信号与系统实验DOC

合集下载

信号与系统实验

信号与系统实验

实验一信号与系统认知一、实验目的1、了解实验室的规章制度、强化安全教育、说明考核方法。

2、学习示波器、实验箱的使用、操作知识;3、学习常用连续周期信号的波形以及常用系统的作用。

二、实验仪器1、信号与系统实验箱(本次实验使用其自带的简易信号源,以及实验箱上的“信号通过系统”部分。

)2、示波器三、实验原理1、滤波器滤波器是一种常用的系统,它的作用为阻止某些频率信号通过,或只允许某些频率的信号通过。

滤波器主要有四种:这是四种滤波器的理想状态,实际上的滤波器只能接近这些效果,因此通常的滤波器有一些常用的参数:如带宽、矩形系数等。

通带范围:与滤波器最低衰减处比,衰减在3dB以下的频率范围。

2、线性系统线性系统是现实中广泛应用的一种系统,线性也是之后课程中默认为系统都具有的一种系统性质。

系统的线性表现在可加性与齐次性上。

齐次性:输入信号增加为原来的a倍时,输出信号也增加到原来的a倍。

四、预习要求1、复习安全操作的知识。

2、学习或复习示波器的使用方法。

3、复习典型周期信号的波形及其性质。

4、复习线性系统、滤波器的性质。

5、撰写预习报告。

五、实验内容及步骤1、讲授实验室的规章制度、强化安全教育、说明考核方法2、通过示波器,读出实验箱自带信号源各种信号的频率范围(1)测试信号源1的各种信号参数,并填入表1-1。

(2)测试信号源2的各种信号参数,并填入表1-2。

3、测量滤波器根据相应测量方法,用双踪示波器测出实验箱自带的滤波器在各频率点的输入输出幅度(先把双踪示波器两个接口都接到所测系统的输入端,调节到都可以读出输入幅度值,并把两侧幅度档位调为一致,记录下这个幅度值;之后,将示波器的一侧改接入所测系统的输出端,再调节用于输入的信号源,将信号频率其调至表1-3中标示的值,并使输入信号幅度保持原幅度值不变。

观察输出波形幅度的变化,并与原来的幅度作比较,记录变化后的幅度值。

),并将相应数据计入表1-3中。

4、测量线性系统(1)齐次性的验证自选一个输入信号,观察输出信号的波形并记录输入输出信号的参数,将输入信号的幅度增强为原信号的一定倍数后,再对输入输出输出参数进行记录,对比变化前后的输出。

《信号与系统》课程实验报告

《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。

上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。

t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。

三、实验步骤该仿真提供了7种典型连续时间信号。

用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。

图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。

界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。

控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。

图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。

在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。

在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。

矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。

图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。

《信号与系统》实验三

《信号与系统》实验三
实验记录及个人小结(包括:实验源程序、注释、结果分析与讨论等)
三:
源程序:
(1):τ/T=1/4时的周期矩形脉冲的幅度谱和相位谱:
n=-20:20;
F=zeros(size(n));
forii=-20:20
F(ii+21)= sin(ii*pi/4)/(ii*pi+eps);
end
F(21)=1/4;
实验
内容
1.求图1所示周期信号( , )的傅里叶级数,用Matlab做出其前3、9、21、45项谐波的合成波形与原信号作比较,并做出其单边幅度谱和相位谱。
图1 周期为2的三角脉冲信号
2. 求图2所示的单个三角脉冲( )的傅里叶变换,并做出其幅度谱和相位谱。
图2 单个三角脉冲
3. 求不同占空比下周期矩形脉冲的幅度谱和相位谱,例如 、 。
y=1/4;
forn=1:m
y=y+4/(n*n*pi*pi)*(1-cos(n*pi/2)).*cos(n*pi.*t);
end
源代码:
t=-6:0.01:6;
d=-6:2:6;
fxx=pulstran(t,d,'tripuls');
f1=fourierseries(3,t);
f2=fourierseries(9,t);
n=1:10;
a=zeros(size(n));
fori=1:10
a(i)=angle(4/(i*i*pi*pi)*(1-cos(i*pi/2)))
end
n=0:pi:9*pi
stem(n,a,'fill','linewidth',2);
axis([0,9*pi,-0.2,0.2])

