旅游路线的优化设计
旅游体验视角下旅游线路设计研究以遵义为例

旅游体验视角下旅游线路设计研究以遵义为例1. 本文概述本文主要研究了旅游体验视角下旅游线路设计的问题,并以遵义为例进行了深入探讨。
随着人们生活水平的提高和消费观念的转变,旅游已成为人们追求精神文化的重要方式。
目前旅游行业存在旅游线路同质化严重、缺乏吸引力等问题。
为了解决这些问题,本文以游客需求为基础,通过实证研究分析了游客体验与旅游线路设计要素的关联性,并提出了相应的设计对策。
本文首先对旅游体验及影响进行了探讨,分析了旅游体验在旅游活动中的重要性。
从体验视角出发,研究了旅游线路设计的相关理论和方法。
通过实地问卷调查和分析,对旅游线路设计要素进行了实证研究,得出了男性在旅游服务影响程度上高于女性、月可支配金额越高的人群受旅游设计影响因素程度越大等结论。
在研究结论的基础上,本文针对遵义市旅游线路设计存在的问题,提出了相应的改进和优化建议。
这些建议包括充分考虑游客需求和偏好、注重线路设计的个性化和创新性、合理利用旅游资源和保护生态环境等。
本文的研究旨在为提高旅游体验质量、增强游客满意度和忠诚度、促进旅游业可持续发展提供参考和借鉴。
2. 文献综述旅游体验作为旅游研究的核心概念之一,已经吸引了众多学者的关注。
Pine 和 Gilmore (1998) 在其开创性的工作《体验经济》中提出,体验是继产品、商品之后的第四种经济提供物,它强调个性化和情感参与。
随后,Schmitt (1999) 进一步细化了体验营销的概念,提出了五种基本体验维度:感官、情感、思维、行动和关联。
这些理论为理解旅游体验提供了重要的视角,并为后续的旅游线路设计研究奠定了基础。
在旅游线路设计方面,Gunn (1988) 是早期对旅游线路进行系统研究的代表,他提出了旅游线路设计应考虑的多个因素,包括可达性、可游览性和可停留性。
近年来,随着旅游市场的不断发展和游客需求的多样化,旅游线路设计开始更加注重游客的个性化体验和参与感。
Chen 和 Tsai (2007) 通过实证研究发现,旅游线路设计应充分考虑游客的感知价值和满意度,以提升其旅游体验质量。
自驾游河南省5A景区的最短路线优化设计模型

自驾游河南省5A景区的最短路线优化设计模型【摘要】自驾游河南省5A景区是一种独特的旅游体验,能够让游客感受到河南丰富的历史文化和自然风光。
目前的路线规划存在诸多问题,如路线冗长、浪费时间和资源等。
为了解决这些问题,本文提出了一个最短路线优化设计模型,通过构建模型并实施方法,对自驾游河南省5A景区的路线进行优化。
模型的效果评估显示,优化后的路线能够减少行车时间和里程,提高游客的旅游体验。
结论部分总结了模型优化效果,展望了未来研究的方向。
这项研究对提升自驾游河南省5A景区的旅游质量具有重要意义,为游客提供更便捷、高效的路线规划,同时也为相关研究领域提供了新的思路与方法。
【关键词】自驾游、河南省、5A景区、最短路线优化设计模型、研究、现有路线规划、构建、实施方法、效果评估、优化效果、未来研究、结论、重要性、问题、展望、总结、背景、目的、意义1. 引言1.1 研究背景河南省是我国历史文化名城,拥有众多的5A级景区,吸引着大量游客前来观光旅游。
在自驾游的过程中,游客往往会遇到路线规划不合理、耗时长、浪费油耗等问题。
为了优化自驾游的路线设计,提高游客的旅游体验,我们有必要进行最短路线优化设计模型的研究和实施。
当前,虽然有一些线上地图或旅游app可以提供旅游路线规划,但是它们往往只能给出一种固定的路线,没有考虑到不同景点之间的交通状况、游客的时间、成本等实际情况。
我们需要建立一个基于最短路线优化设计的模型,考虑到各个景点之间的距离、交通状况、游客的时间成本等因素,为游客提供更好的自驾游体验。
