点的轨迹方程的求法15页PPT

合集下载

轨迹方程的求法

轨迹方程的求法

常用方法
1.动点 到定点 ,0)的距离与到点 ,0)距离之差为 , 动点P到定点 的距离与到点(1, 距离之差为 距离之差为2, 动点 到定点(-1, 的距离与到点 点的轨迹方程是______________. 则P点的轨迹方程是 y=0(x≥1) 点的轨迹方程是 → → → → 2.已知 与OQ是关于 轴对称,且2OP·OQ=1, 已知OP与 是关于 轴对称, 是关于y轴对称 已知 ,
y

C x
a = 2+ 2
|AD| + |AC| = 2a 2 |AC| = ×4 2 = 4 2 在∆ADC中 |DC|2 = |AD|2 + |AC|2 = ( 2 2 )2 + 16 = 24
⇒ |AD| = 2 2
2c
∴c2 = 6,b2 = a2 c2 = (2 + 2 )2 - 6 =
x y 故所求椭圆方程为 + =1 6+4 2 4 2
2 2
4 2
注:重视定义! 重视定义!பைடு நூலகம்
9.已知Q点是双曲线C: 已知Q点是双曲线C: 已知
x −y =4
2 2
上的
任意一点,F1、F2是双曲线的两个焦点,过任 任意一点, 是双曲线的两个焦点, 一焦点作∠ 的角平分线的垂线,垂足为M 一焦点作∠F1QF2的角平分线的垂线,垂足为M。 求点M的轨迹方程. 求点M的轨迹方程.
-5
y P(x,y) • x
-3

•A
3
⇒ y 2 =12x
例8. 等腰直角三角形ABC中,斜边BC 长为 4 2,一个椭圆以C为其中一 个焦点,另一个焦点在线段AB 上,且椭圆经过点A,B。 求:该椭圆方程。 [解] |BC| = 4 2 B D • A O

轨迹方程的求法

轨迹方程的求法

M(x,y)
所求曲线 (方程)
5
轨迹方程的求法(一)
一、常用方法:
1、直接法(五步法) 2、定义法:
3、代入法:
4、交轨法: 当动点是两条动直线(或动曲线)的交点时,求动点的轨迹方程。
设 参 数
动直(曲)线1 方 程
消去参数
动直(曲)线2 方 程
动点轨迹 方 程
例题7
轨迹方程的求法(一)
一、常用方法:
4( x 1) 2 y2 1 化简得M的轨迹方程为: 9
常用方法
4
轨迹方程的求法(一)
一、常用方法:
1、直接法(五步法) 建系设点 写出集合 代入坐标 化简方程 给出证明
2、定义法:
根据曲线定义判断轨迹 求出系数 写出方程
3、代入法:
P(x1,y1) 代 入 已知曲线 (方程)
x1=f(x,y) y1=g(x,y)
单 位:天津市汉沽一中 学 科:数 学 授课人:何 韬 授课班:高二2班
1
轨迹方程的求法(一)
一、常用方法: 直接法、定义法、代入法、交轨法、待定系数法、参数法等
1、直接法(五步法) 建系设点 写出集合 代入坐标 化简方程 给出证明
1:点M到边长为6的等边△ABC的三个顶点的距离的平方和等于90,求点 M的轨迹方程。 y A 解:如图建立坐标系,则B(-3,0),C(3,0),A(0,3 3 ) 设点M(x,y) 则点M的集合为{M||MA|2+|MB|2+|MC|2=90} 代入坐标得: x2+(y-3
1、直接法(五步法) 2、定义法:
3、代入法:
4、交轨法:
二、小结: 1、掌握求轨迹方程常用的几种方法,并能正确地识别它们;

