3 O
西部大开发 ・ 中旬
W E ST C HI NA D EVELo PM ENT
实 证 分 析
表 面活性 剂在 分析化学 中的应用及其展 望
常 飞
( 里 学 院 ,贵 州 凯 凯里 56 0 5 0 0)
表面活性剂对超高效液相色谱—串联四级杆质谱检测水中农药的影响及消除

表面活性剂对超高效液相色谱—串联四级杆质谱检测水中农药的影响及消除由于农药的大量使用,这些有害物质中包括相当一部分属于难降解有毒物质,会随着地表径流和地下渗流进入天然水体造成不同程度的污染。
农药对水源的污染使这些有毒化合物的检测成为水质管理方面的重要研究课题。
同时,由于表面活性剂在化工及生活领域广泛生产使用,这些化合物也会以不同途径进入天然水体而造成一定程度的污染。
当水体中含有表面活性剂时,即使浓度很低也可能会对农药的检测带来负面影响,特别对与液相色谱分离相关的方法。
而这些影响在目前已发表的相关研究文献中还没有报道。
本论文研究了超高效液相色谱-串联四极杆质谱联用仪在开发农药检测方法,讨论了当溶液中存在表面活性剂十二烷基硫酸钠(SDS)会对色谱的分离及由此产生的对农药检测信号的抑制影响。
同时,为了消除SDS的基质效应影响而能准确的测定水样中农药的含量,研究提出了一种选择性固相萃取方法。
通过系统试验研究,这种选择性固相萃取方法可以将表面活性剂SDS从农药溶液中吸附去除,同时又能将农药保留在溶液当中从而消除SDS基质效应对农药检测的影响。
在这些研究基础上,论文提出并建立了一种使用超高效液相色谱-串联四极杆质谱联用仪在有表面活性剂基质影响条件下的有效的农药检测方法。
本本论文主要试验研究成果如下:(1)在农药样品中表面活性剂即使浓度很低(如SDS<20μg·L<sup>-1</sup>)也会影响农药的样品的色谱分离使农药的检测峰面积信号受到明显抑制。
试验也表明采用固相萃取柱(LiChrolut EN柱、Oasis HLB柱、Isolute C18柱)对样品进行预处理后不能消除SDS基质效应的影响。
(2)在液相色谱分离基本原理的基础上提出了一种选择性固相萃取方法。
试验首先分析了四种吸附剂石英砂、方解石、高岭土以及氧化铝对SDS吸附强度性能。
发现在给定的农药浓度范围内,四种吸附剂对农药在水溶液中的吸附强弱取决于农药的种类、吸附剂的类型和表面积。
表面活性剂HLB值与浊点的分析测定与计算

表面活性剂HLB值与浊点的分析测定与计算表面活性剂之所以能得到广泛的应用就是因为它的两亲性,其两亲性的相对大小称为 HLB 值,是选择和应用表面活性剂的一个重要参考因素,有关表面活性剂 HLB 值的分析和计算已有不少报道,但缺乏完整系统的资料 ,特别是不同方法的适用性尚未见综合分析比较 , 不利于表面活性剂的开发应用 , 作者对有关资料进行了归纳整理 , 并对有关分析测试和相应的计算方法及其应用范围进行了分析。
1乳化法乳化法的原理是用表面活性剂来乳化油相介质时 , 当表面活性剂的 HLB 值与油相介质所需的 HLB 值相同时 , 生成的乳液稳定性最好。
对于一般的水性表面活性剂 , 可以使用松节油(所需 HLB 值为 16)和棉籽油(所需 HLB 值为 6)配制一系列需要不同 HLB 值的油相,每 15 份油相中加入 5 份待测表面活性剂,然后加入 80 份水,搅拌乳化,其中稳定性最好的试样中油相所需的 HLB 值就是表面活性剂的 HLB 值。
对于油性表面活性剂,可以固定油相为棉籽油,用另外一种水溶性较大的表面活性剂如司盘 60(所需HLB 值为 14.9)与待测表面活性剂配制成不同比例的系列复合乳化剂 , 根据上述相同的方法。
也可测出表面活性剂的 HLB 值。