信号与系统实验报告

信号与系统实验报告

电气学科大类2012 级《信号与控制综合实验》课程实验报告(基本实验一:信号与系统基本实验)姓名丁玮学号U201216149 专业班号水电1204 同组者1 余冬晴学号U201216150 专业班号水电1204 同组者2 学号专业班号指导教师日期实验成绩评阅人实验评分表基本实验实验编号名称/内容实验分值评分实验一常用信号的观察实验二零输入响应、零状态相应及完全响应实验五无源滤波器与有源滤波器实验六LPF、HPF、BPF、BEF间的变换实验七信号的采样与恢复实验八调制与解调设计性实验实验名称/内容实验分值评分创新性实验实验名称/内容实验分值评分教师评价意见总分目录1.实验一常用信号的观察 (1)2.实验二零输入响应、零状态响应及完全响应 (4)3.实验五无源滤波器与有源滤波器 (7)4.实验六 LPF、HPF、BPF、BEF间的转换 (14)5.实验七信号的采样与恢复 (19)6.实验八调制与解调 (29)7.实验心得与自我评价 (33)8.参考文献 (34)实验一常用信号的观察一.任务与目标1.了解常见信号的波形和特点;2.了解常见信号有关参数的测量,学会观察常见信号组合函数的波形;3.学会使用函数发生器和示波器,了解所用仪器原理与所观察信号的关系;4.掌握基本的误差观察与分析方法。

二.总体方案设计1.实验原理描述信号的方法有许多种,可以用数学表达式(时间的函数),也可以使用函数图形(信号的波形)。

信号可以分为周期信号和非周期信号两种。

普通示波器可以观察周期信号,具有暂态拍摄功能的示波器可以观察到非周期信号的波形。

目前,常用的数字示波器可以方便地观察周期信号及非周期信号的波形。

2.总体设计⑴观察常用的正弦波、方波、三角波、锯齿波等信号及一些组合函数的波形,如y=sin(nx)+cos(mx)。

⑵用示波器测量信号,读取信号的幅值与频率。

三.方案实现与具体设计1.用函数发生器产生正弦波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;2.用函数发生器产生方波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;3.用函数发生器产生三角波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;4.用函数发生器产生锯齿波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;5.用函数发生器产生两个不同频率的正弦波,分别设定波形的峰值及频率,用示波器叠加波形,并观察组合函数的波形。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。

二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。

傅里叶级数有三角形式和指数形式两种。

1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。

Matlab中进行数值积分运算的函数有quad函数和int函数。

其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。

因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。

quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。

其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。

《信号与系统实验》信号的采样与恢复(抽样定理)实验

《信号与系统实验》信号的采样与恢复(抽样定理)实验

《信号与系统实验》信号的采样与恢复(抽样定理)实验一、实验目的1、了解电信号的采样方法与过程以及信号恢复的方法。

2、验证抽样定理。

二、实验设备1、信号与系统实验箱2、双踪示波器三、原理说明1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。

抽样信号f s(t)可以看成连续f(t)和一组开关函数s (t)的乘积。

s (t)是一组周期性窄脉冲,见实验图5-1,T s(t)称为抽样周期,其倒数f s(t)= 1/T s称为抽样频率。

图5-1 矩形抽样脉冲对抽样信号进行傅立叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的信号频率。

平移的频率等于抽样频率f s(t)及其谐波频率2f s、3f s》》》》》》。

当抽样信号是周期性窄脉冲时,平移后的频率幅度(sinx)/x规律衰减。

抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。

只要用一截止频率等于原信号频谱中最高频率f n的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。

3、但原信号得以恢复的条件是f s 2,其中f s为抽样频率,为原信号占有的频带宽度。

而f min=2 为最低抽样频率又称“柰奎斯特抽样率”。

当f s<2 时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频率的信号是及少的,因此即使f s=2 ,恢复后的信号失真还是难免的。

图5-2画出了当抽样频率f s>2 (不混叠时)f s<2 (混叠时)两种情况下冲激抽样信号的频谱。

t f(t)0F()t 0m ωm ω-(a)连续信号的频谱Ts t 0f s (t)F()t0m ωm ω-s ω-s ω()(b)高抽样频率时的抽样信号及频谱 不混叠图5-2 冲激抽样信号的频谱实验中f s >2 、f s =2 、f s <2 三种抽样频率对连续信号进行抽样,以验证抽样定理——要使信号采样后能不失真地还原,抽样频率f s 必须大于信号频率中最高频率的两倍。