常见轨迹方程的求法2023届新高考数学

常见轨迹方程的求法2023届新高考数学

设 A(x1,y1 ),B(x2,y2 ),M(x,y),由韦达定理得 x1+x2=4+k,x1x2=
6.
7
知识梳理
典例精析
课堂练习
课后练习
∴x=x1+2 x2 =4+2 k ,y=kx=4k+2 k2 . 由yx==44k+2+2k, k2, 消去 k 得 y=2x2-4x. 又 2x=x1+x2=4+k,所以 x(-∞,- 6 )∪( 6 ,+∞). ∴点 M 的轨迹方程为 y=2x2-4x,x(-∞,- 6 )∪( 6 ,+∞).
课堂练习
课后练习
利用椭圆、抛物线、双曲线的定义求轨迹方程的方法.
例 4 一个动圆 M 与圆 F1:x2+y2+6x+5=0 相外切,同时与圆 F2:x2 +y2-6x-91=0 相内切,求动圆的圆心轨迹方程.
12
知识梳理
典例精析
课堂练习
课后练习
【解】设动圆半径为 r,依题意: |MF1|=2+r,|MF2|=10-r. 两式相加得|MF1|+|MF2|=12. 所以 M 的轨迹是以 F1(-3,0),F2(3,0)为焦点,长半轴长为 6 的椭圆, 方程为3x62 +2y72 =1.
【答案】 B
18
知识梳理
典例精析
课堂练习
课后练习
4. (2019 新课标Ⅱ理)已知点 A(-2,0),B(2,0),动点 M(x,y)满足直线
AM 和 BM 的斜率之积为-12 ,记 M 的轨迹为曲线 C. 求 C 的方程,并说明 C 什么曲线.
例 2 过原点作直线 l 和抛物线 y=x2-4x+6 交于 A,B 两点,求线段
AB 的中点 M 的轨迹方程.
【解】由题意分析知直线 l 的斜率一定存在,设直线 l 的方程 y=kx.把它

求动点的轨迹方程常用的四种方法

求动点的轨迹方程常用的四种方法

O

x
这个式子说明动点P到定点O , A的距离之差的绝 对值等于2(小于|OA|);所以点P的轨迹是双曲线。
该双曲线的两焦点为O , A(4, 0) ,中心在线段OA的中点 O(2, 0) 此时c = 2 , a = 1,所以 b 3 所以所求的双曲线方程为:
O
2
y
y ( x 2) 1 3
这样就有点M到点A的距离等于点M到 直线 x 2 的距离,这符合抛物线的定 O 义,所以点M的轨迹就是以点A为焦点, x 2 以直线 x 2为准线的抛物线。
A
x
即所求的轨迹方程为: y 2 8x( x 0)
或 y 0( x 0)
三、代入法
当主动点P在某曲线 f ( x, y ) 0 上移动时,与P具备相关 关系的因动点M随其移动而形成曲线,求动点M的轨迹 方程 g ( x, y) 0的方法叫代入法。分析关系如下:
例1 已知A、B为两定点,动点M到A与到B的距离比为
Y
1、如图所示建立直角坐标系
2、利用命题所给条件建立等量关系
| MA | | MB |

M ( x, y )
A(a,0)
( x a)2 y 2 ( x a) y
2 2

O
B(a, 0) x
3、把|MA|,|MB|转换代数式
a 2 4c 2 a 2c | CD | 4c c c 2 2 3 3 ( x 1) ( y 2) 1 2 F ( x, 2 y) 2 2 4 2 9( y 3 ) 2 ( x 1) 1 化简得: 4
二、定义法
1、熟练掌握椭圆、双曲线、抛物线的第一、第 二定义;以及初三时学习的六种基本轨迹定义。 2、分析命题给出的条件符合那种曲线的定义。 3、解题步骤:①定形——利用定义确定曲线类型 ②定位——利用条件确定曲线位置 (此时可确定曲线的待定系数方程) ③定大小——求方程中的待定系数。

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。

)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

人教版高中数学选修2-1《轨迹方程的求法》

人教版高中数学选修2-1《轨迹方程的求法》

∵PM、PN 是圆 O1、圆 O2 的切线, ∴△PO1M 和△PO2N 是直角三角形. ∵|PM|= |PN|,∴|PM|2=2|PN|2. ∵由两圆的半径均为 1, ∴|PO1|2-1=2(|PO2|2-1). 设 P(x,y).
关键: 找等量关系
∴(x+2)2+y2-1=2[(x-2)2+y2-1],整理,得(x-6)2+y2=33. 故点 P 的轨迹方程为(x-6)2+y2=33.
代入法
(相关点法)
当所求动点的运动很明显地依赖于一已知曲线上 的动点的运动时,可利用代入法,其关键是找出两 动点的坐标的关系,这要充分利用题中的几何条件. 如果轨迹动点P(x,y)的坐标之间的关系不易找 到,也没有相关点可用时,可先考虑将x、y用一 个或几个参数来表示,消去参数得轨迹方程.参数 法中常选角、斜率等为参数.
易漏掉x≠-2的情 形!