在应用乳化法时要注意以下两个方面的问题 : 一混合表面活性剂的 HLB 值的计算,现在基本上都采用重量加和法,是一种粗略的算法;二是当待测表面活性剂的乳化力较强时,测得的 HLB 值是一个范围。
一般的表面活性剂都可以采用乳化法测出 HLB 值。
对于特殊新型结构的表面活性剂,采用乳化法也可以得到可靠的结果,此法的缺点是比较繁琐、费时。
2浊点法 /浊数法浊点法的原理是聚氧乙烯醚型非离子表面活性剂的 HLB 值与它的水溶液发生混浊的温度之间有一定的关系 , 通过测定浊点可以得知它的 HLB 值。
浊点测定时可将 1% 左右的表面活性剂水溶液置于大试管中,液面高 50mm, 在甘油浴中边搅拌边缓慢加热,当溶液透明度降低而变混浊时,试管内的温度就是表面活性剂的浊点。
表面活性剂HLB值与浊点的分析测定与计算

表面活性剂HLB值与浊点的分析测定与计算表面活性剂之所以能得到广泛的应用就是因为它的两亲性,其两亲性的相对大小称为HLB 值,是选择和应用表面活性剂的一个重要参考因素,有关表面活性剂HLB 值的分析和计算已有不少报道,但缺乏完整系统的资料,特别是不同方法的适用性尚未见综合分析比较, 不利于表面活性剂的开发应用, 作者对有关资料进行了归纳整理, 并对有关分析测试和相应的计算方法及其应用范围进行了分析。
1 乳化法乳化法的原理是用表面活性剂来乳化油相介质时, 当表面活性剂的HLB 值与油相介质所需的HLB 值相同时, 生成的乳液稳定性最好。
对于一般的水性表面活性剂, 可以使用松节油( 所需HLB 值为16) 和棉籽油( 所需HLB 值为6) 配制一系列需要不同HLB 值的油相,每15 份油相中加入 5 份待测表面活性剂,然后加入80份水,搅拌乳化,其中稳定性最好的试样中油相所需的HLB值就是表面活性剂的HLB 值。
对于油性表面活性剂,可以固定油相为棉籽油,用另外一种水溶性较大的表面活性剂如司盘60( 所需HLB 值为14.9) 与待测表面活性剂配制成不同比例的系列复合乳化剂, 根据上述相同的方法。
也可测出表面活性剂的HLB 值。
在应用乳化法时要注意以下两个方面的问题: 一混合表面活性剂的HLB 值的计算,现在基本上都采用重量加和法,是一种粗略的算法;二是当待测表面活性剂的乳化力较强时,测得的HLB 值是一个范围。
一般的表面活性剂都可以采用乳化法测出HLB 值。
对于特殊新型结构的表面活性剂,采用乳化法也可以得到可靠的结果,此法的缺点是比较繁琐、费时。
2 浊点法/浊数法浊点法的原理是聚氧乙烯醚型非离子表面活性剂的HLB 值与它的水溶液发生混浊的温度之间有一定的关系, 通过测定浊点可以得知它的HLB 值。
浊点测定时可将1% 左右的表面活性剂水溶液置于大试管中,液面高50mm, 在甘油浴中边搅拌边缓慢加热,当溶液透明度降低而变混浊时,试管内的温度就是表面活性剂的浊点。
离子色谱法测定羟乙基磺酸钠含量

离子色谱法测定羟乙基磺酸钠含量在化学分析领域中,离子色谱法是一种常用的分离和测定方法,特别适合对离子物质进行检测。
而羟乙基磺酸钠是一种重要的表面活性剂,广泛应用于日化、医药、冶金等领域,因此对其含量进行准确测定具有重要意义。
1. 离子色谱法的原理离子色谱法是利用离子色谱柱对样品中的离子进行分离,通过对流动相和固定相的选择,使得不同离子在色谱柱中产生不同的保留时间,从而实现离子的分离和测定。
在测定羟乙基磺酸钠含量时,可以选择不同的色谱柱和流动相,使得其在色谱柱中得到很好的分离和检测。
2. 离子色谱法测定羟乙基磺酸钠含量的步骤在进行离子色谱法测定羟乙基磺酸钠含量时,首先需准备好标准溶液和样品溶液,然后进行色谱柱的平衡和流动相的准备。
