气相色谱法在分析中的应用(精)

合集下载

气相色谱分析法在药物分析中的应用PPT课件

气相色谱分析法在药物分析中的应用PPT课件
2019/7/29
第六章
一、中药材分析
气相色谱法在药 二、中成药和中药制品 物分析中的应用 的分析
第二节 气相色谱法在 中药分析中的
应用
三、中药中农药残留 的分析
2019/7/29
一、中药材分析 GC在中药材分析中主要用于药材中挥发性油类有 效成分或指标性成分,以及测定药材中农药的残 留量。
如:薄荷药材中薄荷醇和薄荷酮,丁香药材中丁香酚, 石菖蒲药材中的α-细辛醚和β -细辛醚挥发性成分等, 以及残留的有机氯、磷、拟除虫菊类农药。
农药残留分析
前处理——对农药提取、并 对提取液净化、浓缩。
2019/7/29
检测
(一)样品的前处理技术 ——检测的关键环节
作用
萃取及浓缩被测痕量农药,提高方法灵 敏度
消除样品基质对测定的干扰,通过样品 提取液进行净化,除去提取时的共萃取 物。
2019/7/29
1. 提取 提取方法要根据待测农药的性质、检测
有机氯农药和多氯联苯:OV-17,OV-1701 氨基甲酸酯杀虫剂:SE-54 有机磷农药:OV-101
2019/7/29
常用检测器
NPD
MSD
通用检测器
2019/7/29
(三)农药鉴定方法 单一以保留时间定性鉴定残留农药并不十
一、如何判断待测物是否可以直接进行GC分析 GC法广泛应用于气体、挥发性物质、高温
下可气化的化合物,或经过化学衍生后可转化 为高温下可气化的衍生物的液体或固体样品的 定性和定量分析。
2019/7/29
(一)经验一 对于分子量小于500的化合物,若分子结构
中不含活泼氢的-OH,-NH2,-NH-,-COOH,SO3H, -SH, —CONH2, -CONH-, -SO2NH2, SO2NH-等极性官能团,且对热稳定,一般均可采 用GC法直接分析。

气相色谱法在食品分析中的应用(精)

气相色谱法在食品分析中的应用(精)

气相色谱法在食品分析中的应用引言气相色谱法(Gas Chromatography,GC)是一种常用的化学分析方法,其主要原理是将物质在高温和分离柱上的载气作用下分离出来,再通过检测方法进行定性或者定量分析。

在食品分析领域,GC被广泛运用于食品中残留物的检测、香料和食品添加剂的分析、肉类品质的研究等等。

气相色谱在食品残留物检测中的应用为了确保食品安全,对残留物的检测是必不可少的步骤。

气相色谱法的高灵敏度、高选择性和快速分离的特点使其成为食品中残留物检测的理想选择。

以农药检测为例,对于大多数农药,GC-MS检测方法的检出限都可以达到μg/kg级别,甚至可以达到ng/kg的级别,这极大的增强了对食品残留物的检测能力。

气相色谱在香料和食品添加剂中的应用在食品工业中,香料和食品添加剂经常被用来改善食品的口感和质量等方面。

然而,如果存在毒性或者不良反应,这些物质可能会成为安全隐患。

因此,对香料和食品添加剂的检测十分必要。

GC可用于检测防腐剂、色素等成分,其检测灵敏度和准确性都非常高。

气相色谱在肉类品质研究中的应用气相色谱法可以用于检测脂肪酸、胆固醇、氨基酸等化合物,因此被广泛应用于肉类品质的研究中。

通过这些分析,可以获取肉类产品的物理、化学和营养成分等信息,同时也可以检测出一些对人类健康有害的物质,以确保肉类品质和安全。

总结气相色谱法因其高灵敏度、高选择性和相对较快的分离时间而被广泛应用于食品分析领域。

它的应用范围十分广泛,包括食品中残留物的检测、香料和食品添加剂的分析以及肉类品质的研究。

由于气相色谱法的可靠性和准确性已经得到了证实,预计未来气相色谱法在这些应用领域的应用将得到进一步的扩大和深化。

气相色谱法在化学分析中的应用

气相色谱法在化学分析中的应用

气相色谱法在化学分析中的应用一、气相色谱法简介气相色谱法是一种分析科学中常用的技术手段,属于物质分离和检测的局部。

根据分子的极性、大小、吸附性质、传递性质等特征,在一定的条件下,用气体作为载气,将待分离物样品进样到毛细管柱中,然后在柱中加入载气,利用分子在载气中散开的基础上,经过在毛细管柱中不断地物质分离、扩散和传递,最终得到不同的物质成分,进而进行检测和分析。