x2 2 y 1 【2017 课标 II, 理】 设 O 为坐标原点, 动点 M 在椭圆 C:2
上,过 M 作 x 轴的垂线,垂足为 N,点 P 满足 NP 2 NM 。 (1) 求点 P 的轨迹方程;

参数法 ——若动点P (x,y)的横、纵坐标之间 的关系不易找到,则可借助中间变量(参数) 来表示x,y,然后消去参数就得到动点P (x,y) 的轨迹方程
参数法
高考要求
求曲线的轨迹方程是解析几何的基本问题 之一 求符合某种条件的动点的轨迹方程,其 实质就是利用题设中的几何条件,用“坐标化” 将其转化为寻求变量间的关系 。 这类问题除 了考查考生对圆锥曲线的定义,性质等基础知 识的掌握,还充分考查了各种数学思想方法及 一定的推理能力和运算能力,因此这类问题成 为高考命题的热点!

求点的轨迹方程的六种常见方法

求点的轨迹方程的六种常见方法
BC CD DA
解:以AB所在直线为x轴,过o垂直AB 直线为y轴,建立如图直角坐标系.
DF
y
C
依题意有A(-2,0),B(2,0),C(2,4a),D(-2,4a)
P
E
设 BE CF DG =k(0≤k≤1),由此有
G
BC CD DA
A
o
Bx
E(2,4ak), F(2-4k,4a), G(-2,4a-4ak) 直线OF的方程为 2ax+(2k-1)y=0……………①
且 BE CF DG .P为GE与OF的交点(如图). BC CD DA
问:是否存在两个定点,使P到这两点的距离的和为定值?若存在, 求出这两点的坐标及此定值;若不存在,请说明理由.
y
DF
C
E P
G设条件,首先求出点P坐标满足的方程,据此再判断是否存在两点,
使得P到两定点距离的和为定值.按题意有A(2, 0),B(2, 0),C(2, 4a),D(, 2, 4a).
整理得
x2 1
(y a)2 a2
1.
2
当a2 1 时,点P的轨迹为圆弧,所以不存在符合题意的两点 2
当a2 1 时,点P的轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定长. 2
当a2 1 时,点P到椭圆两个焦点( 1 a2 , a)和( 1 a2 , a)的距离之和为定值 2.
2
2
• 以下举一个例子说明:
1.定义法
【例1】在ΔABC中,已知BC=a,当动点A满足条件sinC-sinB= 1 sinA时, 2
求动点A的轨迹方程.
解:以BC边所在直线为x轴,以线段BC的垂直平分线为y轴建立直角坐标系.
因为sinC-sinB= 1 sinA,由正弦定理得:AB - AC = 1 BC ,