通过研究和实施最短路线优化设计模型,我们可以有效解决现有路线规划存在的问题,提高游客的旅游体验,同时也可以促进河南省旅游业的发展。
本课题具有重要的研究意义和实际应用价值。
1.2 研究目的本研究的目的在于针对自驾游河南省5A景区的旅游路线规划问题,通过构建最短路线优化设计模型,为游客提供更加便捷高效的自驾游体验。
目前,河南省拥有众多著名的5A级景区,吸引着大量游客前来参观游览。
旅行社的旅游线路优化设置问题探讨

旅行社的旅 游线路优化设置问题探讨
旅行社 的旅游线路优化设置 问题探讨
蒋 满 元
( 西财经学 院 ,广西 南宁 5 0 0 ) 广 3 0 3 摘 要 :尽 管在 旅游线路 的设 计过程 中需要解 决的问题很 多 ,但从 优化的 角度 而言 ,如何设计 出一条能 实现 出发地
E、F 、G、H八个 中间点 ;在 这种情况 下 ,怎样 寻找出 O至 T
设 计 出一条能 实现 出发地 与 目的地 间 的最短 路 径 目标 ,便是
其 中的最 为关 键性 的一个 问题。
的最短线路 ,其 实并不简单 ;尤其是其 中的节点数量进一步增 加 ,情况并非 简单的笔算或 观察能够得 出,相反需 应用运筹学
中的最短线路 问题来进行求解 。尽管现在许 多的地理信息系统 都设计 出了这样 一个最短线路 设计模块 ,但 最终 的选择仍非易
事。
考虑 到寻 找两点间 的最短路径 问题不仅在旅行社 的线路设
计 中经常遇到 ,而且也 对旅行社提 升 自身的行业竞争 力具 有重 要影 响 ;因而 ,在旅 游义务 的开 展过程 中,可 以说任 何一家旅 行社 均会高度地 重视这样 的一种旅 游线路 的设计 与规划 问题 。
态 、策略和损益 值三个基本要 素 ,因而本例 的最短路线问题 的
数学模型又可表示 如下 :由于 每段 路的长度就是 客观存在的 自
然状态 ,因而作 为模 型的参数 便应是 各边 对应的 长度权重 w; l 尽管 每段路 的长度并 非决策者能够 改变之现实 ,然而各段 路之 间如何组合 以及每段 路程是否包含 在结果方案 中却又是 决策者 可以控制 的 ,这一点 就又构 成 了需要 求解 的决策 变量 x 1表 i(
旅游路线规划

旅游路线的优化设计摘要本文通过查阅各景点之间的距离及时间的相关资料,运用图论中的Hamilton圈将相连后的景点看作为一个封闭的圈,参照货郎担(TSP)问题使用线性规划列出相关目标函数后运用lingo求解。
对于问题一,在得到距离数据后,在假设距离短则花费少的思路下,使用0-1规划建立目标函数,建立关于时间和景点数量的约束条件,在软件求解下得到十个景点3892.5元的最小旅行花费。
而在问题二中将距离数据改成时间数据,得到7.5天游玩8个景点的优化方案。
关键词:图论 Hamilton圈 0-1规划一、问题重述某背包客要独自旅游十个景点,分别是:江苏常州市恐龙园,山东青岛市崂山,北京八达岭长城,山西祁县乔家大院,河南洛阳市空门石窟,安徽黄山市黄鹤楼,陕西西安市秦始皇兵马俑,江西九江市庐山,浙江舟山市普陀山。
又已知上述各个景点的最短停留时间分别是4小时,6小时,3小时,3小时,3小时,7小时,2小时,2小时,7小时,6小时。
假设:1.城际交通出行可以乘火车(含高铁)、长途汽车或飞机(不允许包车或包机),并且车票或机票可预订到。
2.市内交通出行可乘公交车(含专线大巴、小巴)、地铁或出租车。
3.旅游费用以网上公布为准,具体包括交通费、住宿费、景点门票(第一门票)。
晚上20:00至次日早晨7:00之间,如果在某地停留超过6小时,必须住宿,住宿费用不超过200元/天。
吃饭等其他费用60元/天。
一、假设景点开放时间为8:00至18:00。
