最新最大公因数和最小公倍数练习题
最大公因数与最小公倍数应用题及练习题

最大公因数与最小公倍数应用题及练习题最大公约数与最小公倍数练习题姓名:一、填空题:1、如果自然数a除以自然数b商是17,那么a与b的最大公因数是(),最小公倍数是()。
2、最轻质数与最轻合数的最小公因数就是(),最轻公倍数就是()。
3、能够被5、7、16相乘的最轻自然数就是()。
4、(1)(7、8)最小公因数(),[7,8]最轻公倍数()(2)(25,15)最小公因数(),[25、15]最轻公倍数()(3)(140,35)最小公因数(),[140,35]最轻公倍数()(4)(24,36)最小公因数(),[24、36]最轻公倍数()(5)(3,4,5)最小公因数(),[3,4,5]最轻公倍数()(6)(4,8,16)最小公因数(),[4,8,16]最轻公倍数()5、5和12的最小公倍数减去()就等于它们的最大公因数。
91和13的最小公倍数是它们最大公因数的()倍。
6、已知两个互质数的最小公倍数是153,这两个互质数是()和()。
7、甲数=2×3×5×7,乙数=2×3×11,甲乙两数的最大公因数是(),最小公倍数是()。
8、3个已连续自然数的最轻公倍数就是60,这三个数就是()、()和()。
9、被2、3、5除,结果都余1的最轻整数就是(),最轻三位整数就是()。
10、一筐苹果4个4个拎,6个6个拎,或者8个8个拎都刚好拎回去,这筐苹果最少存有()个。
11、三个连续偶数的和是42,这三个数的最大公因数是()。
12、三个13、自然数m和n,n=m+1,m和n的最小公因数就是(),最轻公倍数就是()。
14、把自然数a与b分解质因数,得到a=2×5×7×m,b=3×5×m,如果a与b的最小公倍数是2730,那么m=()。
15、(273,231,117)最大公因数(),[273,231,117]最小公倍数()16、三个数的和是312,这三个数分别能被7、8、9整除,而且商相同。
最大公因数和最小公倍数练习题

最大公因数和最小公倍数练习题
题目一
已知两个整数的最大公因数是12,且其中一个整数是36,求另一个整数是多少?
题目二
求下列整数的最大公因数和最小公倍数:
1. 12和18
2. 15和25
3. 24和36
题目三
已知两个整数的最小公倍数是60,且其中一个整数是20,求另一个整数是多少?
题目四
求下列整数的最大公因数和最小公倍数:
1. 30和45
2. 40和60
3. 72和96
题目五
已知两个整数的最大公因数是8,且其中一个整数是24,求另一个整数是多少?
题目六
求下列整数的最大公因数和最小公倍数:
1. 16和20
2. 27和36
3. 48和64
答案
1. 题目一的答案是24。
2. 下列整数的最大公因数和最小公倍数分别是:- 12和18:最大公因数为6,最小公倍数为36。
- 15和25:最大公因数为5,最小公倍数为75。
- 24和36:最大公因数为12,最小公倍数为72。
3. 题目三的答案是60。
4. 下列整数的最大公因数和最小公倍数分别是:- 30和45:最大公因数为15,最小公倍数为90。
- 40和60:最大公因数为20,最小公倍数为120。
- 72和96:最大公因数为24,最小公倍数为288。
5. 题目五的答案是12。
6. 下列整数的最大公因数和最小公倍数分别是:- 16和20:最大公因数为4,最小公倍数为80。
- 27和36:最大公因数为9,最小公倍数为108。
- 48和64:最大公因数为16,最小公倍数为192。
最大公因数与最小公倍数应用题及练习题

最大公因数与最小公倍数应用题及练习题最大公约数与最小公倍数练题姓名:一、填空:1、如果自然数A除以自然数B商是17,那么A与B的最大公因数是(),最小公倍数是()。
2、最小质数与最小合数的最大公因数是(),最小公倍数是()。
3、能被5、7、16整除的最小自然数是()。