二、气相色谱法的分类根据分离机理和应用场景,气相色谱法可以分为以下几个子类:1. 一维气相色谱法(GC):采用单一类型的毛细管柱,用非极性载气来分离挥发性物质。

2. 二维气相色谱法(GCxGC):采用两种不同类型的毛细管柱,两列柱之间的装置是一个压缩机,用极性和非极性载气将样品分离。

3. 气相色谱-质谱联用技术(GC-MS):该技术广泛应用于物质的分析和鉴别,采用质谱仪对气相色谱法分离出的成分进行检测。

4. 程序升温气相色谱法(PTGC):即温度变化在运行过程中而不是在样品进入柱前就进行预热处理的基础上进行的气相色谱法。

5. 脱氧糖色基气相色谱法(GCPS):基于多糖分子的吸附作用及其大小的分离规律,对多种糖进行分离和检测。

三、气相色谱法在化学分析中的应用1. 分析石油和炼油产品中的成分和含量。

气相色谱法对于石油和炼油产物中的残留物、附加物、杂质等成分的分离和检测具有重要的应用价值。

通过GC技术,可以分离出成分,得到含量数据,实现对石油产品的化学分析。

2. 研究环境污染物的鉴别和检测。

环境污染物包括大气、土壤、水体中的各类污染物,如重金属、有机化合物等。

GC技术在对这些污染物进行检测中能够具有较高的灵敏度和分辨能力,可以准确地鉴别出多种环境污染物的成分和含量,有利于环境保护和治理。

3. 分析食品中添加剂、污染物等化学成分。

食品中的添加剂、色素、污染物等成分对于健康有较大的影响,而使用GC技术可以对这些成分进行分析和检测。

从而使得食品工业得以保障食品质量安全。

药物分析中气相色谱法的应用

药物分析中气相色谱法的应用

药物分析中气相色谱法的应用气相色谱法(Gas Chromatography,简称GC)是一种分离和检测物质的重要技术方法,广泛应用于药物分析领域。

本文将介绍气相色谱法在药物分析中的应用及其优点。

一、气相色谱法的原理与仪器气相色谱法是基于物质在稳定的无机固体载体上的协同分配和游离扩散分离的原理。

它通过样品的蒸发、气化和传质过程,使样品中的目标化合物与色谱柱相互作用并分离,最后通过检测器对目标化合物进行定性和定量分析。

气相色谱法的仪器主要由色谱柱、进样器、载气系统和检测器等部分组成。

色谱柱是气相色谱的重要组成部分,其选择应根据样品特性和分析目的进行,常用的有毛细管柱和填充柱。

进样器用于装载样品,可选择液相自动进样器或气相进样器。

载气系统是将样品送入色谱柱的介质,主要有惰性气体如氮气、氦气等。

检测器用于检测分离后的物质,常用的有火焰离子化检测器(FID)、光电离检测器(PID)等。

二、气相色谱法在药物分析中的应用1. 药物成分的分离与定性分析气相色谱法可以对药物中的各个成分进行分离并进行定性分析。

通过选择适当的色谱柱和检测器,可以对药物中的挥发性有机物、酯类、酮类、醇类、酸类等进行分离,从而对药物的成分进行鉴定。

同时,气相色谱法还可用于检测药物中的杂质、残留溶剂等。

2. 药代动力学研究气相色谱法在药代动力学研究中的应用非常广泛。

通过对药物在体内及体外的代谢产物进行分析,可以了解药物代谢途径、消除速率、代谢产物的结构等信息。

此外,气相色谱法还可用于药物与蛋白质结合度、药物分布在不同组织中的测定等药代动力学参数的研究。

3. 药物含量及纯度的定量分析气相色谱法也可用于药物含量及纯度的定量分析。

对于含有挥发性有机物的药品,通过气相色谱法可以对其含量进行精准测定。

此外,气相色谱法还可用于检测药物中杂质的含量及纯度的测定,为药物质量控制提供可靠的数据。

三、气相色谱法的优点1. 分离效果好:气相色谱法通过优化色谱柱和进样条件,可以实现对药物中各个成分的高效分离,提高分析效率和准确性。

气相色谱质谱GCMS联用技术及其应用精

气相色谱质谱GCMS联用技术及其应用精

气相色谱-质谱(GC-MS)联用技术及其应用(精)气相色谱-质谱(GC-MS)联用技术是一种非常强大的分析工具,它结合了气相色谱的分离能力和质谱的鉴定能力,广泛应用于化学、生物、环境等领域。

以下是关于GC-MS联用技术的介绍和应用。

一、气相色谱-质谱联用技术气相色谱-质谱联用技术是将气相色谱与质谱联接在一起的一种技术。

气相色谱是一种分离和分析复杂混合物的方法,它利用不同物质在固定相和移动相之间的分配平衡进行分离。

质谱则是一种鉴定化合物的方法,它通过将化合物离子化并分析其碎片离子来鉴定化合物的结构。

GC-MS联用技术将气相色谱的分离能力和质谱的鉴定能力相结合,可以实现复杂混合物中各组分的分离和鉴定。

在GC-MS联用技术中,样品首先通过气相色谱进行分离,然后通过接口将分离后的组分引入质谱进行分析和鉴定。

接口是GC-MS联用技术的关键之一,它需要能够将气相色谱分离后的组分进行有效地转移和导入质谱,同时还需要保持样品在转移过程中的稳定性和一致性。

二、气相色谱-质谱联用技术的应用GC-MS联用技术的应用非常广泛,以下是一些主要的应用领域:1.化学分析:GC-MS联用技术在化学分析领域应用最为广泛,它可以用于鉴定化合物的结构、测定化合物的分子量、研究化合物的反应机理等。