问题:根据以上要求,针对如下的几种情况,为该旅游爱好者设计详细的行程表,该行程表应包括具体的交通信息(车次、航班号、起止时间、票价等)、宾馆地址和名称,门票费用,在景点的停留时间等信息。
(1)如果时间不限,游客将十个景点全旅游完,至少需要多少旅游费用?请建立相关数学模型并设计旅游行程表。
(2)如果旅游费用不限,但由于“十一”假期只有7天,为了使游客能尽可能多游览景点,请通过建立相关数学模型,为其设计该旅游行程表。
数学建模论文-旅游线路的优化设计

数学建模论文-旅游线路的优化设计一、问题重述随着人们的生活不断提高,旅游已成为提高人们生活质量的重要活动。
江苏徐州有一位旅游爱好者打算在今年的五月一日早上8点之后出发,到全国一些著名景点旅游,由于跟团旅游会受到若干限制,他(她)打算自己作为背包客出游。
他预最后回到徐州。
选了十个省市旅游景点,如附表1(见附录I)所示。
假设(A)城际交通出行可以乘火车(含高铁)、长途汽车或飞机(不允许包车或包机),并且车票或机票可预订到。
(B)市内交通出行可乘公交车(含专线大巴、小巴)、地铁或出租车。
(C)旅游费用以网上公布为准,具体包括交通费、住宿费、景点门票(第一门票)。
晚上20:00至次日早晨7:00之间,如果在某地停留超过6小时,必须住宿,住宿费用不超过200元/天。
吃饭等其它费用60元/天。
(D)假设景点的开放时间为8:00至18:00。
问题:根据以上要求,针对如下的几种情况,为该旅游爱好者设计详细的行程表,该行程表应包括具体的交通信息(车次、航班号、起止时间、票价等)、宾馆地点和名称,门票费用,信息。
在景点的停留时间等(1) 如果时间不限,游客将十个景点全游览完,至少需要多少旅游费用,请建立相关数学模型并设计旅游行程表。
(2) 如果旅游费用不限,游客将十个景点全游览完,至少需要多少时间,请建立相关数学模型并设计旅游行程表。
(3) 如果这位游客准备2000元旅游费用,想尽可能多游览景点,请建立相关数学模型并设计旅游行程表。
(4) 如果这位游客只有5天的时间,想尽可能多游览景点,请建立相关数学模型并设计旅游行程表。
(5) 如果这位游客只有5天的时间和2000元的旅游费用,想尽可能多游览景点,请建立相关数学模型并设计旅游行程表。
二、问题假设1、忽略乘坐出租车时经过收费路段所交的费用;2、在每个城市中停留时,难免会遇到等车、堵车等延时情况,在此问题中我们不做考虑;3、所有旅馆都未客满,并且忽略从旅馆到火车站或景点的时间;4、列车车次和飞机航班没有晚点等情况发生;5、列车和飞机的票足够,没有买不到票的情况发生;6、景点的开放,列车和航班的运营不受天气的影响;7、绘图时,经线和纬线近似平行分布;8、将城市和路径的关系转化为图论问题;9、在时间的认识上,我们把当天的8点至次日的8点作为一天。
旅游品质管理优化路线的措施

旅游品质管理优化路线的措施提高旅游效劳的品质,需要从旅游的管理的内部入手,不断提高旅游管理的实效性。
优化旅游效劳路线只是旅游效劳管理中的一部内容,通过优化旅游线路,可以发现旅游管理中很多新的问题。
下面准备了关于以优化路线到达旅游品质管理的文章,提供应大家参考!(1)最短间隔的设定。
在旅游线路设计规划的过程中,需要掌握的核心原那么就是旅游交通线路要以最短线路为主要标准。
旅行社在安排和确定旅游活动时,对旅行的线路要进展科学的设计与规划,设计出一条从出发地到目的地之间的最短路径目标。
设计最短线路不仅是节省旅行者时间的方法,也是提高旅游效劳品质的关键。
设计最短线路要根据旅行的景点进展整体规划,既可以沿用传统的出行路线,也可以创造性使用新路线。
旅游一般涉及的景点较多,在最短线路设计时,要考虑到整体的出行线路,以及相邻景点的出现线路。
线路优化不仅要表达出整个过程的优势,也要兼顾各个详细环节的适应性。
(2)交通工具的选择与临时路况。