4、(1)(7、8)最大公因数(),[7,8 ]最小公倍数()2)(25,15)最大公因数(),[25、15 ]最小公倍数()3)(140,35)最大公因数(),[140,35 ]最小公倍数()4)(24,36)最大公因数(),[24、36 ]最小公倍数()5)(3,4,5)最大公因数(),[3,4,5 ]最小公倍数()6)(4,8,16)最大公因数(),[4,8,16 ]最小公倍数()5、5和12的最小公倍数减去()就等于它们的最大公因数。
91和13的最小公倍数是它们最大公因数的()倍。
6、已知两个互质数的最小公倍数是153,这两个互质数是()和()。
7、甲数=2×3×5×7,乙数=2×3×11,甲乙两数的最大公因数是(),最小公倍数是()。
8、3个连续天然数的最小公倍数是60,这三个数是()、()和()。
9、被2、3、5除,结果都余1的最小整数是(),最小三位整数是()。
10、一筐苹果4个4个拿,6个6个拿,或者8个8个拿都恰好拿完,这筐苹果最少有()个。
11、三个连续偶数的和是42,这三个数的最大公因数是()。
12、三个13、天然数m和n,n= m+1,m和n的最大公因数是(),最小公倍数是()。
14、把自然数a与b分解质因数,得到a=2×5×7×m,b=3×5×m,如果a与b的最小公倍数是2730,那么m =()。
15、(273,231,117)最大公因数(),[273,231,117]最小公倍数()16、三个数的和是312,这三个数分别能被7、8、9整除,而且商相同。
最大公因数和最小公倍数题20道

最大公因数和最小公倍数题20道一、填空题1.已知两个数的最大公因数是6,最小公倍数是144。
这两个数的和是____。
2.140,350,1960的最大公因数是____,最小公倍数是____。
3.有两个正整数a,b,已知[a,b]=280, (a,b) =14,若a=70,则b=____。
4.将120名男生和140名女生分成若干组,要求每组中的男生数相同,女生数也相同,则最多可以分成____组。
5.冥王星有3颗卫星,绕冥王星一周卫星①需6天,卫星②需10天,卫星③需15天,从图中所示的位置开始,三颗卫星最少需要____天才能同时回到原来的位置。
6.六一儿童节,老师买来360块饼干,480粒糖,400只水果,制作小礼包,分给小朋友作为节日礼物,那么至多可以做____个小礼包。
7.在下面的表格中,除第1列外,第____列又将出现字母A和数字1的组合。
8.两个正整数的最大公约数是12,最小公倍数是240,这两个数的差最大是____。
9.美术老师要在一张长12分米、宽84厘米的纸上裁出同样大小的正方形手工纸若干张,且没有纸剩下,那么每张正方形手工纸的边长最大是____厘米,一共能够裁出____张这样的手工纸。
10.将一个数的各位数字相加得到新的一个数称为一次操作,经连续若干次这样的操作后可以变为6的数称为“好数",那么不超过2012的“好数”的个数为____,这些“好数”的最大公约数是____。
二、选择题(每题2分,共10分)1.108和144的最大公因数是____。
A. 36B. 63C. 72D. 272.有一个数能同时被940.15整除,满足条件的最大三位数是____。
A. 999B. 900C. 950D. 9903.从0到9这十个数字中选出五个不同的数字组成一个五位数,使它能被3,5,7,13整除,这个数最大是____。
A. 98765B. 94185C. 93265D. 972854.把一批苹果分给幼儿园大、小两班小朋友,平均每人得6个;如果只分给大班小朋友,平均每人得10个。
最大公因数和最小公倍数计算练习

最大公因数和最小公倍数练习
一、用短除法求几个数的最大公因数
12和30 24和3639和78 72和84 36和60 45和60 45和75 45和60
42、105和56 24、36和48
二、用短除法求几个数的最小公倍数
25和30 24和30 39和78 60和84
18和20 126和60 45和75 12和24
12和14 45和60 76和80 36和60
27和72 42、105和56 24、36和48
三、用短除法求几个数的最大公因数与最小公倍数。
45和60 36和60 27和72 76和80
四、填空
15和5的最大公因数是最小公倍数是;9和3的最大公因数是最小公倍数是
9和18的最大公因数是最小公倍数是;11和44的最大公因数是最小公倍数是
