悬臂梁受力弯曲的图解计算

合集下载

悬臂梁的弯曲振动

悬臂梁的弯曲振动

∂4 y ∂2 y EI 4 = − ρ 2 ∂x ∂t
E——弹性模量;I——截面惯量矩; ρ——密度;M——x截动力工程学院
Shanghai Jiao Tong University
二、悬臂梁弯曲振动固有频率和振型函数
悬臂梁边界条件: X (0) = X ′(0) = 0 特征方程为: 固有频率为:
Preprocessor Element Type Add
制造技术与装备自动化研究所 机械与动力工程学院
Shanghai Jiao Tong University
四、悬臂梁弯曲振动有限元模态分析(ANSYS)
2) 定义实常数:
Preprocessor Real Constants
3)定义截面属性
Preprocessor Sections Common Sections Beam
制造技术与装备自动化研究所 机械与动力工程学院
1 25
2
3
156.7 438.75
前三阶振型
Shanghai Jiao Tong University
四、悬臂梁弯曲振动有限元模态分析(ANSYS)
1
模态分析是用来确定结构的振动特性的一种技术
2 模态分析是所有动力学分析的基础 3
通过模态分析可以确定结构的固有频率和振型
一阶弯曲 二阶弯曲
第一阶振型
第二阶振型
三阶弯曲
第三阶振型
悬臂梁前三阶振型理论与数值结果基本一致
制造技术与装备自动化研究所 机械与动力工程学院
Shanghai Jiao Tong University
五、风力发电机有限元振动分析
(1)风力发电机整体模型
完成网格划分后的风力发电机有 限元模型如左图所示; 所建有限元模型的单元总数为 606,101个,总节点数为 1,114,442个。

绘制左端固定悬臂梁的剪力弯矩图

绘制左端固定悬臂梁的剪力弯矩图

H a r b i n I n s t i t u t e o f T e c h n o l o g y材料力学I 上机实验报告姓名:XX学号:XXXXX班级:XXXXX院系:XXXXX时间:2015/06/20哈尔滨工业大学1.问题描述题目4 绘制左端固定悬臂梁的剪力弯矩图输入:1.梁的总长度l2.各载荷大小、作用位置及方向(qi、ai、bi;pj、cj、mk、dk)输出:1.剪力、弯矩(图示)2.输出剪力、弯矩的最大值及截面位置。

输入时,默认均布载荷和集中力方向向下为正,集中力偶以逆时针为正。

2.程序流程⑴输入梁的总长度L,确定;输入集中力F,F位置X1,确定;输入集中力偶M,力偶位置X2,确定;输入均布载荷集度q,起始位置X3,终止位置X4,确定;⑵绘制剪力图,绘制弯矩图,即可。

3.具体某个问题和涉及到的计算公式以及相关理论左固定端悬臂梁:设梁的长度为l,集中力大小为p,作用位置为c,均布载荷大小为q,作用起始位置a,终止位置为b,集中力偶大小为m,作用位置d。

计算过程:在任意位置x处,取x以右部分为研究对象①若c<x,a<b<x,d>x,则Fs y=0,M(x)=m;②若c>x,a<b<x,d<x,则Fs y=-P,M(x)=Px-Pc;q(b-x)²;③若c<x,a<x<b,d<x,则Fs y=-q(b-x),M(x)=-2④若c<x, x<a<b,d>x,则Fs y=-q(b-a),M(x)=-q(b-a)(2ba+-x);⑤若c>x,a<b<x,d>x,则Fs y=-P,M(x)= Px-Pc+m;(第①、②两种情况合成)⑥若c<x,a<x<b,d>x,则Fs y=-q(b-x),M(x)=m-2q(b-x)²;(第①、③两种情况合成)⑦若c<x,x<a<b,d>x,则Fs y=-q(b-a),M(x)=m-q(b-a)(2ba+-x);(第①、④两种情况合成)⑧若c>x,a<x<b,d<x,则Fs y=-P-q(b-x),M(x)=Px-Pc-2q(b-x)²;(第②、③两种情况合成)⑨若c>x,x<a<b,d<x,则Fs y=-P-q(b-a),M(x)=Px-Pc-q(b-a)*(2ba+-x);(第②、④两种情况合成)⑩若c>x,x<a<b,d>x,则Fs y=-P-q(b-a), M(x)=m+Px-Pc-q(b-a)*(2ba+-x);(第①、②、④两种情况合成)⑪c>x,a<x<b,d>x, 则Fs y=-P-q(b-x), M(x)m+Px-Pc-q(b-a)*(2ba+-x); (第①、②、③两种情况合成)将上述公式编入程序即可计算出在固定端悬臂梁情况下任意位置处的剪力和弯矩,采用散点法作出梁的剪力弯矩图。