交通线路优化过程要考虑的重点问题就是交通工具的使用。
旅行社一般根据团队的人数确定采用的交通工具,人数多就采用大型客车,人数少就会采用小型客车。
在详细的实践中,旅行线路规划要充分考虑到有可能发生的交通事故,这里所指的交通事故,既包括自身车辆情况造成的事故,也包括在实际运行中发生的特殊路况。
例如,由于自身操作带来的车辆损坏,就需要在短时间内快速修复,这就会产生旅客一定时间的滞留,在滞留过程中要准备好充足的应急饮食,方便游客保持正常的生活状态,同时,及时消除游客疑虑,以快速解决问题为主要标准。
再有就是因为其他交通事故带来的弊端。
在这种时候,要适当采用线路优化的应急预案,在设定交通路线的前提下,进展适当路线修改,路线修改还是以围绕景区活动为主要标准。
(1)周游型旅游的线路设计。
在旅游的类型中,周游型的旅游是常见的方式。
周游型旅游线路的优化需要考虑到核心问题就是路线的闭合式管理。
在设计规划,首先,要明确周游型旅游的总体范围,在划定范围后,设计一个循环的闭合路线。
旅游线路的优化设计

旅游线路的优化设计摘要本文是以江苏徐州一位旅游爱好者自己作为背包客预选了十个省市旅游景点旅游为例,是一个典型的旅行线路的线性优化规划模型和图论模型。
首先,在不考虑时间的影响下,我们以每个景点城市之间的城际交通费用关系,建立了一个遍历景点时费用最少的最优旅游路线的规划线性模型,并通过LINGO软件对模型进行求解,得出一条最优路线,结合景点及交通的实际情况对路线的做出了具体分析,并给出了一个包括具体的交通信息 (包括车次、航班号、起止时间、票价等)、宾馆地点和名称,门票费用,在景点的停留时间等信息的行程表。
其次,在不考虑旅游费用的条件下,我们以每个景点城市之间的城际航线距离建立一个关系矩阵,运用该关系矩阵建立一个遍历所有景点时耗时最少的线性0-1 规划模型,运用LINGO软件求解得到一条时间最优旅游路线,结合航班的时间信息及城际交通连接关系,修改并完善具体了最优路线的具体信息,并给旅游者列出了具体的行程表。
最后,在前两个模型的条件基础上,不断强化条件,先分别对旅游费用及旅游时间进行约束,对此,我们分别建立了一个遍历景点个数最多的决策模型和图论模型,并运用“贪心算法”“最短路算法”分别求解,得出了两种限制条件下的最优旅游路线规划及遍历最优景点个数都为7个,并结合实际情况分析,分别作出了具体的旅游行程表。
对最后条件强化为对旅游费用及时间都进行限制约束时,在前面几个模型及模型的解的基础上,我们建立了一个以遍历景点个数最多为目标,旅游费用及时间为约束的0-1目标规划模型,并运用LINGO软件求解得出了最多景点个数为7个。
关键字:旅游路线规划模型LINGO软件贪心算法图论1.问题重述江苏徐州有一位旅游爱好者打算现在的今年的五月一日早上8点之后出发,到全国一些著名景点旅游,最后回到徐州。
由于跟团旅游会受到若干限制,他(她)打算自己作为背包客出游。
他(她)预选了十个省市旅游景点。
于是我们为他(她)设计出了不同条件下的优化旅游路线,为此我们需要解决如下问题:1.如果时间不限,游客将十个景点全游览完,至少需要多少旅游费用?建立相关数学模型并设计旅游行程表。
旅游线路的设计

旅游线路的设计题 目 : 旅行线路的优化设计摘要本文考虑的是旅行时刻〔费用〕不受限制的情形下,如何安排旅行路线不重复且有返回的游玩完所有景点,使得费用〔时刻〕最少,以及费用〔时刻〕受限制或两者都受限制时,如何安排不重复且有返回的路线使得游玩的景点最多。
〔一〕对优化模型的明白得:路线优化模型:第一我们明白本问题属于旅行路线的优化问题。
为了建立模型,第一应将各景点线路转化为纯数学形式的点线集合,进行图论方面的分析。