2.生物研究:GC-MS联用技术在生物研究领域也有广泛的应用,它可以用于鉴定生物体内的代谢产物、研究生物酶的催化反应、分析生物组织的成分等。

3.环境科学:GC-MS联用技术在环境科学领域的应用也十分重要,它可以用于检测环境中的有害物质、研究污染物的迁移和转化规律、评估环境污染的影响等。

4.食品科学:GC-MS联用技术在食品科学领域的应用也十分广泛,它可以用于检测食品中的添加剂、农药残留、有害物质等,保障食品的安全性和卫生质量。

5.医药领域:GC-MS联用技术在医药领域也有广泛的应用,它可以用于研究药物代谢、药物疗效及副作用等。

三、总结气相色谱-质谱联用技术是一种非常强大的分析工具,它的应用领域非常广泛,涉及到化学、生物、环境、食品、医药等多个领域。

气相色谱法在环境分析中的应用

气相色谱法在环境分析中的应用

气相色谱法在环境分析中的应用近年来,随着环境问题的日益突出,环境分析成为了一个重要的领域。

其中,气相色谱法是一个应用广泛的分析技术。

它能够对样品中的有机物进行高效、精准、快速的分离和定量分析。

气相色谱法简介气相色谱法是一种分析化学技术,又称作气相色谱质谱联用分析法(GC-MS)。

通过将气相样品进入色谱柱,利用不同物质的分子量、极性等特性在柱内进行分离。

同时,利用离子化技术将柱子中的物质转化成离子,再通过电子倍增管放大信号进行检测和定量。

气相色谱法在环境分析中的应用气相色谱法在环境分析中应用极其广泛。

以挥发性有机物(VOCs)的检测为例,气相色谱法在环境监测、工业排放源排查和室内污染源检测等领域应用非常广泛。

它能够对空气中、水中、土壤中等环境样品中的VOCs进行快速溶解和分离,然后通过色谱柱进行分离和定量。

举例来说,在环境监测中,气相色谱法可多种程度地对环境中挥发性有机物进行检测,能够快速检测出大气中的苯、甲苯、二甲苯、丙烯、丙烷等多种污染物质。

同时,它还能够用于检测地下水、土壤等环境领域中常见的污染物质:包括重金属、农药残留和有机物等。

另一方面,气相色谱法在环境分析中应用范围较广,不仅局限于环境噪声和有害气体检测,还能够检测水中的化学物质浓度,例如检测地下水、饮用水、废水等是否含有苯、甲醛、氯化物等化学物质。