轨迹方程的求法

轨迹方程的求法

轨迹方程的求法一、直接法求轨迹方程的一般步骤:“建、设、限、代、化” 1、建立恰当的坐标系; 2、设动点坐标(),x y ;3、限制条件列出来(如一些几何等量关系);4、代入:用坐标代换条件,得到方程(),0f x y =;5、化简(最后要剔除不符合条件的点).例1、过点()2,4P 作两条互相垂直的直线1l 、2l ,1l 交x 轴于A 点,2l 交y 轴于B 点,求线段AB 的中点M 的轨迹方程.巩固训练1:平面内动点M 与两定点()1,0A -、()2,0B 构成MAB ∆,且2MBA MAB ∠=∠,求动点M 的轨迹方程.巩固训练2:已知点A 、B 的坐标分别为()5,0-、()5,0,直线AM 、BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程.巩固训练3:已知直角坐标平面上的点()2,0Q 和圆221C x y +=:,动点M 到圆C 的切线长与MQ 的比等于常数(0)λλ>,求动点M 的轨迹方程.二、定义法:如果动点的轨迹满足某已知曲线的定义,则可以依据定义求出轨迹方程.如圆、椭圆、双曲线、抛物线等. 规律可寻:(1)利用定义法求轨迹方程时,还要看所求轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.例2、(1)求与圆221:(3)1C x y ++=外切,且与222:(3)81C x y -+=内切的动圆圆心P 的轨迹方程.(2)已知圆221:(3)1C x y ++=和圆222:(3)9C x y -+=,动圆M 同时与圆1C 及圆2C 相外切,求动圆圆心M 的轨迹方程.巩固训练1:已知1,02A ⎛⎫- ⎪⎝⎭,B 是圆221:42F x y ⎛⎫-+= ⎪⎝⎭(F 为圆心)上一动点,线段AB 的垂直平方线交BF 于点P ,求点P 的轨迹方程.巩固训练2:已知1,02A ⎛⎫- ⎪⎝⎭,B 是圆2211:24F x y ⎛⎫-+= ⎪⎝⎭(F 为圆心)上一动点,线段AB 的垂直平方线交BF 于点P ,求点P 的轨迹方程.巩固训练3:在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,求点M 的轨迹方程.巩固训练4:已知点1F 、2F 分别是椭圆22:171617C x y +=的两个焦点,直线1l 过点2F 且垂直于椭圆长轴,动直线2l 垂直1l 于点G ,线段1GF 的垂直平分线交2l 于点H ,求点H 的轨迹方程.巩固训练5:在极坐标系Ox 中,直线l 的极坐标方程为sin 2ρθ=,点M 是直线l 上任意一点,点P 在射线OM 上,且满足4OP OM ⋅=,记点P 的轨迹方程为C ,求曲线C 的极坐标方程.三、相关点法:有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程. “相关点法”的基本步骤:(1)设点:设被动点的坐标为(),x y ,主动点的坐标为()00,x y ;(2)求关系式:求出两个动点坐标之间的关系式()()00,,x f x y y g x y =⎧⎪⎨=⎪⎩; (3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.例3、已知点P 是圆22:4C x y +=上任意一点,过点P 作x 轴的垂线段PD ,D 为垂足,当点P 在圆上运动时,求线段PD 的中点M 的轨迹方程.巩固训练1:已知在ABC ∆中,()2,0A -,()0,2B -,第三个顶点C 在曲线231y x =-上动点,求ABC ∆的重心的轨迹方程.巩固训练2:已知点P 是圆22:25C x y +=上任意一点,点D 是点P 在x 轴上的投影,点M 为PD 上一点,且满足45MD PD =,当点P 在圆上运动时,求点M 的轨迹方程.四、参数法:如果动点(),P x y 的坐标之间的关系不容易找,可以考虑将,x y 用一个或几个参数表示,最后消参数,得出,x y 之间的关系式,即轨迹方程.常用参数有角度θ、直线的斜率、点的横、纵坐标,线段的长度等.例4、过抛物线24y x =的顶点O 引两条互相垂直的直线分别与抛物线相交于,A B 两点,求线段AB 的中点P 的轨迹方程.巩固训练1:设椭圆方程为2214y x +=,过点()0,1M 的直线l 交椭圆于,A B ,O 是坐标原点,直线l 的动点P 满足()12OP OA OB =+,当直线l 绕点M 旋转时,求点P 的轨迹方程.五、交轨法:写出动点所满足的两个轨迹方程后,组成方程组分别求出,x y ,再消去参数,即可求解,这种方法一般适合于求两条动直线交点的轨迹方程.例5、设1A 、2A 是椭圆22195x y +=的长轴的两端点,1P 、2P 是垂直于12A A 的弦的端点,求直线11A P 与22A P 的交点的轨迹方程.巩固训练1:已知双曲线2212x y -=的左、右顶点分别为1A 、2A ,点()11,P x y 、()11,Q x y -是双曲线上不同的两个动点,求直线1A P 与2A Q 的交点的轨迹E 的方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点的轨迹方程的求法
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 —要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
相关文档
最新文档