接下来,将标准溶液和样品溶液注入色谱仪中,利用色谱条件进行分离,最终得到含量结果。
3. 离子色谱法测定羟乙基磺酸钠含量的优势离子色谱法测定羟乙基磺酸钠含量具有操作简便、分离效果好、准确度高等优势。
与传统的分析方法相比,离子色谱法在检测灵敏度和准确性上均有很大的提高,能够更好地满足对羟乙基磺酸钠含量的测定要求。
4. 个人观点和总结从离子色谱法测定羟乙基磺酸钠含量的过程中,可以看出该方法操作简便、结果准确,并且在实际应用中具有广泛的适用性。
对于羟乙基磺酸钠这类物质的测定,离子色谱法能够提供更多可靠的数据支持,为相关领域的研究和生产提供了重要的技术支持。
以上是对离子色谱法测定羟乙基磺酸钠含量的深入探讨,希望能够对您有所帮助。
离子色谱法是一种重要的分析技术,在化学分析领域具有广泛的应用。
羟乙基磺酸钠是一种常用的表面活性剂,用途广泛,在日化、医药、冶金等领域都有重要的应用价值。
对羟乙基磺酸钠的含量进行准确测定具有重要的意义。
离子色谱法可以在测定羟乙基磺酸钠含量时提供准确、灵敏的分析结果,为相关领域的研究和生产提供重要的技术支持。
在离子色谱法测定羟乙基磺酸钠含量时,首先需要准备标准溶液和待测样品溶液。
利用光谱和色谱技术联合解析非离子表面活性剂

收稿日期223基金项目新疆兵团科技攻关项目(6G S )作者简介李洪玲(2),副教授,博士生,从事油田化学品和物理化学研究;2�@z 。
第25卷 第6期2007年12月石河子大学学报(自然科学版)Journal of Shihezi University (Natural S cience )V ol.25 N o.6D ec.2007文章编号:100727383(2007)0620746203利用光谱和色谱技术联合解析非离子表面活性剂李洪玲1,王明宪2,陈 宇1,林向阳2,许海涛2,代 斌1(1石河子大学化学化工学院,新疆石河子832003;2克拉玛依奥克化学有限公司,新疆克拉玛依834007)摘要:非离子表面活性剂是油田采油和生物发酵过程中重要的常用助剂,随着石油开采以及生物化工的发展,对于助剂的需求日趋增加。
本文主要对目前市场广泛使用的助剂进行解析,利用红外光谱、核磁共振、柱色谱以及薄层色谱等光谱色谱技术对非离子表面活性剂的结构进行表征,为开发国内新型非离子表面活性剂提供技术资料。
关键词:非离子表面活性剂;红外光谱;核磁共振;解析中图分类号:TE 39;T E356.46 文献标识码:A 表面活性剂是指能以极低的浓度就能显著降低溶剂表面张力的物质。
它们的分子结构有着共同的特点,即分子都是由非极性的憎水基与极性的亲水基两部分构成,结构与性能截然相反的分子碎片或基团处于同一分子的两端,并以化学键相连接,形成了一种不对称的、极性的结构。
因而这类分子具有既亲水,又亲油,但又不具有整体亲水或亲油的特性[1]。
表面活性剂可分为离子表面活性剂和非离子表面活性剂。
非离子表面活性剂按分子结构可分为聚氧乙烯衍生物、聚醚、烷基醇酰胺、脂肪酸多元醇酯和烷基多苷等。
聚氧乙烯衍生物又可按疏水基原料的不同分为脂肪醇聚氧乙烯醚、脂肪酸聚氧乙烯酯、聚氧乙烯酰胺、烷基酚聚氧乙烯醚、聚氧乙烯脂肪胺、吐温和其他聚氧乙烯系非离子表面活性剂等系列。
固相萃取-高效液相色谱(SPE-LC)法测定生活污水阴离子表面活性剂

固相萃取-高效液相色谱(SPE-LC)法测定生活污水阴离子表面活性剂固相萃取-高效液相色谱(SPE-LC)法测定生活污水阴离子表面活性剂引言:随着社会经济的快速发展和人口数量的不断增加,生活污水的处理成为一个重要且紧迫的问题。
生活污水中存在着各种有机物质,包括表面活性剂。