气相色谱法在这些领域的检测,不仅简单和高效,同时也是一种非常精度的检测方法。

气相色谱法的优势和缺点4.1 气相色谱法的优势(1) 检测范围广:气相色谱法能够对于分析物质进行高效、快速、精准的分离。

因此不仅能够对于挥发性有机物进行检测,而且还能够对于一些重金属离子、有机物、农药残留等微量物质进行检测。

(2) 检测速度快: 气相色谱法是一种非常高效的方法,对于化学物质的分离和检测速度非常迅速。

因此,能够满足对于复杂样品的快速检测和分析。

4.2 气相色谱法的缺点(1) 检测的分离精度不够高:对于一些非常相似的物质(如C4烃类、苯、9-氢咔啉等),由于在分离上的差异很小,可能会造成误判。

气相色谱技术在化工分析中的应用探讨

气相色谱技术在化工分析中的应用探讨

气相色谱技术在化工分析中的应用探讨
气相色谱技术是一种常用的化学分析技术,在化工领域有着广泛的应用。

本文将详细探讨气相色谱技术在化工分析中的应用。

气相色谱技术可以用于分析和鉴定化工原料和产品中的各种有机成分。

对于石化行业来说,气相色谱可以用于分析和鉴定石油产品中的各种烃类化合物,例如烷烃、烯烃和芳香烃等。

对于高分子聚合物工业来说,气相色谱技术可以用于分析和鉴定聚合物中的单体残留物、附加剂和其他杂质。

气相色谱还可以用于分析和鉴定化工废水和废气中的有机物含量,以及环境监测中的有机污染物。

气相色谱技术还可以用于化工过程中的质量控制和在线监测。

通过在生产过程中采集样品,并利用气相色谱技术对样品进行快速分析,可以实现对化工过程中的原料和产品质量的实时监测和控制。

这对于化工行业来说非常重要,可以避免不合格产品的生产和质量事故的发生。

气相色谱技术在化工分析中还可以与其他分析技术相结合,以提高分析的灵敏度和准确性。

可以将气相色谱仪与质谱仪(GC-MS)相结合,实现对复杂样品的准确定性和定量分析。

还可以将气相色谱仪与红外光谱仪(GC-FTIR)相结合,实现对样品中有机物的结构分析。

气相色谱技术在化工分析中具有广泛的应用。

它可以用于分析和鉴定化工原料和产品中的各种有机成分,实现定量分析和质量控制,以及与其他分析技术相结合,提高分析的准确性和灵敏度。

气相色谱技术在化工领域中是一种非常重要的分析工具。

气相色谱法及其应用-PPT

气相色谱法及其应用-PPT
血液中乙醇,麻醉剂及氨基酸的分析;某些挥发性药 品的分析
第二部分 气相色谱仪系统及功能
GC工作过程示意图
载气系统
分离系统
检测和 记录系统
进样系统
温控系统
一、载气系统
{ 气源
载气系统 净化干燥管
载气流速控制装置
常用载气:氮气、氦气、氢气及氩气
{ 载气选择依据 检测器 柱效
{
二、进样系统
进样系统
色谱柱的温度控制方式有: 恒温和程序升温 程序升温指在一个分析周期内柱温随时间由
低温向高温作线性或非线性变化,以达到用 最短时间获得最佳分离的目的。 对于沸点范围很宽的混合物,往往采用程序 升温法进行分析。
恒温150 ℃
程序升温50~250℃, 8℃/min
正构烷烃恒温和程序升温色谱图比较
程序升温不仅可以改善分离,而且可 以缩短分析时间。
组分峰影响。
优点
准确度高
岛津GC-2014型
1 . 热导池检测器 (TCD)
A R1 R2 B 参比 测量