本问题要紧是解决两方面的问题:〔1〕、〔2〕两问是在时刻或旅行费用不限的情形下,游完十个景点如何样才能够做到费用最省或是时刻最省;〔3〕、〔4〕、〔5〕问是在旅行时刻或是旅行费用或是两者都有约束条件的情形下,如何样才能够玩更多的地点。
依照对第一方面问题的分析可知,该问题属于旅行商问题〔Traveling Salesman Problem,TSP 〕。
对旅行商问题的明白得:一位销售商从N 个都市的某个都市动身,不重复的走完其余N-1个都市并回到原动身点,在所有可能路径中求出路径长度最短的一条。
用图语言描述TSP :给出一个图G=〔V ,E 〕,每边E e ∈上有非负权值)(e w , 查找G 的Hamilton 圈C ,使得C 的总权∑==)()()(c E e e w c W 最小。
在一定程度上,各景点间的距离与两点间的单程最省路费〔单程最短时刻〕是成正比的,因此把两景点的最省路〔最短时刻〕作为权值)(e w 是可行的。
第二面要解决的问题是在费用〔时刻〕有限制或两者都有限制的情形的情形下观赏的景点近可能多,依照这种要求可从这种方案入手:建立多目标规划模型,通过适当的拟合或线性加权,把多目标转化为单目标〔二〕综上所述,得到各种条件下的最优路线方案见表1.1:表1.1由于不同的网站公布的信息存在一定偏差,因此该结果仅依求解时提供的网站信息。
【关键词】多目标规划旅行商问题Hamilton圈线性加权最优化一、问题重述随着人们生活水平的提高,旅行逐步成为最热门的户外活动之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 1 问题一旅游路线设计
图中节点表示旅游景点, 箭头指向表示行进方向。最终得到的城际最少交通费用 为 782 元。 5.1.2 城内费用 在乘坐市内交通时,考虑到某些城市来时车站(机场)与去时车站(机场) 不同,因此会导致往返于景点与车站(机场)的交通费用不同,如下图所示:
车站(机场)A
交通费用①
旅游总费用 Z
城际费用 S
吃饭及其他费用 C
城内费用 s
乘 坐 火 车 费 用
乘 坐 汽 车 费 用
乘 坐 飞 机 费 用
市 内 交 通 费 用
景 点 门 票 费 用
宾 馆 住 宿 费 用
然后建立模型对每一种费用进行优化,从而得到总费用最优。 问题二中,在费用不限的情况下,以旅游总时间最小为优化目标建立模型。 首先分析旅游总时间的组成,如下图所示:
旅游总时间 P 城际时间 T 城内时间 t
乘 坐 火 车 时 间
乘 坐 汽 车 时 间
乘 坐 飞 机 时 间
市 内 交 通 时 间
景 点 游 玩 时 间
然后建立模型对每一种费用进行优化,从而得到总费用最优。 问题三和问题四分别是在问题一和问题二的基础上做了进一步的约束, 而问 题五则是问题三和四的结合。
若构成回路,有 xij 1, x jk 1, xki 1 ,则 ui u j 1, u j uk 1 , uk ui 1 , 从而有 0 3 ,导致矛盾。其它情况依此类推。 于是我们可以得到如下的模型:
min Z
i , j 1
S
n
ij ij
x
n xij 1, j 1,..., n 1 ii j n xij 1, i 1,..., n j 1 s.t. j i ui u j nxij n 1, 1 i j n ,i, j 1,..., n xij 0或1 ui为实数,i 1,..., n
二、 模型假设 1、城际交通出行可以乘火车(含高铁)、长途汽车或飞机(不允许包车或包机) , 并且车票或机票可预订到。 2、市内交通出行可乘公交车(含专线大巴、小巴)、地铁或出租车。 3、旅游费用以网上公布为准,具体包括交通费、住宿费、景点门票(第一门票)。 晚上 20:00 至次日早晨 7:00 之间,如果在某地停留超过 6 小时,必须住宿, 住宿费用不超过 200 元/天。吃饭等其它费用 60 元/天。 4、假设景点的开放时间为 8:00 至 18:00。 5、不考虑堵车、晚点等交通问题带来的影响; 6、不考虑更换交通方式时所用时间; 7、假设所查到的宾馆在当晚均可以住宿,不考虑客满等情况。
