步冷曲线法绘制二元合金相图 - 物理化学-第二章剖析
(整理)如何测绘二元合金相图

二组分固---液相图的绘制一、实验目的1.学会用热分析法测绘Sn —Bi 二组分金属相图。
2.了解热分析法测量技术。
3.掌握SWKY 数字控温仪和KWL-08可控升降温电炉的基本原理和使用。
二、预习要求了解纯物质的步冷曲线和混合物的步冷曲线的形状有何不同,其相变点的温度应如何确定。
三、实验原理测绘金属相图常用的实验方法是热分析法,其原理是将一种金属或合金熔融后,使之均匀冷却,每隔一定时间记录一次温度,表示温度与时间关系的曲线叫步冷曲线。
当熔融体系在均匀冷却过程中无相变化时,其温度将连续均匀下降得到一光滑的冷却曲线;当体系内发生相变时,则因体系产生之相变热与自然冷却时体系放出的热量相抵偿,冷却曲线就会出现转折或水平线段,转折点所对应的温度,即为该组成合金的相变温度。
利用冷却曲线所得到的一系列组成和所对应的相变温度数据,以横轴表示混合物的组成,纵轴上标出开始出现相变的温度,把这些点连接起来,就可绘出相图。
二元简单低共熔体系的冷却曲线具有图1所示的形状。
图1 根据步冷曲线绘制相图拐点后,开始有固体凝固出来,液相成分不断变化,平衡温度也不断随之改变,直到达到其低 共熔点温度,体系平衡,温度保持不变(平台);直到液相完全凝固后,温度又迅速下降。
用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态,因此必须保证冷却速度足够慢才能得到较好的效果。
此外,在冷却过程中,一个新的固相出现以前,常常发生过冷现象,轻微过冷则有利于测量相变温度;但严重过冷现象,却会使折点发生起伏,使相变温度的确定产生困难。
见图2。
遇此情况,可延长DC 线与AB 线相交,交点E 即为转折点。
图3是二元金属体系一种常见的步冷曲线。
当金属混合物加热熔化后冷却时,由于无相变发生,体系的温度随时间变化较大,冷却较快(1~2段)。
若冷却过程中发生放热凝固,产生固相,将减小温度随时间的变化,使体系的冷却速度减慢(2~3段)。
当融熔液继续冷却到某一点时,如3点,由于此时液相的组成为低共熔物的组成。
物理化学实验报告二组分简单共熔合金相图绘制

物理化学实验报告⼆组分简单共熔合⾦相图绘制⼀、实验⽬的1.掌握步冷曲线法测绘⼆组分⾦属的固液平衡相图的原理和⽅法。
2、了解固液平衡相图的特点,进⼀步学习和巩固相律等有关知识。
⼆、主要实验器材和药品1、仪器:KWL-II⾦属相图(步冷曲线)实验装置、微电脑控制器、不锈钢套管、硬质玻璃样品管、托盘天平、坩埚钳2、试剂:纯锡(AR)、纯铋(AR)、⽯墨粉、液体⽯蜡三、实验原理压⼒对凝聚系统影响很⼩,因此通常讨论其相平衡时不考虑压⼒的影响,故根据相律,⼆组分凝聚系统最多有温度和组成两个独⽴变量,其相图为温度组成图。
较为简单的组分⾦属相图主要有三种:⼀种是液相完全互溶,凝固后固相也能完全⽡溶成固体混合物的系统最典型的为Cu- Ni系统;另⼀种是液相完全互溶,⽽固相完全不互溶的系统,最典型的是Bi- Cd 系统;还有⼀种是液相完全互溶,⽽固相是部分互溶的系统,如Pb- Sn或Bi- Sn系统。
研究凝聚系统相平衡,绘制其相图常采⽤溶解度法和热分析法。
溶解度法是指在确定的温度下,直接测定固液两相平衡时溶液的浓度,然后依据测得的温度和溶解度数据绘制成相图。
此法适⽤于常温F易测定组成的系统,如⽔盐系统。
热分析法(步冷曲线法)则是观察被研究系统温度变化与相变化的关系,这是绘制⾦属相图最常⽤和最基本的实验⽅法。
它是利⽤⾦属及合⾦在加热和冷却过程中发⽣相变时,潜热的释出或吸收及热容的突变,来得到⾦属或合⾦中相转变温度的⽅法。
其原理是将系统加热熔融,然后使其缓慢⽽均匀地冷却,每隔定时间记录⼀次温度,物系在冷却过程中温度随时间的变化关系曲线称为步冷曲线(⼜称为冷却曲线)。
根据步冷曲线可以判断体系有⽆相变的发⽣。
当体系内没有相变时,步冷曲线是连续变化的;当体系内有相变发⽣时,步冷曲线上将会出现转折点或⽔平部分。