工作原理:纯载气是一条 直线,当有有试样气通过 时,由于导热系数与载气 不同,测量池中热敏电阻 上的温度发生变化,其阻 值随之改变,电桥平衡遭 破坏,AB两点间的电位 不再相等,记录仪上即出 现峰电位。待测组分的导 热系数越大,测量池中热 敏电阻上的温度变化越大, 其电阻值也越大。
V0 t0Fc
5 . 保留体积Vr
Vr tr Fc
6 .校正(调整)保留体积
三、峰高与峰面积-定量分析的依据
四、区域宽度-柱效
峰底宽度W
半峰宽W1/2 标准偏差σ
W 4 W1/2 2.35
五、 分离度 定义: R tr2tr1 2(tr2tr1) 12(W1W2) (W1W2) tr2, tr1: 组分2和组分1的保留时间 W2, W1: 组分2和组分1的峰底宽度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-科苑论谈
气相色谱法在分析中的应用
王颖石
(黑化集团有限公司,黑龙江齐齐哈尔161041)
摘要:简述气相色谱法近年来的发展及在分析中所起到的重要作用,详细阐述气相色谱法的工作原理、方法特点、操作流程及气相色谱曲线的特点。

关键词:气相色谱;色谱柱;色谱峰;载气
前言:气相色谱法是近五十年来迅速发展起来的一种新型分离,分析技术,在石油炼制、基本有机原料、高分子、医药、原子能、冶金工业中得到了广泛的应用。

对保证工业生产的正常进行和提高产品质量起到了重要的作用。

在许多生产部门,气相色谱分析法逐步代替了化学分析法。

当前随着我国石油化学工业的迅速发展,气相色谱法在石油、化工生产中已成为中间控制分析中的一种不可缺少的分析方法了。

近年来电子计算机和专用的微型电子计算机已和气相色谱仪联用,可自动对分析结果进行数据处理,对于提高分析速度、改善分析结果的准确性及实现生产过程高自动化起到了重要的作用。

现就气相色谱法的原理、特点及流程作以详细阐述。

1气相色谱法工作原理
气相色谱的工作原理是利用试样中各组份在色谱柱中的气相和固定液相间的分配系数不同,当汽化后的试样被载体带入色谱中运行时,组份就在其中的两相间进行反复多次的分配(吸附-脱附或溶解-放出),由于固定相对各组份的吸附或溶解能力不同,(即保留作用不同),各组份在色谱柱中的运行速度也就不同,经过一定柱长后,便彼此分离,按顺序离开色谱柱,进入检测器,产生的离子流经讯号放大后,在记录仪上就描绘各组份的曲线图,称为色谱峰。

根据色谱峰的峰高或峰面积就可定量测定出样品中各级份的含量。

2气相色谱法的主要特点
气相色谱法在应用中的主要特点是选择性高、分离效率高、灵敏度高、分析速度快。

2.1选择性高
选择性高是指气相色谱法对性质极为接近的物质,具有很强的分离能力。

如在石油化工生产中比较难解决的碳四烯烃异构体的分离;原子能工业中氢的三种同位素:氢、氘、氚的分离;医药和生物化学中结构复杂的旋光异构体的分离。

现都可采用气相色谱法来解决。

2.2分离效率高
分离效率高是指气相色谱法能分离分配系数很接近的组份一根1~2m的色谱柱,柱效率可达几千块理论塔板数,因而对组成复杂的或难以分离的物质,经过色谱柱进行反复多次的分配平衡(或吸附平衡),最终均可达到分离的目的。

2.3灵敏度高
灵敏度高是指气相色谱法可分析极微量组份的含量。

它可鉴定高分子单体、纯有机物质、超纯气体中含有1PPm(表示百万分之一,即10~6),甚至0.1PPb(表示百亿分之
一,即10~10)的杂质,在环境保护中,它可
用来直接分析大气中或污水中1PPm至几十个PPb的微量毒物。