表面活性剂是一类广泛存在于生活污水中的物质,由于其强大的溶解能力和分散能力广泛应用于日常生活和工业生产中。
然而,过量的表面活性剂可能对水环境造成负面影响,因此对其测定和去除具有重要意义。
本文将介绍一种新的分析方法——固相萃取-高效液相色谱(SPE-LC)法用于生活污水中阴离子表面活性剂的测定。
该方法结合了固相萃取和高效液相色谱技术的优势,能够快速、准确地测定生活污水中的阴离子表面活性剂。
实验方法:1. 样品处理:首先,收集生活污水样品,并经过初步处理去除大颗粒物质。
然后,将样品置于加热搅拌下,在其中加入适量的盐酸进行酸化处理,使阴离子表面活性剂转化为相应的负离子态。
2. SPE-LC测定:将经酸化处理的样品经过固相萃取柱进行富集。
固相萃取柱选择合适的固相吸附材料,具备强大的吸附能力和高选择性,可以有效地富集阴离子表面活性剂。
随后,采用高效液相色谱仪进行定量分析。
高效液相色谱仪配备合适的色谱柱和检测器,能够快速、准确地分离和检测样品中的阴离子表面活性剂。
结果与讨论:通过对不同浓度的阴离子表面活性剂标准溶液进行测试,得到了线性范围和灵敏度。
通过检测实际生活污水样品,确定了该方法对生活污水中阴离子表面活性剂的测定具有较高的准确性和重现性。
此外,本方法还具有较短的分析时间和所需样品量较少的优点。
结论:固相萃取-高效液相色谱(SPE-LC)法是一种可行的方法,用于生活污水中阴离子表面活性剂的测定。
该方法具有准确性高、重现性好、分析时间短和样品消耗少的特点,为生活污水处理过程中对阴离子表面活性剂的监测和控制提供了有效手段。
然而,仍需要进一步研究优化该方法的操作参数,并对其他污水中的阴离子表面活性剂进行测定,以更好地解决生活污水处理中的问题通过使用盐酸进行酸化处理,将阴离子表面活性剂转化为相应的负离子态。
生物表面活性剂的分离提纯及其应用前景

生物表面活性剂的制备、提纯及其应用摘要:生物表面活性剂是由微生物产生的天然产物,具有表面活性高、对环境无污染、生物可降解性及良好的抑菌作用等优于化学合成的表面活性剂的独特性质。
本文对生物表面活性剂的合成方法进行了介绍,对生物表面活性剂在石油工业、环境工业、医药、食品、农业和化妆品工业等领域的应用进行了总结,展望了生物表面活性剂的良好应用前景。
关键词:生物表面活性剂制备提纯应用生物表面活性剂主要是由微生物在好氧或厌氧条件下在碳源培养基中生长时产生的。
这些碳源可以是碳水化合物、烃类、油、脂肪或者是它们的混合物。
生物表面活性剂可分为非离子型和阴离子型, 阳离子型较为少见。
像其它表面活性物质一样, 生物表面活性剂由一个或多个亲水性和憎水性基团组成, 亲水基可以是酯、羟基、磷酸盐、或羧酸盐基团、或者是糖基, 憎水基可以是蛋白质或者是含有憎水性支链的缩氨酸。
根据生物表面活性剂的结构特点, 可将其分为5 类:糖脂、脂肽、多糖蛋白质络合物、磷脂和脂肪酸或中性脂。
和传统的化学合成的表面活性剂相比, 生物表面活性剂有许多明显的优势:(1)更强的表面和界面活性;(2)对热的稳定性;(3)对离子强度的稳定性;(4)生物可降解性;(5) 破乳性。
由于这些显著特点, 使生物表面活性剂在一些方面可以逐渐代替化学合成的表面活性剂, 而且应用也越来越广泛。
1 生物表面活性剂的性质、分类及制备1. 1 生物表面活性剂的特性生物表面活性剂分子结构包含极性基团和非极性基团,是一种具有亲水、疏水两性特点的生物大分子化合物。
生物表面活性剂分子的亲水基和疏水基可以由不同的分子成分组成。
生物表面活性剂与其他表面活性剂比较,主要特性就是无毒性、稳定性好、耐酸耐盐性好、可以被生物降解、对环境无污染及抗菌性。