这是因为相变时的热效应使温度随时间的变化率发⽣了变化。
因此,由步冷曲线的斜率变化可以确定体系的相变点温度。
测定不同组分的步冷曲线,找出对应的相变温度,即可绘制相图。
物理化学实验报告——二元合金相图的绘制

物理化学实验报告班级:姓名:学号:实验日期:2019年5月18日实验名称:二元合金相图的绘制一、实验目的(一)学习热分析法绘制相图的基本原理(二)加深对相变过程的认识和理解二、实验原理热分析法是一种常用的绘制相图方法。
由于一切相变过程都伴随着热的吸收或放出,因此将系统均匀加热或冷却时,若不发生相变,则温度T随时间t变化的T-t 曲线是光滑的,即温度随时间的变化率是连续的;当系统发生相变化时,其T-t曲线就会出现转折点或平台,其温度随时间的变化率会发生突跃。
把这种温度随时间变化的T-t曲线称为步冷曲线。
步冷曲线上的转折点或平台对应的温度就是开始发生相变化的温度。
根据多个组成不同的二组分系统的步冷曲线即可绘制出相图。
图2.9.1(b)就是一种常见的二组分简单低共熔物系的相图。
所谓简单低共熔物系是指两种不同物质在固态互不相溶(即彼此不生成固溶体),这两种物质也不生成化合物。
Pb-Sn二元凝聚物系相图就属于简单低共熔混合物系相图。
对于纯物质而言,当把它冷却到凝固点时,其步冷曲线上会出现一个水平段。
二组分液态混合物系的凝固过程并不是在一个温度点上完成的。
在凝固过程中,随着某个纯固体组分的析出,溶液的组成会不断发生变化,所以它的凝固点(即二相平衡温度)也会发生不断变化。
与此同时,由于凝固过程是放热的,即系统在对外放热的同时也会得到部分热量的补充,所以其温度降低速度会明显放慢,其步冷曲线上会出现一个拐点。
步冷曲线上的拐点与相图中的点有一一对应的关系。
在实验过程中需要注意以下几点:(1)因为待绘制的相图是平衡状态图,故实验过程中被测系统需时时处于或接近于平衡状态。
所以在系统冷却时,冷却速度应足够缓慢。
冷却过程中应尽量保持环境状况前后一致,不要搅拌,也不要晃动温度探头或样品管。
(2)实验过程中,待测样品的实际组成应与标签一致。
如果实验过程中样品未混合均匀或部分样品发生了氧化,则实验结果就误差越大。
(3)测得的温度值必须能真正反映系统的温度。
步冷曲线法绘制二元合金相图 物理化学第二章标准版文档

步冷曲线(qūxiàn)法绘制二元合金相图 室内气压: kPa
样品的温度随时间的变化。 用热分析法测熔融体步冷曲线,绘制Sn—Bi二元合金相图。
相图是多相体系处于相平衡状态时体系的某些物理性质(如温度或压力)对体系的组成作图所得的图形,因图中能反映出相图平衡情况(相的 数目及性质等),故称为相图。 实验(shíyàn)原理
第九页,共15页。
仪器(yíqì)和试剂
电炉加热系统, 特制样品管5只(1#为纯Sn 、 2#为含Bi30
%的Sn 、 3#为含Bi57%的Sn、4#为含 Bi75%的Sn、5#为纯Bi) X-Y多通道数据采集仪1台 镍铬-镍硅热 电偶一支(yī zhī),小号保温杯1个。
第十页,共15页。
4.从电脑所记录的图上准确读取各拐点的mV值 特制样品管5只(1#为纯Sn 、 2#为含Bi30%的Sn 、 3#为含Bi57%的Sn、4#为含Bi75%的Sn、5#为纯Bi)
(精确到±0.05mV)。
第十二页,共15页。
数据处理
1.数据记录参考(cānkǎo)格式 室内气压: kPa
实验(shíyàn)步骤
1.配制冰水混合物,将带玻璃套管的热电偶冷 端插入(chā rù)冰水混合物底部,再将热电偶 热端插入(chā rù)样品管中。 2.将1#、2#、3#、4#、5#被测样品管分别放 在电炉加热系统中某一个位置,调节电炉加 热系统的选择旋纽到对应的档位。
第十一页,共15页。
3.打开vxy2004数据采集(cǎijí)系统软件,设置
使金属或合金完全熔化后断电,然后让样品自 特制样品管5只(1#为纯Sn 、 2#为含Bi30%的Sn 、 3#为含Bi57%的Sn、4#为含Bi75%的Sn、5#为纯Bi)