2.4分析速度快
分析速度快是相对于化学分析而言的,通常完成一个样品的气相色谱分析,仅需几分钟或几十分钟,并用所有样品量很少,对液样仅需1ul左右,对气样约需1ml左右。

3气相色谱法的操作流程
气相色谱法是色谱法中的一种,它是一种采用气体作为流动相的分离分析方法,操作时所用仪器为气相色谱仪。

载气是气相色谱的流动相,其作用是把样品输送到色谱柱和检测器。

对载气性质的要求是不与被测物作用惰性气体。

常用的载气有H2、N2、Ar、He、CO2和空气等。

这些气体一般都由高压气瓶供给,初始压力为100~150kg/cm2。

通常规定上述气体高压气瓶的颜色如下表。

图1气相色谱流程图1-载气钢瓶2-减压阀3-净化干燥
4-针形阀5-流量表6-压力表7-预热管
8-检测器9-进样器和气化室10-色谱柱
11-恒温箱12-测量电桥13-记录仪
下面就用热导池作检测器的气相色谱流程(如图1)操作的详述。

载气由高压瓶1供给,经减压阀2减压后,进入载气净化干燥管3,以除去载气中的水份和杂
质,由针形阀4控制载气的压力和流量。

用流量计4和压力表6指示载气的柱前压力和流量,再经过预热管7和进样器(包括气化室)9,试样就由进样器注入,由载气携带进入色谱术10,将各组份分离后依次序进入检测器8,检测器通过测量电桥12将各组份的变化转换成电讯号,由记录仪13记录下来,就可得到如图2所示的色谱峰图。

根据色谱峰的峰高或峰面积就可定量测定出样品中各组份的含量。

4气相色谱曲线的特点
据图2,简述一下气相色谱流出曲线的特点。

色谱峰图以组份流出的时间(t)为横坐标,以检测器对各组份电讯号响应值(毫伏)为纵坐标。

在色谱图上可得到一组色谱峰,每个峰代表样品中的一个组份,对每个色谱峰,可用三项参数表示其特征。

图2
4.1色谱峰的公位置
从进样开始至每个组份流出曲线达极大值(峰顶)所需的时间(图2中所示t0、t1、t2、t3),称为保留时间,其可作为气相色谱定性分析的依据。

4.2色谱峰的峰高或峰面积色谱峰的峰高是指由基线(即无组份流出时流出曲线,通常为一条平行于横坐标的直
线)至峰顶间的距离,用h表示。

色谱峰的峰
面积,可看成是一个近似三角形的面积,可由峰高乘以半峰宽(即峰高一半处的峰宽)来计
算。

峰高和峰面积可作为气相色谱定量分析的依据。

4.3色谱峰的宽窄
每个色谱峰的宽窄可由三个特征位置的峰高所对应的峰宽来表示,一是位于0.607(纵坐标)峰高处峰宽的两端点与色谱流出曲
线的交点,称为拐点,两拐点间的距离。

另一
个是峰高一半处的峰高,即半峰宽。

最后一个是基线宽度,是从色谱流出曲线的左右两个拐点作切线,在基线上得到的截距,此处峰高为零。

上述三种特征宽度称为区域宽度,可表明色谱柱效率的高低,色谱峰形愈窄,说明柱效率愈高。

结语:基于以上对气相色谱特点的详细阐述,基本上能满足当前各种工业对分析方法提出的要求。

气相色谱法的应用范围很广,不仅可以分析气体,也可以分析液体、固体、及包含在固体中的气体。

分析操作的温度一般为-196℃~450℃,只要在上述温度范围内,有不小于0.2~10mm汞柱的蒸汽压力,并且热稳定性能良好的气、液、固体物质,都可采用气相色谱法进行分析。

另外气相色谱法在原子能工业、医药工业、食品工业、农业化学、生物
化学、物理化学领域中也有着广泛的应用。

责任编辑:宋义。

相关文档
最新文档