1. 2 生物表面活性剂的分类生物表面活性剂根据其化学结构的不同,可以分为酰基缩氨酸系、糖脂系、磷脂系、高分子聚合物和脂肪酸系表面活性剂五类,如表1 所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表面活性剂在色谱分析中的应用摘要:本文综述了表面活性剂在色谱分析中的应用,具体介绍了在毛细管电动色谱(MECC)、胶束电动毛细管色谱中(MEKC)、胶束液相色谱(MLC)中的应用,并对表面活性剂的应用前景进行了展望。
关键词:表面活性剂;毛细管电动色谱;胶束电动毛细管色谱;胶束液相色谱Abstract:This review surveys the application of surfactants in the chromatographic analysis,which are detail introduced in the capillary electrokinetic chromatography (MECC), micellar electrokinetic chromatography (MEKC), micellar liquid chromatography (MLC). The prospect of the applications of surfactants are discussed.Key words:surfactant;MECC;MEKC;MLC表面活性剂(SA)中有一类同时具有亲水基和亲油基,其结构中的一部分具有亲水性质,另一部分具有亲油性质(疏水性质),这种特殊结构决定了它与众不同的特性。
表面活性剂包括阳、阴、非离子型及两性型四种基本类型以及混合与聚合型等表面活性剂(分别记为CAS、ASA、NSA、ZSA及MSA、PSA),它们在分析化学中已获得广泛应用。
SA在色谱中的应用也取得显著成效,其中胶束色谱(MC)的诞生,标志着这一领域的日益成熟,并为众多的研究者们所重视,本文对这些成果予以系统总结,以期深入广泛地开展有关研究。
1.胶束色谱机理与表面活性剂的作用自70年代末期Armstrong等[1]将SA胶束溶液作为流动相引入薄层色谱(TLC)和高效液相色谱(HPLC)以来,开辟了胶束色谱新的领域。
许多分析家相继将SA或引入色谱流动相(作洗脱剂,萃取剂或离子对试剂),或用作显色剂及检测信号增敏剂,或用于浸溃及涂敷固定相等。
在无机、有机、药物和生化样品等的分离与分析中获得广泛的应用。
SA的共同特性是当SA浓度大于临界胶束浓度(cmc)时,形成有序排列,即胶束状分子聚集体,在极性溶剂(如水)中形成极性端基向外而碳链在内的正相胶束(normal micelle,简称胶束);而在非极性溶剂(如环已烷)中形成极性端基在内而碳链伸展在外的逆(反)胶束,前者为水包油型(O/W),后者为油包水型(W/O)。
胶束中的SA与本体溶液中游离的SA处于动态平衡中。
在cmc以上,增加SA总浓度只能增加溶液中胶束浓度而游离SA 浓度几乎保持不变。
MC较常规色谱有着独特的优越性及某些不足处:即①专属性或选择性好,一般只需调节流动相中所用SA浓度便能改变流动相的表观极性以改善分离效果;②应用范围广,MC 既可分离亲水性物质,又可分离亲脂性物质或两亲性物质,还能同时分离亲水、亲脂性物质。
特别是逆胶束色谱更扩大了应用对象,且分离效果好,在反相(RP)色谱中尤显示其优越性;③所用SA的价廉,且一般无毒,不挥发不燃烧,使用安全;④适用于各种形式的色谱,如纸色谱(PC)、TLC、HPLC、气相色谱(GC),毛细管区域电泳(CPZ,相应称胶束电泳毛细管色谱MECC)及凝胶过滤色谱等;⑤检测灵敏度高,胶束流动相及固定相可增加检测信号强度及其稳定性,特别是荧光与磷光信号。