ui u j nxij n 1, 1 i j n
该约束的解释为:① i 与 j 不会构成回路,若构成回路有 xij 1, x ji 1 ,则
ui u j 1, u j ui 1,从而有 0 2 ,导致矛盾;② i , j 与 k 不会构成回路,
关键词:巡回旅行商问题(TSP) ;人工修正;LINGO;旅游线路优化;
一、 问题重述 随着人们的生活不断提高,旅游已成为提高人们生活质量的重要活动。江苏 徐州有一位旅游爱好者打算现在的今年的五月一日早上 8 点之后出发, 到全国一 些著名景点旅游,最后回到徐州。由于跟团旅游会受到若干限制,他(她)打算自 己作为背包客出游。他预选了十个省市旅游景点,如表 1 所示。 表 1. 预选的十个省市旅游景点 省市 景点名称 在景点的最短停留时间 江苏 常州市恐龙园 4 小时 山东 青岛市崂山 6 小时 北京 八达岭长城 3 小时 山西 祁县乔家大院 3 小时 河南 洛阳市龙门石窟 3 小时 安徽 黄山市黄山 7 小时 湖北 武汉市黄鹤楼 2 小时 陕西 西安市秦始皇兵马俑 2 小时 江西 九江市庐山 7 小时 浙江 舟山市普陀山 6 小时 问题: 根据以上要求,针对如下的几种情况,为该旅游爱好者设计详细的行程表,该行 程表应包括具体的交通信息(车次、航班号、起止时间、票价等)、宾馆地点和名 称,门票费用,在景点的停留时间等信息。 (1) 如果时间不限,游客将十个景点全游览完,至少需要多少旅游费用?请建立 相关数学模型并设计旅游行程表。 (2) 如果旅游费用不限,游客将十个景点全游览完,至少需要多少时间?请建立 相关数学模型并设计旅游行程表。 (3) 如果这位游客准备 2000 元旅游费用,想尽可能多游览景点,请建立相关数 学模型并设计旅游行程表。 (4) 如果这位游客只有 5 天的时间,想尽可能多游览景点,请建立相关数学模型 并设计旅游行程表。 (5) 如果这位游客只有 5 天的时间和 2000 元的旅游费用,想尽可能多游览景点, 请建立相关数学模型并设计旅游行程表。
73 79 93 41 81 28 41 94 113 87
城际交通的总费用 S =792元 。
表 2 城内行程表 城市 常州 宁波 黄山 九江 武汉 洛阳 西安 祁县 北京 青岛 单程路线 火车站-29 路-恐龙园 汽车站-大巴-沈家门-船-普陀山 火车站-中巴-寨西-景区交通-黄 山 火车站-1 路-长途汽车站-大巴庐山 火车站-643 路-小李村-401 路-黄 鹤楼 火车站-81 路-龙门石窟 火车站-游 5-兵马俑 县城广场-乔家大院 火车站-2 号线-积水潭-919 快-八 达岭长城 火车站-304-崂山 交通费 用(往 返) /元 2× 1 2×55 2×28 2×10 2× 2 2× 1 2× 7 2× 5 2× 3 2× 1 景点 门票/ 元 180 200 230 180 80 120 110 40 45 80 游玩时 间/小 时 4 6 7 7 2 3 2 3 3 6 住宿/ 天 2 1 2 2 2 1 2 1 0 1
摘
要