建筑力学之 梁的弯曲知识详解

建筑力学之 梁的弯曲知识详解
图 示一外伸梁,a = 2m , P1、 P2 、 P3 分别为 600 KN,500 KN,400 KN。试按叠加原理作此梁的弯矩图, 求梁的最大弯矩。
P1
P2
P3
D
A
CB
E
a
a
aa
解:1.将梁上荷载分开 ,求P1作用下梁的弯矩图
P1 A
D
P2 CB
a
a
aa
P1
P3
A
D
E
a
a
CB
E
aa
1200
-
CB
E
a
a
aa
da
c
+
500
be
b
e
1200
800 131
-
d
a
c
b
e
d
a
800
-
c
be
目录
梁的弯曲
中和层
目录
梁的弯曲应力
中和轴
弯曲梁正截面上的应力分布
弯曲应力 1.梁横截面上的正应力
m
m
d
几何条件:
O1 dx O2
A
y
B1
B
O1O2 为中性层,研究AB层纵向线应变
AB1 B1B yd AB1 O1O2 dx
B
3
Bi
i 1
ql 3 24EI
ql3 16EI
ql 3 3EI
11ql3 ( ) 48EI
目录
提高梁刚度的措施 选择合理截面
目录
7-5
改善支座形式减小弯矩值
改善荷载形式减小弯矩值
wC2 62.5% wC1
目录

M A 12kN m

悬臂梁计算公式一览表

悬臂梁计算公式一览表

悬臂梁计算公式一览表悬臂梁是一种常见的工程结构,常用于吊车起重、桥梁和建筑物中。

在设计和分析悬臂梁时,我们需要使用一系列的计算公式来确定其受力和变形情况。

下面是悬臂梁计算中常用的公式一览表:1. 弯矩公式(弯矩与力的关系)弯矩是悬臂梁受到外力作用产生的抗弯形变的指示。

对于集中力的悬臂梁,弯矩公式为:M = F * L其中,M为弯矩,F为作用在悬臂梁上的力,L为悬臂梁的长度。

2. 最大弯矩公式在悬臂梁上不同位置的弯矩大小不同。

最大弯矩是指悬臂梁上弯矩大小最大的位置。

对于集中力的悬臂梁,最大弯矩公式为:M_max = F * L其中,M_max为最大弯矩,F为作用在悬臂梁上的力,L为悬臂梁的长度。

3. 剪力公式(剪力与力的关系)剪力是指作用在悬臂梁上截面两侧的力的大小。

对于集中力的悬臂梁,剪力公式为:V = F其中,V为剪力,F为作用在悬臂梁上的力。

4. 获取剪力和弯矩图的公式剪力和弯矩图是对悬臂梁受力情况的图形表示。

对于集中力的悬臂梁,剪力和弯矩图的公式为:V = V0 - FM = M0 - F * x其中,V为截面处的剪力大小,M为截面处的弯矩大小,V0和M0为截面处离开力作用点时的剪力和弯矩大小,F为作用在悬臂梁上的力,x为距离力作用点的距离。

5. 变形公式(变形与力的关系)变形是悬臂梁在受力作用下产生的长度、角度或形状的改变。

对于悬臂梁的弹性变形,变形公式为:δ = (F * L^3) / (3 * E * I)其中,δ为悬臂梁在力作用下的弹性变形,F为作用在悬臂梁上的力,L为悬臂梁的长度,E为材料的弹性模量,I为悬臂梁的截面惯性矩。