物理化学实验报告——二元合金相图的绘制

物理化学实验报告班级:姓名:学号:实验日期:2019年5月18日实验名称:二元合金相图的绘制一、实验目的(一)学习热分析法绘制相图的基本原理(二)加深对相变过程的认识和理解二、实验原理热分析法是一种常用的绘制相图方法。
由于一切相变过程都伴随着热的吸收或放出,因此将系统均匀加热或冷却时,若不发生相变,则温度T随时间t变化的T-t 曲线是光滑的,即温度随时间的变化率是连续的;当系统发生相变化时,其T-t曲线就会出现转折点或平台,其温度随时间的变化率会发生突跃。
把这种温度随时间变化的T-t曲线称为步冷曲线。
步冷曲线上的转折点或平台对应的温度就是开始发生相变化的温度。
根据多个组成不同的二组分系统的步冷曲线即可绘制出相图。
图2.9.1(b)就是一种常见的二组分简单低共熔物系的相图。
所谓简单低共熔物系是指两种不同物质在固态互不相溶(即彼此不生成固溶体),这两种物质也不生成化合物。
Pb-Sn二元凝聚物系相图就属于简单低共熔混合物系相图。
对于纯物质而言,当把它冷却到凝固点时,其步冷曲线上会出现一个水平段。
二组分液态混合物系的凝固过程并不是在一个温度点上完成的。
在凝固过程中,随着某个纯固体组分的析出,溶液的组成会不断发生变化,所以它的凝固点(即二相平衡温度)也会发生不断变化。
与此同时,由于凝固过程是放热的,即系统在对外放热的同时也会得到部分热量的补充,所以其温度降低速度会明显放慢,其步冷曲线上会出现一个拐点。
步冷曲线上的拐点与相图中的点有一一对应的关系。
在实验过程中需要注意以下几点:(1)因为待绘制的相图是平衡状态图,故实验过程中被测系统需时时处于或接近于平衡状态。
所以在系统冷却时,冷却速度应足够缓慢。
冷却过程中应尽量保持环境状况前后一致,不要搅拌,也不要晃动温度探头或样品管。
(2)实验过程中,待测样品的实际组成应与标签一致。
如果实验过程中样品未混合均匀或部分样品发生了氧化,则实验结果就误差越大。
(3)测得的温度值必须能真正反映系统的温度。
二元合金相图的绘制实验报告

实验九二元合金相图的绘制【摘要】本文的目的是使我们加深对相变化过程的认识和理解,学习和掌握绘制相图的方法。
采用法热分析法绘制步冷曲线,从而绘制铋跟铬共熔体的简单低共熔相图;测定了铋跟铬共熔体系中的低共熔点时的成分组成及低共熔温度。
实验结果表明,铋跟铬共熔体系中的低共熔点时,铋的含量为56%,低共熔温度为148.6℃。
结果说明,实验方法正确,结果较为理想,但仍存在一定的误差。
【前言】相图是用几何图形来表示多相平衡体系中有哪些相、各相的成分如何,不同相的相对量是多少,以及它们随浓度、温度、压力等变量变化的关系图。
对蒸气压较小的二组分凝聚体系,常以温度—组成图来描述。
热分析法是一种常用的绘制相图方法。
由于一切相变过程都伴随着热的吸收或放出,因此将系统均匀加热或冷却时,若不发生相变,则温度T随时间t变化的T-t曲线是光滑的,即温度随时间的变化率是连续的;当系统发生相变化时,其T-t曲线就会出现转折点或平台,其温度随时间的变化率会发生突跃。
把这种温度随时间变化的T-t曲线称为步冷曲线。
步冷曲线上的转折点或平台对应的温度就是开始发生相变化的温度。
根据多个组成不同的二组分系统的步冷曲线即可绘制出相图。
下图就是一种常见的二组分简单低共熔物系的相图。
所谓简单低共熔物系是指两种不同物质在固态互不相溶(即彼此不生成固溶体),这两种物质也不生成化合物。
铋-铬二元凝聚物系相图就属于简单低共熔混合物系相图。
对于纯物质而言,当把它冷却到凝固点时,其步冷曲线上会出现一个水平段,这是由于在定压力下,根据相律系统的自由度f与组分数C、相数P的关系以表示为:f=C−P+1故一定压力下当纯物质处于固液两相平衡时,C=1,P=2,自由度f=0,所以温度恒定不变,其步冷曲线上会出现一个平台((即水平段)。
上图中的曲线0.0就是x B=0.0时即纯A的步冷曲线;曲线1.0是x B=1.0时即纯B的步冷曲线。