信号与系统试验----信号卷积

信号与系统试验----信号卷积

一、 实验目的1. 理解卷积的概念及物理意义;2. 通过实验的方法加深对卷积运算的图解方法及结果的理解。

二、实验设备1.信号与系统实验箱 1台2.双踪示波器1台三、实验原理卷积积分的物理意义是将信号分解为冲激信号之和,借助系统的冲激响应,求解系统对任意激励信号的零状态响应。

设系统的激励信号为)t (x ,冲激响应为)t (h ,则系统的零状态响应为)(*)()(t h t x t y =⎰∞∞--=ττd t h t x )()(。

对于任意两个信号)t (f 1和)t (f 2,两者做卷积运算定义为:⎰∞∞--=ττd t f t f t f )(2)(1)(=)t (f 1*)t (f 2=)t (f 2*)t (f 1。

1. 两个矩形脉冲信号的卷积过程两信号)t (x 与)t (h 都为矩形脉冲信号,如图9-1所示。

下面由图解的方法(图9-1)给出两个信号的卷积过程和结果,以便与实验结果进行比较。

0≤<∞-t210≤≤t 1≤≤t 41≤≤t ∞<≤t 2124τ(b)(a)(c)(d)(e)(f)(g)(h)(i)2卷积结果2. 矩形脉冲信号与锯齿波信号的卷积信号)t (f 1为矩形脉冲信号,)t (f 2为锯齿波信号,如图9-2所示。

根据卷积积分的运算方法得到)t (f 1和)t (f 2的卷积积分结果)t (f ,如图9-2(c)所示。

图9-2 矩形脉冲信号与锯齿脉冲信号的卷积积分的结果3. 本实验进行的卷积运算的实现方法在本实验装置中采用了DSP 数字信号处理芯片,因此在处理模拟信号的卷积积分运算时,是先通过A/D 转换器把模拟信号转换为数字信号,利用所编写的相应程序控制DSP 芯片实现数字信号的卷积运算,再把运算结果通过D/A 转换为模拟信号输出。

结果与模拟信号的直接运算结果是一致的。

数字信号处理系统逐步和完全取代模拟信号处理系统是科学技术发展的必然趋势。

图9-3为信号卷积的流程图。

信号与系统实验

信号与系统实验

实验一 抽样定理与信号恢复一、实验目的1. 观察离散信号频谱,了解其频谱特点;2. 验证抽样定理并恢复原信号。

二、实验原理1. 离散信号不仅可从离散信号源获得,而且也可从连续信号抽样获得。

抽样信号 Fs (t )=F (t )·S (t )。

其中F (t )为连续信号(例如三角波),S (t )是周期为Ts 的矩形窄脉冲。

Ts 又称抽样间隔,Fs=1Ts 称抽样频率,Fs (t )为抽样信号波形。

F (t )、S (t )、Fs (t )波形如图1-1。

t-4T S -T S 0T S 4T S8T S 12T S tt02/1τ1τ2/31τ2/1τ1τ2/31τ2/1τ-(a)(b)(c)图1-1 连续信号抽样过程将连续信号用周期性矩形脉冲抽样而得到抽样信号,可通过抽样器来实现,实验原理电路如图1-2所示。

2. 连续周期信号经周期矩形脉冲抽样后,抽样信号的频谱()∑∞∞--∙=m s s m m SaTsA j )(22s F ωωπδτωτω 它包含了原信号频谱以及重复周期为fs (f s =πω2s 、幅度按ST A τSa (2τωs m )规律变化的原信号频谱,即抽样信号的频谱是原信号频谱的周期性延拓。

因此,抽样信号占有的频带比原信号频带宽得多。

以三角波被矩形脉冲抽样为例。

三角波的频谱 F (j ω)=∑∞-∞=-K k k sa E )2()2(12τπωδππ抽样信号的频谱Fs (j ω)=式中 取三角波的有效带宽为31ω18f f s =作图,其抽样信号频谱如图1-3所示。