30和60 的最大公因数是最小公倍数是;13和91 的最大公因数是
最小公倍数是
7和12的最大公因数是最小公倍数是;8和11的最大公因数是最小公倍数是
1和9的最大公因数是最小公倍数是;8和10的最大公因数是最小公倍数是
6和9的最大公因数是最小公倍数是;8和6的最大公因数是最小公倍数是
10和15的最大公因数是最小公倍数是;4和6的最大公因数是最小公倍数是
26和13的最大公因数是最小公倍数是13和6的最大公因数是最小公倍数是
4和6的最大公因数是最小公倍数是;5和9的最大公因数是最小公倍数是
29和87的最大公因数是最小公倍数是;
30和15的最大公因数是最小公倍数是
13、26和52的最大公因数是最小公倍数是
2、3和7的最大公因数是最小公倍数是
16、32和64的最大公因数是最小公倍数是
7、9和11的最大公因数是最小公倍数是。
五年级公因数和公倍数的题120道

五年级公因数和公倍数的题120道一、公因数相关题目(60道,先20道带解析)1. 求12和18的最大公因数。
- 解析:分别列出12和18的因数。
12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。
它们共有的因数有1、2、3、6,其中最大的是6,所以12和18的最大公因数是6。
2. 求24和36的最大公因数。
- 解析:24的因数有1、2、3、4、6、8、12、24;36的因数有1、2、3、4、6、9、12、18、36。
共有的因数为1、2、3、4、6、12,最大公因数是12。
3. 求15和25的最大公因数。
- 解析:15的因数是1、3、5、15,25的因数是1、5、25。
它们的公因数有1和5,最大公因数是5。
4. 求8和12的最大公因数。
- 解析:8的因数有1、2、4、8,12的因数有1、2、3、4、6、12。
共有的因数为1、2、4,最大公因数是4。
5. 求20和30的最大公因数。
- 解析:20的因数有1、2、4、5、10、20,30的因数有1、2、3、5、6、10、15、30。
公因数有1、2、5、10,最大公因数是10。
6. 求16和24的最大公因数。
- 解析:16的因数有1、2、4、8、16,24的因数有1、2、3、4、6、8、12、24。
共有的因数为1、2、4、8,最大公因数是8。
7. 求9和15的最大公因数。
- 解析:9的因数有1、3、9,15的因数有1、3、5、15。
公因数为1和3,最大公因数是3。
8. 求14和21的最大公因数。
- 解析:14的因数有1、2、7、14,21的因数有1、3、7、21。
共有的因数为1、7,最大公因数是7。
9. 求28和42的最大公因数。
- 解析:28的因数有1、2、4、7、14、28,42的因数有1、2、3、6、7、14、21、42。
公因数有1、2、7、14,最大公因数是14。
10. 求10和15的最大公因数。
- 解析:10的因数有1、2、5、10,15的因数有1、3、5、15。
最大公因数、最小公倍数练习题

一、填空:1、如果自然数A除以自然数B商是17,那么A与B的最大公因数是(),最小公倍数是()。
2、最小质数与最小合数的最大公因数是(),最小公倍数是()。
3、能被5、7、16整除的最小自然数是()。
4、(1)(7、8)最大公因数(),最小公倍数()(2)(25,15)最大公因数(),最小公倍数()(3)(140,35)最大公因数()最小公倍数()(4)(24,36)最大公因数()最小公倍数()(5)(3,4,5)最大公因数()最小公倍数()(6)(4,8,16)最大公因数()最小公倍数()5、5和12的最小公倍数减去()就等于它们的最大公因数。
91和13的最小公倍数是它们最大公因数的()倍。
6、已知两个互质数的最小公倍数是153,这两个互质数是()和()。
7、甲数=2×3×5×7,乙数=2×3×11,甲乙两数的最大公因数是(),最小公倍数是()。
8、3个连续自然数的最小公倍数是60,这三个数是()、()和()。
9、被2、3、5除,结果都余1的最小整数是(),最小三位整数是()。