所建立的室温磷光(RTP)-HPLC分析法检测下限低、线性范围宽;⑥有利于梯度洗脱,改善操作条件,增大SA浓度主要使胶束浓度增大(而游离单体浓度不变),能实现梯度洗脱并降低损耗,缩短分析时间;⑦不足处仍是MC不适于色谱制备分离,且有时柱效较常规色谱低。
胶束体系较常用的单纯或混合有机溶剂体系有很大区别,可与溶质发生下列作用:①静电相互作用(electrostatic interaction),即离子型SA形成的荷电胶束能吸引相反电荷的溶质于其表面;②憎水相互作用(hydrophobic interaction),非极性及不易极化的物质或通过憎水作用分配于疏水内蕊;③静电/憎水双重作用,兼具亲水亲脂基团的两亲物质(如氨基酸等)可通过憎水/静电双重作用分配于胶束的SA定向分子之间形成“栅栏”结构,非极性碳氢链插入胶束内部,而极性端基混于SA极基之间,通过偶极子或氢健作用联系起来;④亲核作用,某些含氧SA与溶质分子可形成氢键。
此外尚有空阻作用等。
有关MC机理研究正在不断深入。
Armstrong等研究MLC中溶质分配行为时建立了固定相S,胶束相(拟似相或拟均相)M,与水相W的三相模型(图1),给出如下分配公式:V s/(V e-V m)=V(K MH-1)c m/K SW+1/K SW,并能计算溶质各分配系数K SW、K MW、K SM,奠定了MC 理论基础。
Love等基于胶束效应及三相模型导出有关胶束流动相容量因子的计算公式,并算出平衡常数K MW;更重要的是倘若平衡常数可用独立的方法得到,便可由此准确地预期色谱容量因子。
这意味着经过色谱测量可能准地预计色谱保留行为。
唯混合流动相目标尚未能实现。
Armstrong还依据七种染料溶质的色谱行为评价了它们与胶束的作用,并分为结合、非结合及反结合三种类型,指出胶束自身及环境的较小变化能引起溶质胶束相互作用较显著变化。
Yarmchuk等发现溶质保留的递减顺序随SA浓度增大而颠倒的原因,乃是两种平衡竞争的结果所致,其容量因子的对数与SA浓度的对数成线性递减关系。
对于可离子化的物种即有机弱酸、弱碱的胶束色谱机制还提出了相差分配模型。
Pramaura研究发现,溶质保留对胶束浓度、缔合常数与分配系数有依赖关系。
极性溶质还受到SA吸附量的影响。
姬尚强依据疏水理论研究结果指出非极性分子滞留主要取决于流动相所施加的疏水作用,即体系熵值增加而非固定相则对溶质分子产生强烈的吸引。
Tang以NSA为洗脱剂考察两性物质的反相色谱行为,指出SA浓度增加降低了表面张力,因而减小了保留时间。
研究还发现胶束溶液能减小电位检测的基线电流漂移。
Landy等考察了逆胶束LC的快速洗提能力。
Kim将PV A柱MLC用于分析血清中核苦酸及碱基时考察了pH值、温度、胶束浓度的影响,提出了有关作用机理。
荷电SA已广泛用作流动相,改善荷电溶质的分配特性。
离子交换模型(保留机制)认为,SA疏水部分吸附于非极性键合柱上,使柱行为象一离子交换器或称该机制为“溶剂再生(动态的)离子交换色谱”并得到支持。
还对离子对模型与憎溶进行了理论解释,认为流动相中荷电SA先与相反荷电溶质结合在极性溶剂中形成不带电的离子对,然后吸附在非极性固定相上。
离子相互作用模型认为,SA的亲脂部分吸附在固定相中为第一层,反电荷离子占第二层,即形成一双电层结构,在SA与溶质间建立起一动态平衡,这可以解释某些现象。
与此同时,还提出了一个含有4个参数的热力学平衡的亲电SA色谱行为的定量离子作用模型,对非荷电SA可予以简化。
MLC不足处是柱效降低。