在开始凝固之前和完全凝固以后,系统中只有一种纯液体或只有一种纯固体。
二元合金相图

第二章二元合金相图纯金属在工业上有一定的应用,通常强度不高,难以满足许多机器零件和工程结构件对力学性能提出的各种要求;尤其是在特殊环境中服役的零件,有许多特殊的性能要求,例如要求耐热、耐蚀、导磁、低膨胀等,纯金属更无法胜任,因此工业生产中广泛应用的金属材料是合金。
合金的组织要比纯金属复杂,为了研究合金组织与性能之间的关系,就必须了解合金中各种组织的形成及变化规律。
合金相图正是研究这些规律的有效工具。
一种金属元素同另一种或几种其它元素,通过熔化或其它方法结合在一起所形成的具有金属特性的物质叫做合金。
其中组成合金的独立的、最基本的单元叫做组元。
组元可以是金属、非金属元素或稳定化合物。
由两个组元组成的合金称为二元合金,例如工程上常用的铁碳合金、铜镍合金、铝铜合金等。
二元以上的合金称多元合金。
合金的强度、硬度、耐磨性等机械性能比纯金属高许多,这正是合金的应用比纯金属广泛得多的原因。
合金相图是用图解的方法表示合金系中合金状态、温度和成分之间的关系。
利用相图可以知道各种成分的合金在不同温度下有哪些相,各相的相对含量、成分以及温度变化时所可能发生的变化。
掌握相图的分析和使用方法,有助于了解合金的组织状态和预测合金的性能,也可按要求来研究新的合金。
在生产中,合金相图可作为制订铸造、锻造、焊接及热处理工艺的重要依据。
本章先介绍二元相图的一般知识,然后结合匀晶、共晶和包晶三种基本相图,讨论合金的凝固过程及得到的组织,使我们对合金的成分、组织与性能之间的关系有较系统的认识。
2.1 合金中的相及相图的建立在金属或合金中,凡化学成分相同、晶体结构相同并有界面与其它部分分开的均匀组成部分叫做相。
液态物质为液相,固态物质为固相。
相与相之间的转变称为相变。
在固态下,物质可以是单相的,也可以是由多相组成的。
由数量、形态、大小和分布方式不同的各种相组成合金的组织。
组织是指用肉眼或显微镜所观察到的材料的微观形貌。
由不同组织构成的材料具有不同的性能。
物理化学实验讲义(外学院)

实验94 步冷曲线法绘制Sn-Bi二元合金相图实验概述二元合金的熔点~组成相图可用不同组成合金的冷却曲线求得。
将一种合金或金属熔融后,使之逐渐冷却,每隔一定时间记录一次温度,这种表示温度~时间的关系曲线称为冷却曲线或步冷曲线。
当熔融体系在均匀冷却过程中不发生相的变化,其温度将随时间连续均匀下降,这时会得到一条平滑的冷却曲线;如在冷却过程中发生了相变,则因放出相变热而使热损失有所抵偿,冷却曲线就会出现转折点或水平线段。
转折点所对应的温度,即为该组成合金的相变温度。
如以横轴表示混合物的组成,纵轴上标出开始出现相变的温度,把这些转折点所对应的温度连接起来,就可以绘制出二元合金相图。
对于简单的低共熔二元体系(如Bi-Cd合金),具有图94.1所示的的冷却曲线和相图。
用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态,因此体系的冷却速度必须足够慢才能得到较好的结果。
本实验测绘的Sn~Bi二元合金相图不属于简单低共熔体系, 当含Sn 含量在85% 以上即出现固熔体。
因此,为了简单起见,本实验不能作出完整的相图。
图94.1 Bi-Cd 合金冷即曲线及其相图实验目的1.了解热分析法测量技术与热电偶测量温度的方法;2.用热分析法绘制Sn~Bi二元合金相图。
实验器材1.仪器:热电偶,加热炉,记录仪,调压器,电炉,250mL烧杯。
2.试剂:Sn(s),Bi(s),固体石蜡。
实验方法1.配制样品:用感量为0.1 g的台天平分别配制含Bi量分别为30%、58%、80%的混合物各100 g,另外称100 g纯Bi,100 g纯Sn,分别放入5个样品管中。
2.安装与调整自动记录仪:(见图94.2)。
图94.2 冷却曲线测定装置3.测定被研究体系的步冷曲线:依次测纯Bi、含Bi 30%、58%、80%的混合物及纯Sn 的冷却曲线。