这些公式是悬臂梁设计和分析中的基本工具。

通过使用这些公式,工程师可以计算悬臂梁的弯矩、剪力、变形等参数,以确保悬臂梁在使用中安全可靠。

同时,这些公式也可以帮助工程师优化设计,减少材料使用量,提高工程效率。

需要注意的是,上述公式适用于一些简化情况下的悬臂梁设计和分析。

工程力学中的悬臂梁受力和弯曲变形问题的分析与计算方法总结

工程力学中的悬臂梁受力和弯曲变形问题的分析与计算方法总结

工程力学中的悬臂梁受力和弯曲变形问题的分析与计算方法总结悬臂梁是工程力学中常见的结构,其受力和弯曲变形问题一直是研究的焦点。

本文将对悬臂梁受力和弯曲变形问题的分析与计算方法进行总结。

一、悬臂梁的受力分析在工程实践中,悬臂梁常常承受着外部力的作用,因此对其受力进行准确的分析至关重要。

悬臂梁的受力分析主要包括弯矩和剪力的计算。

1. 弯矩的计算悬臂梁在受力时会产生弯矩,弯矩的计算可以通过弯矩方程进行。

弯矩方程是基于力的平衡原理和材料的本构关系推导出来的,通过对悬臂梁上各点的力平衡和材料的应力-应变关系进行分析,可以得到弯矩的表达式。

2. 剪力的计算悬臂梁在受力时还会产生剪力,剪力的计算同样可以通过力的平衡原理和材料的本构关系进行推导。

剪力方程可以通过对悬臂梁上各点的力平衡和材料的剪切应力-剪切应变关系进行分析得到。

二、悬臂梁的弯曲变形分析除了受力分析外,悬臂梁的弯曲变形也是需要考虑的重要问题。

弯曲变形是指悬臂梁在受力作用下产生的弯曲形变,主要表现为悬臂梁的中性面发生偏移和悬臂梁上各点的位移。

1. 弯曲形变的计算弯曲形变的计算可以通过弯曲方程进行。

弯曲方程是基于力的平衡原理和材料的本构关系推导出来的,通过对悬臂梁上各点的力平衡和材料的应力-应变关系进行分析,可以得到弯曲形变的表达式。

2. 中性面的偏移和位移的计算中性面的偏移和位移是悬臂梁弯曲变形的重要表现形式。

中性面的偏移可以通过弯曲方程和几何关系进行计算,位移可以通过位移方程进行计算。

通过这些计算,可以得到悬臂梁上各点的位移和中性面的偏移情况。

三、悬臂梁的计算方法总结为了更准确地分析和计算悬臂梁的受力和弯曲变形问题,工程力学中提出了一系列计算方法。

常见的计算方法包括静力学方法、力学性能方法和有限元方法等。

1. 静力学方法静力学方法是最常用的计算方法之一,它基于力的平衡原理和材料的本构关系进行分析和计算。

通过对悬臂梁上各点的力平衡和材料的应力-应变关系进行分析,可以得到悬臂梁的受力和弯曲变形情况。

悬臂梁挠度公式推导过程

悬臂梁挠度公式推导过程

悬臂梁挠度公式推导过程1. 悬臂梁的基本概念1.1 悬臂梁的定义悬臂梁的定义简单明了,一头固定、另一头自由。

就像是你在玩秋千,一头被绳子固定住,而你在秋千的另一头尽情摇摆。

1.2 挠度的重要性挠度是个技术词,但它其实就是测量梁弯曲程度的指标。

你能想象吗?一个结构如果挠度太大,可能就要“出大事”了,比如变形、开裂,甚至坍塌,真是个不小的麻烦!2. 挠度的推导过程2.1 载荷与反应在推导之前,我们得先了解一下载荷。

想象一下,你在悬臂梁的自由端放了个大西瓜,这个西瓜的重量就是载荷。

这个时候,梁会因为重力而弯曲。

我们需要计算出这弯曲的程度,嘿,这就是我们的目标!。

2.2 力学基本原理这时就得用到力学的基本原理了。

我们通常使用的公式是 ( y = frac{F cdotL^3{3EI ),其中的F是载荷,L是梁的长度,E是材料的弹性模量,而I是截面的惯性矩。

听起来有点复杂,但我们可以想象,F越大、L越长,挠度也会跟着增大,简单粗暴!3. 公式的应用与实际意义3.1 实际应用在实际工程中,这个挠度公式就像是建筑师的“心灵密码”。

无论是设计桥梁还是大楼,都要考虑挠度,确保它们在使用时不会像小鸡一样“摇摇欲坠”。

3.2 安全第一不要小看这个挠度,它关系到我们生活的安全。

比如,你家楼上的阳台,设计时可不能让它往下垂,万一有人站上去,哎呀,那可真是“屋漏偏逢连夜雨”了!总之,悬臂梁挠度的推导虽然看似枯燥,但其实背后蕴含着无数的智慧和安全考虑。