10、一筐苹果4个4个拿,6个6个拿,或者8个8个拿都正好拿完,这筐苹果最少有()个。
11、三个连续偶数的和是42,这三个数的最大公因数是()。
12、三个不同质数的最小公倍数是105,这三个质数是()、()和()。
13、自然数m和n,n= m+1,m和n的最大公因数是(),最小公倍数是()。
14、把自然数a与b分解质因数,得到a=2×5×7×m,b=3×5×m,如果a与b 的最小公倍数是2730,那么m =()。
15、(273,231,117)最大公因数(),[273,231,117]最小公倍数()16、三个数的和是312,这三个数分别能被7、8、9整除,而且商相同。
这三个数分别是()、()和()。
17、已知(A,40)=8,[A,40]=80,那么A=()。
寻找最大公因数和最小公倍数的习题

寻找最大公因数和最小公倍数的习题
1. 求最大公因数
题1:求两个正整数的最大公因数
已知两个正整数a和b,求它们的最大公因数。
例如,对于正整数a=12和b=18,它们的最大公因数为6。
题2:求三个正整数的最大公因数
已知三个正整数a、b和c,求它们的最大公因数。
例如,对于正整数a=35、b=70和c=105,它们的最大公因数为35。
2. 求最小公倍数
题1:求两个正整数的最小公倍数
已知两个正整数a和b,求它们的最小公倍数。
例如,对于正整数a=4和b=6,它们的最小公倍数为12。
题2:求三个正整数的最小公倍数
已知三个正整数a、b和c,求它们的最小公倍数。
例如,对于正整数a=6、b=8和c=12,它们的最小公倍数为24。
总结
本文介绍了寻找最大公因数和最小公倍数的题。
通过解答这些题,希望读者能提高对最大公因数和最小公倍数概念的理解,并能
在实际问题中应用相关知识。
以上是对于寻找最大公因数和最小公倍数的习题的简要介绍,
希望对您有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最大公因数与最小公倍数日期(Class) __ 姓名(Name) _ 学号(Number) _ 得分_____例1、有三根铁丝,一根长18米,一根长24米,一根长30米。
现在要把它们截成同样长的小段。
每段最长可以有几米?一共可以截成多少段?例2、一张长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,正方形的边长可以是多少厘米?能截多少个正方形?例3、用96朵红玫瑰花和72朵白玫瑰花做花束。
若每个花束里的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,最多可以做多少个花束?每个花束里至少要有几朵花?例4、公共汽车站有三路汽车通往不同的地方。
第一路车每隔5分钟发车一次,第二路车每隔10分钟发车一次,第三路车每隔6分钟发车一次。
三路汽车在同一时间发车以后,最少过多少分钟再同时发车?例5、某厂加工一种零件要经过三道工序。
第一道工序每个工人每小时可完成3个;第二道工序每个工人每小时可完成12个;第三道工序每个工人每小时可完成5个。
要使流水线能正常生产,各道工序每小时至少安排几个工人最合理?例6、有一批机器零件。
每12个放一盒,就多出11个;每18个放一盒,就少1个;每15个放一盒,就有7盒各多2个。
这些零件总数在300至400之间。
这批零件共有多少个?例7、公路上一排电线杆,共25根。
每相邻两根间的距离原来都是45米,现在要改成60米,可以有几根不需要移动?例8、两个数的最大公因数是4,最小公倍数是252,其中一个数是28,另一个数是多少?1、24的因数共有多少个?36的因数共有多少个?24和36的公因数是哪几个?其中最大的一个是?2、一个长方形的面积是323平方厘米,这个长方形的长和宽各是多少厘米?(长和宽都是素数)3、两个自然数的乘积是420,它们的最大公因数是12,求它们的最小公倍数。
4、两个自然数相乘的积是960,它们的最大公因数是8,这两个数各是多少?5、两个数的最小公倍数是126,最大公因数是6,已知两个数中的一个数是18,求另一个数。