Dorsey考察了其原因并提出解决办法,认为固定相不易被胶束水溶液相所润湿而导致低效传质,这点已被Foley所证实。
他发现低浓度有机溶剂改性剂可修饰改良固定相表面,为高效传质提供了润湿的固定相。
升高温度能克服胶束流动相高粘度的缺点而改善了峰形。
实验表明,含3-6%丙醇的胶束流动相在40℃柱温下柱效接近常规有机溶剂。
改性剂以正丙醇最佳,其他如甲醇、乙醇、乙腈等对胶束流动相增加效率甚少。
实际上3%(V/V)丙醇改性剂使C18固定相90%以上的表面被覆盖,同浓度的甲醇改性剂则表面覆盖率仅50%;疏水表面以中等极性溶剂覆盖(使固相溶剂化),可起到相转移催化剂作用,有利于溶剂的胶束/固相传质转移,提高色谱效率。
仅用SDS则本身将被吸附于固定相上使之不易溶剂化,因而柱效降低。
Hinze对NSA作MLC流动相进行了评价,证实了MLC效率降低系因固定相低效传质所致,发现NSA比离子型SA被固定相吸附更显著,MLC 效率降低与固定相吸附SA量有关,似存一线性关系。
Yarmchuk根据溶质在固定相的吸附/脱附动态平衡及溶质相对流动相胶束的进/出平衡,建立了MC传质模型以解释低效的原因,指出为提高传质效率应升高温度,降低线速率与胶束浓度。
Armstrong研究了胶束对分子扩散的影响,指出流动相的传质影响会被其他因素所掩盖,所以减少流动相胶束浓度以提高色谱效率未必一定有效。
2.表面活性剂在毛细管电动色谱(MECC)中的应用2.1 MECC的理论研究十年来,最受分析化学界瞩目的发展之一,是高效毛细管电泳(HPCE)的兴起。
HPCE 以其分离效率高、样品用量少、分析时间短、运行成本低等优点,获得了越来越多的生化学家和分析化学家的研究和应用,并向成熟的高效液相色谱(HPLC)技术提出了挑战。
在以往的概念和应用中,电泳技术只用来分离离子化合物。
1984年,Terabe等提出了HPCE的“假固定相”概念,他们将阴离子表面活性剂十二烷基硫酸钠(SDS)加入电解质溶液中,分离了中性分子。
他们的工作被称为电泳发展中的“里程碑”。
自此,各种不同的表面活性剂,包括阴离子表面活性剂、阳离子表面活性剂和非离子表面活性剂,都被陆续用于电泳分离并获得成功。
表面活性剂的应用大大提高了电泳分离氨基酸及其衍生物、肽、蛋白质、核酸及其组份、药物等生化物质的能力,同时为无机离子分析另辟新径,并在HPCE中树起一帜,成为被称为毛细管电动色谱(MECC)的重要一支。
一般认为,烷基链碳数不足8的表便活性剂不能形成胶束,而MECC终表面活性剂的浓度必须大于它的临界胶束浓度。
在MECC中采用最多的是阴离子表面活性剂,SDS是最常用的阴离子表面活性剂。
在MECC中,被分析物质在水相和胶束相中进行分配,溶质在水相中的迁移受电渗流的支配,而在胶束相中的迁移是电渗流和胶束电迁移共同作用的结果,不同物质根据其电迁移率及分配系数的不同而被分离。
近年来,有关MECC的理论研究不断深入。
Burton等[2]评估过两种阴离子表面活性剂及两种阳离子表面活性剂对一些芳香化合物的分离的影响。
Khaledi等[3]人描述了酸性及碱性化合物在MECC中的各种模式,讨论了迁移时间,电迁移率,pH值和表面活性剂浓度之间的关系。
2.2 阴离子表面活性剂的应用2.2.1 SDS-MECC的改良新技术SDS作为MECC中最常见的阴离子表面活性剂,已成功地应用于许多化合物尤其是生化分子的分离。
随着研究的深入,人们对SDS-MECC进行了许多改进尝试,以满足更高要求的分离的需要。
以下是对近年来发展的一些改良技术的简介:2.2.1.1 环糊精的应用Tarebe等[4]首次提出用环糊精(CD)作为MECC的添加剂,CD可以喝SDS同时使用,亦可完全取代SDS。