希望下次你看到悬臂梁时,不再只是觉得它是一根普通的梁,而是会想到它的挠度与安全的重要性。

生活中,哪怕是微不足道的小事,也总是有它背后的大道理,不是吗?。

工程力学-弯曲内力)

工程力学-弯曲内力)

横截面上的剪力和弯矩。
y
Me =3Fa
F
1A2 3 4
B
1 2 34
x
a
a
FA
2a
FB
解:支反力为
M A 0 FB 2a 3Fa F a 0
Fy 0
FB 2F () FB FA F FA 3F ()
y
F
1A2
12 a
FA
Me =3Fa
34 34
a 2a
B x
FB
截面1—1
F
例:试绘出图示有中间铰的静定梁的剪力弯矩图。
MA FAy F=50kN q=20kN/m
Me=5kN·m
FAx
AE
1m
CD
1m
3m
K
1m
B FBy
0.5m
已知: FAy 81kN
FBy 29kN() M A 96.5kN m (逆时针)
MA FAy F=50kN q=20kN/m
Me=5kN·m
称为弯矩
x
x
0 F
l
m
a l
x
FB B
剪力和弯矩的符号规则:
剪力:使微段有沿顺时 针方向转动趋势为正
弯矩:使微段弯曲呈 下凹形为正
截面法求剪力和弯矩的步骤: (1)所求内力处截开截面,取一部分来研究; (2)将该截面上内力设为正值; (3)由平衡方程求解内力;
例 求图示外伸梁在截面1—1、2—2、3—3和4—4
8a/3
qa/3 x
处无突变,故
FSC
FA
5 qa 3
FSB FSC q(2a)
1 3
q
MC
x-a
FSC

工程力学中的悬臂梁受力和弯曲变形问题的分析与计算方法总结和应用

工程力学中的悬臂梁受力和弯曲变形问题的分析与计算方法总结和应用

工程力学中的悬臂梁受力和弯曲变形问题的分析与计算方法总结和应用悬臂梁是工程力学中常见的结构,广泛应用于桥梁、楼房等建筑物中。

在设计和施工过程中,了解悬臂梁的受力和弯曲变形问题是非常重要的。

本文将对悬臂梁的受力和弯曲变形进行分析,并总结计算方法的应用。

首先,我们来看悬臂梁的受力问题。

悬臂梁在受到外力作用时,会产生弯矩和剪力。

弯矩是指梁上各截面的内力矩,剪力则是指梁上各截面的内力。

悬臂梁的受力分析可以通过力的平衡条件和应力应变关系来进行。

在计算弯矩时,可以采用弯矩图的方法。

首先,根据悬臂梁的几何形状和受力情况,确定悬臂梁上各截面的受力状态。

然后,根据悬臂梁的几何形状和受力情况,绘制出悬臂梁的弯矩图。

弯矩图可以直观地反映出悬臂梁上各截面的弯矩大小和分布情况。

通过弯矩图,可以计算出悬臂梁上任意一点的弯矩值。

在计算剪力时,可以采用剪力图的方法。

剪力图是指悬臂梁上各截面的剪力大小和分布情况。

通过剪力图,可以计算出悬臂梁上任意一点的剪力值。

剪力图的绘制方法与弯矩图类似,只需要将受力状态和几何形状绘制在图上即可。

其次,我们来看悬臂梁的弯曲变形问题。

悬臂梁在受到外力作用时,会发生弯曲变形。

弯曲变形是指悬臂梁在受力作用下,横截面发生的变形。

悬臂梁的弯曲变形可以通过应力应变关系和位移分析来进行。

在计算弯曲变形时,可以采用弹性力学理论中的梁的弯曲理论。

根据梁的弯曲理论,可以得到悬臂梁上各截面的弯曲曲率和弯曲角。

通过弯曲曲率和弯曲角,可以计算出悬臂梁上任意一点的位移值。

位移值可以用来评估悬臂梁在受力作用下的变形情况。

除了受力和弯曲变形问题的分析,我们还可以应用计算方法来解决实际工程问题。

例如,在桥梁设计中,我们可以通过计算方法来确定悬臂梁的截面尺寸和材料选择。

在楼房设计中,我们可以通过计算方法来评估悬臂梁的受力和变形情况,从而确定合适的结构方案。

总之,悬臂梁的受力和弯曲变形问题是工程力学中的重要内容。

通过分析和计算方法的应用,我们可以更好地理解悬臂梁的受力和变形规律,为实际工程问题的解决提供理论依据和技术支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档