6、有一种长51厘米,宽39厘米的水泥板,用这种水泥板铺成一块正方形地,至少需要多少块水泥板?7、有三根铁丝长度分别为120厘米、90厘米、150厘米,现在要把它们截成相等的小段,每根无剩余,每段最长多少厘米?一共可以截成多少段?8、有两个不同的自然数,它们的和是48,它们的最大公因数是6,求这两个数。
9、同学们参加野餐活动准备了若干个碗,如果每人分得3个碗或4个碗或5个碗,都正好分完,这些碗最少有多少个?10、有A、B两个两位数,它们的最大公因数是6,最小公倍数是90,则A、B两个自然数的和是多少?11、有一个长方体的木头,长3.25米,宽1.75米,厚0.75米。
如果把这块木头截成许多相等的小立方体,并使每个小立方体尽可能大,小立方体的棱长及个数各是多少?12、有一个两位数,除50余2,除63余3,除73余1。
求这个两位数是多少?13、将一张长40厘米,宽32厘米的长方形纸,剪成同样大小,面积尽可能大的正方形,纸没有剩余,至少可以剪多少个?14、用长20厘米,宽15厘米的彩色瓷砖铺成一个正方形,这个正方形的边长最小是多少厘米?至少需要多少块这样的长方形?15、有三根铁丝长度分别为120厘米、90厘米、150厘米,现在要把它们截成相等的小段,每根无剩余,每段最长多少厘米?一共可以截成多少段?16、有一种长51厘米,宽39厘米的水泥板,用这种水泥板铺成一块正方形地,至少需要多少块水泥板?最大公因数和最小公倍数练习题一. 填空题。
1. a b 和都是自然数,如果a b ÷=10,a b 和的最大公因数是( ),最小公倍数是( )。
2. 甲=⨯⨯235,乙=⨯⨯237,甲和乙的最大公因数是( )×( )=( ),甲和乙的最小公倍数是( )×( )×( )×( )=( )。
3. 所有自然数的公因数为( )。
4. 如果m 和n 是互质数,那么它们的最大公因数是( ),最小公倍数是( )。
5. 在4、9、10和16这四个数中,( )和( )是互质数,( )和( )是互质数,( )和( )是互质数。
6. 用一个数去除15和30,正好都能整除,这个数最大是( )。
子*7. 两个连续自然数的和是21,这两个数的最大公因数是( ),最小公倍数是( )。
*8. 两个相邻奇数的和是16,它们的最大公因数是( ),最小公倍数是( )。
**9. 某数除以3、5、7时都余1,这个数最小是( )。
10. 根据下面的要求写出互质的两个数。
(1)两个质数( )和( )。
(2)连续两个自然数( )和( )。
(3)1和任何自然数( )和( )。
(4)两个合数( )和( )。
(5)奇数和奇数( )和( )。
(6)奇数和偶数( )和( )。
二. 判断题。
1. 互质的两个数必定都是质数。
( )2. 两个不同的奇数一定是互质数。
()3. 最小的质数是所有偶数的最大公约数。
()4. 有公约数1的两个数,一定是互质数。
()5. a是质数,b也是质数,a b m⨯=,m一定是质数。
()三. 直接说出每组数的最大公约数和最小公倍数。
26和13()13和6()4和6()5和9()29和87()30和15()13、26和52 ()2、3和7()四. 求下面每组数的最大公因数和最小公倍数。
(三个数的只求最小公倍数)45和60 36和60 27和72 76和8042、105和56 24、36和48**五. 动脑筋,想一想:1、学校买来40支圆珠笔和50本练习本,平均奖给四年级三好学生,结果圆珠笔多4支,练习本多2本,四年级有多少名三好学生,他们各得到什么奖品?2、小军每4天去一次少年宫,小华每6天去一次少年宫。
4月5日两人同时去了少年宫,至少再过多少天他们才能同时去少年宫?3、将一张长40厘米,宽32厘米的长方形纸,剪成同样大小,面积尽可能大的正方形,纸没有剩余,至少可以剪多少个?4、用长20厘米,宽15厘米的彩色瓷砖铺成一个正方形,这个正方形的边长最小是多少厘米?至少需要多少块这样的长方形?5、有三根铁丝长度分别为120厘米、90厘米、150厘米,现在要把它们截成相等的小段,每根无剩余,每段最长多少厘米?一共可以截成多少段?6、有一种长51厘米,宽39厘米的水泥板,用这种水泥板铺成一块正方形地,至少需要多少块水泥板?【试题答案】1、24的因数共有多少个?36的因数共有多少个?24和36的公因数是哪几个?其中最大的一个是?答:24的因数共有8个,36的因数共有9个,24和36的公因数是1、2、3、4、6、12。