方法如下:将样品管放在加热电炉中,让样品熔化(在样品上方覆盖一层石蜡,以防止样品氧化)。
同时将热电偶的热端(连玻璃套管,见图94.2)插入样品管中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B
C
图A是单组分体系, 图B是二元混合物, 图 C是低共融体系的步冷曲线。
X-Y多通道数据采集仪
3.绘制二元合金相图
无论是步冷曲线上的平台还是转折,都 反映了相变化时的温度,把各种不同组成的 体系的步冷曲线的转折点和平台,在温度— 组成图上标志出来连成曲线就得到相图。
热电偶工作原理:
热电偶可将温度转换成电压信号(温差电势),在 一定温度范围内,镍铬-镍硅热电偶输出的温差电 势与其热端和冷端的温度差成近似线性关系,为此 只要绘制出热电偶的工作曲线(电势差-温差曲 线),即可通过它的线性关系方便地查到各电势差 所对应的温度差。热电偶工作时,如将冷端插入冰 水混合物中(0℃),热端插入待测样品中,热电偶 正负极接入X-Y多通道数据采集仪,连续采集样品 的电势差值,显示在电脑上,从而得到所需的冷却 曲线。在仪器的系统误差很小的前提下,可根据仪 器读取的电势差值直接去查“镍铬-镍硅热电偶值 分度表”,得出样品的温度来。
3.打开vxy2004数据采集系统软件,设置好X-Y 数据采集仪对应的通道,这时数据采集系统开 始工作—记录样品的温度(实际为mV值)。 给电炉通电,对样品进行加热,使金属或合金 完全熔化后断电,然后让样品自动缓慢冷却, 数据采集系统自动跟踪记录样品的温度随时间 的变化。
4.从电脑所记录的图上准确读取各拐点的mV 值(精确到±0.05mV)。
步冷曲线法绘制二元合金相图
步冷曲线处理 思考题
实验目的
1. 用热分析法测熔融体步冷曲线,绘制 Sn—Bi二元合金相图。
2. 了解热分析法的实验技术及热电偶测 量温度的原理和方法。
实验原理
1. 相图
相图是多相体系处于相平衡状态时体系 的某些物理性质(如温度或压力)对体系的 组成作图所得的图形,因图中能反映出相图 平衡情况(相的数目及性质等),故称为相 图。由于压力对仅由液相和固相构成的凝聚 体系的相平衡影响很小,所以二元凝聚体系 的相图通常不考虑压力的影响,而常以组成 为横坐标,以温度为纵坐标作图。
数据处理
1.数据记录参考格式 室内气压: kPa
样品 mV~℃
第一拐点 第二拐点
纯Sn 30%Bi 57%Bi 75% Bi 纯Bi mV ℃ mV ℃ mV ℃ mV ℃ mV ℃
2.绘制相图
从热电偶工作曲线上分别查出各样品拐 点处温差电势(mV)所对应的温度,以温度 为纵坐标,合金组成(以Bi含量计)为横坐 标,绘制出Sn—Bi二元合金的简化相图。
仪器和试剂
电炉加热系统, 特制样品管5只(1#为纯Sn 、 2#为含Bi30
%的Sn 、 3#为含Bi57%的Sn、4#为含 Bi75%的Sn、5#为纯Bi) X-Y多通道数据采集仪1台 镍铬-镍硅热 电偶一支,小号保温杯1个。
实验步骤
1.配制冰水混合物,将带玻璃套管的热电偶 冷端插入冰水混合物底部,再将热电偶热端 插入样品管中。 2.将1#、2#、3#、4#、5#被测样品管分别放 在电炉加热系统中某一个位置,调节电炉加 热系统的选择旋纽到对应的档位。
2.热分析法测量步冷曲线
热分析法是绘制相图常用的基本方法,其原理 是将体系加热融熔成一均匀液相,然后让体系缓慢 冷却,用X-Y多通道数据采集仪记录体系的温度随 时间的变化关系,绘制成温度-时间曲线,称为步冷 曲线。
从步冷曲线中一般可以判断在某一温度时,体 系有无相变发生。当系统缓慢而均匀地冷却时,若 系统内无相变,则温度将随时间而均匀地改变,即 在T-t曲线上呈一条直线,若系统内有相变化,则因 放出相变热,使系统温度变化速度发生改变,在T-t 图上有转折或水平线段。
思考题
1. 冷却曲线上的拐点是怎么来的? 2. 如果有两个样品,一个为纯金属A,另 一个为组成为低共熔体的合金(含A), 你如何通过冷却曲线对它们进行区分?