旅游是提高人们生活质量的重要活动, 游客在追求旅途体验的过程中往往期 望花费最少。本文中提出了基于 TSP 模型对不同约束条件下旅游线路优化设计 的方法。 首先,针对旅游费用和时间的约束条件分别建立 TSP 模型,通过 LINGO 求 解,得到城际最优线路。根据城际最优路线制定初步的旅游行程表,并计算相应 的旅游费用和时间。 然后,通过分析初步行程表中对目标因素影响最大的因子,从而有针对性地 对城际线路进行人工修正以达到全局较优,再计算出修正后的旅游总费用和时 间,并与修正前的进行比较得出结论:如果时间不限,游完景点至少需要 3507 元;如果费用不限,游完景点至少需要 8 天时间;问题三、四分别在问题一、二 的基础上做出修正改进,剔除对目标影响最大的部分,得到以下结果:在费用不 超过 2000 元的情况下,最多可以游览 6 个景点;在时间不超过 5 天的情况下, 最多可以游览 6 个景点;问题五在问题三、四的基础上,进一步修正优化,结果 为:在费用不超过 2000 元并且时间不超过 5 天地情况下,最多可以游览 5 个景 点。 最后,给出每一种情况下的旅游行程表,包括城际行程表、城内行程表以及 宾馆信息表。
x
j 1 j i n
n
ij
1
, i 1, 2,..., n
考虑每个城市前只有一个城市,则
x
i 1 i j
ij
1 , j 1, 2,..., n
但仅有以上约束条件不能避免在一次遍历中产生多于一个互不连通回路。 为 此我们引入额外变量 ui (i 1,..., n) ,附加以下充分约束条件,即
表 1 城际行程表 城市 徐州-常州 车次 4310 发车 日期 5.1 时间 10:05 5.1 到达 日期 时间 15:48 票价/ 元 62
常州-宁波 宁波-黄山 黄山-九江 九江-武汉 武汉-洛阳 洛阳-西安 西安-祁县 祁县-北京 北京-青岛 青岛-徐州
K75/K78 K8498-K8409 K45-K308/K305 K398/K395 K238/K239 1085 1096 2604/2601 K712/K709 1564/1565
G 的 Hamilton 圈 C ,使得 C 的总权 W (C ) w(e) 最小, e E (C ) 。
几十年来,出现了很多近似优化算法,如近邻法、贪心算法、最近插值法、 最远插值法、 模拟退火算法以及遗传算法。 这里我们利用 LINGO 软件进行求解, 具体如下: 设城市之间费用用矩阵 S 来表示,Sij 表示城市 i 到城市 j 的交通费用。 设 0-1 矩阵 x 用来表示经过的各城市之间的路线。设 若城市i不到城市j 0, xij 若城市i到城市j,且i在j前 1, 考虑每个城市后只有一个城市,则
对于问题一, 需要得到花费最少的路线,由于火车的票价一般低于长途汽车 和飞机,所以选择火车作为城际交通工具。模型中的城际费用矩阵 Sij 就是城市 i 到城市 j 最便宜的火车票价。我们通过 LINGO 编程得到最优路线为:徐州—— 常州恐龙园——浙江舟山普陀山——安徽黄山是黄山——九江市庐山——武汉 市黄鹤楼——河南洛阳龙门石窟——西安市秦始皇兵马俑——山西祁县乔家大 院——北京八达岭长城——青岛市崂山——徐州,如下图所示:
五、 模型建立与求解 5.1 问题一模型的建立与求解 根据问题分析中对总费用的分类,可以得到总费用最小的模型: min Z S C s 其中 Z 表是总费用, S 表示城际交通费用, s 表示城内费用, C 表示吃饭等其他 费用。我们首先根据城际交通费用最小设计优化线路,并给出相应的行程表;然 后分析结果,对线路作出人为修正,得到总费用最低的优化线路,并给出旅游行 程表。 5.1.1 城际线路的优化设计 本题是一个巡回旅行商问题(Traveling Salesman Problem,TSP),也称为货郎 担问题。问题可以描述为:一旅行商想去走访若干城市,然后回到他的出发地, 问如何安排他的路线可使总时间最短。 用图论描述 TSP,给出一个图 G(V , E ) ,每边 e E 上有非负权值 w(e) ,寻找
三、
符号
符号说明
含义 旅游总费用 城际费用 吃饭及其他费用 城内费用 旅游总时间 城际时间 城内时间 经过的各城市之间的路线