其中最大的一个是12。
2、一个长方形的面积是323平方厘米,这个长方形的长和宽各是多少厘米?(长和宽都是素数)答:长方形的长是19厘米,宽是17厘米。
3、两个自然数的乘积是420,它们的最大公因数是12,求它们的最小公倍数。
答:它们的最小公倍数是35。
4、两个自然数相乘的积是960,它们的最大公因数是8,这两个数各是多少?答:这两个数分别是24和40。
5、两个数的最小公倍数是126,最大公因数是6,已知两个数中的一个数是18,求另一个数。
答:另一个数是42。
6、有一种长51厘米,宽39厘米的水泥板,用这种水泥板铺成一块正方形地,至少需要多少块水泥板?答:至少需要221块水泥板。
7、有三根铁丝长度分别为120厘米、90厘米、150厘米,现在要把它们截成相等的小段,每根无剩余,每段最长多少厘米?一共可以截成多少段?答:每段最长30厘米,一共可以截成12段。
8、有两个不同的自然数,它们的和是48,它们的最大公因数是6,求这两个数。
答:这两个数是42和6或18和30。
9、同学们参加野餐活动准备了若干个碗,如果每人分得3个碗或4个碗或5个碗,都正好分完,这些碗最少有多少个?答:这些碗最少有60个。
10、有A、B两个两位数,它们的最大公因数是6,最小公倍数是90,则A、B两个自然数的和是多少?答:A、B两个自然数的和是48。
试题答案一. 填空题。
1. a b 和都是自然数,如果a b ÷=10,a b 和的最大公约数是(b ),最小公倍数是(a )。
2. 甲=⨯⨯235,乙=⨯⨯237,甲和乙的最大公约数是(2)×(3)=(6),甲和乙的最小公倍数是(2)×(3)×(5)×(7)=(210)。
3. 所有自然数的公约数为(1)。
4. 如果m 和n 是互质数,那么它们的最大公约数是(1),最小公倍数是(mn )。
5. 在4、9、10和16这四个数中,(4)和(9)是互质数,(9)和(10)是互质数,(9)和(16)是互质数。
6. 用一个数去除15和30,正好都能整除,这个数最大是(15)。
*7. 两个连续自然数的和是21,这两个数的最大公约数是(1),最小公倍数是(110)。
*8. 两个相邻奇数的和是16,它们的最大公约数是(1),最小公倍数是(63)。
**9. 某数除以3、5、7时都余1,这个数最小是(106)。
10. 根据下面的要求写出互质的两个数。
(1)两个质数(2)和(3)。
(2)连续两个自然数(4)和(5)。
(3)1和任何自然数(1)和(9)。
(4)两个合数(9)和(16)。
(5)奇数和奇数(15)和(7)。
(6)奇数和偶数(7)和(4)。
二. 判断题。
1. 互质的两个数必定都是质数。
(×)2. 两个不同的奇数一定是互质数。
(×)3. 最小的质数是所有偶数的最大公约数。
(√)4. 有公约数1的两个数,一定是互质数。
(×)5. a 是质数,b 也是质数,a b m ⨯=,m 一定是质数。
(×)三. 直接说出每组数的最大公约数和最小公倍数。
26和13(13、26)13和6(1、78) 4和6(2、12) 5和9(1、45) 29和87(29、87)30和15(15、30) 13、26和52 (13、52)2、3和7(1,42)四. 求下面每组数的最大公约数和最小公倍数。
(三个数的只求最小公倍数)45和60最大公约数15,最小公倍数180。
36和60最大公约数是12,最小公倍数180。
27和72最大公约数是9,最小公倍数216。
76和80最大公约数是4,最小公倍数1520。
42、105和56最小公倍数是840。
24、36和48最小公倍数是144。
**五. 动脑筋,想一想:学校买来40支圆珠笔和50本练习本,平均奖给四年级三好学生,结果圆珠笔多4支,练习本多2本,四年级有多少名三好学生,他们各得到什么奖品?你是这样思考吗?(1)圆珠笔多4支,也就是圆珠笔用了40436-=(支)(2)练习本多2本,也就是练习本用了50248-=(本)(3)36和48的公约数是2,3,4,6,12。