图1-2 信号抽样实验原理图)(2(212s m k s m k k Sa m Sa TS EA ωωωδπτωτπ--∙∙∑∞-∞=-∞=111112ττπω==f 或(b) 抽样信号频谙图1-3 抽样信号频谱图如果离散信号是由周期连续信号抽样而得,则其频谱的测量与周期连续信号方法相同,但应注意频谱的周期性延拓。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号与系统实验讲义雷明东编重庆文理学院电子电气学院2014年10月实验注意事项1、不准迟到早退,开始做实验前需要签字;2、在离开实验室前,要整理好实验设备、桌椅、收拾好垃圾后,待老师检查完毕,方可离开实验室;3、做实验期间不准大声喧哗,如有问题需举手示意;4、不准在无老师授权的情况下随意拆卸实验设备;5、在每次做新实验前,需交前个实验的实验报告。

实验一 常用信号的分类和观察一 实验目的:1、观察和了解常见信号的波形和特点。

2、理解相关信号参数的作用和意义。

3、掌握信号的FFT 变换。

3、熟练掌握示波器的使用。

二 实验原理:描述信号的基本方法是写出它的数学表达式,此表达式是时间的函数,绘出函数的图像称为信号的波形。

对于各种信号,可以从不同的角度分类。

如分成确定性信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号等。

常见信号除了包括正弦波)sin()(0φω+=t A t x 、指数函数信号t Ke t x α=)(、抽样函数信号t t A t x /)(sin )(=、高斯函数信号τ/)(t Ke t x -=、方波、三角波、锯齿波,还包括一些直流信号。

三 预习练习:1、预习有关信号的分类和描述。

2、理解信号的函数表达式和相关参数的意义。

四 实验内容及步骤:1、 根据实验箱上函数信号发生器模块的提示选择相应的信号波形代码。

01:正弦波 02:方波 03:锯齿波 04:三角波05:阶梯波06:衰减指数信号07:高斯函数信号08:抽样函数信号09:抽样脉冲10:调幅信号11:扫频信号2、用示波器测量信号,读取信号的幅度和频率,并用坐标纸记录信号波形;在信号与系统实验箱上的电源模块用电压表(或万用表)与示波器来观测电源信号的特点,并测量电源的幅度。

3、在示波器上观测扫频信号的波形特征,大致画出扫频信号的波形。

4、利用示波器中的FFT函数,来观看信号的FFT变换形式。

5、用频谱分析仪观测各个信号的频谱(选做)。

五实验仪器:1、信号系统实验箱(函数信号发生器模块)2、双踪示波器六实验报告内容:1、根据实验测量所得数据,绘制各个信号的波形图。

2、绘制各个波形的FFT变换波形。

3、写出相应的函数表达式与频域变换表达式。

4、用示波器直流档观测函数信号的波形特点,并说明原因(提示:本函数发生器所产生的信号均由单片机AT89C51产生)。

实验二 系统的零输入响应、零状态响应分析一 实验目的:1、用示波器观察一阶RC 电路的零输入响应、零状态响应。

2、理解并掌握一阶电路零输入响应、零状态响应的物理意义以及与其他类型响应,诸如全响应、单位阶跃响应、单位冲击响应之间的关系。

二 实验原理:一阶连续时间系统如图所示其模型可用微分方程RVV R dt dV C C =+1 表示 微分方程的解反映了该系统的响应,根据微分方程既可以求出零输入响应、零状态响应,又可求出全响应。

三 预习练习:课前认真阅读教材中微分方程模型的零输入响应,零状态响应的求解过程,并深刻体会。

并分析全响应与零输入响应、零状态响应以及单位阶跃响应、单位冲击响应之间的关系。

图2-1 一阶连续系统实验四实验内容及步骤与内容:1、在扩展模块如图搭接线路图2-2 一阶电路响应实验电路2、V1=12V,V2=5V,各电阻电容参数值如图(电容取47uF为基准值,可以适当往小调节)。

(1)K1置于a,K2置于c,待光点回到起始位置后,将K2由c扳向d,观察并记录零输入响应。

(2)K1置于b,K2置于d,待光点回到起始位置后,将K2由d拨向c,观察并记录零状态响应。

(3)K1置于a,K2置于c,待光点回到起始位置后,将K1由a拨向b,观察并记录完全响应。

3、将V1与V2互换即取V1=5V,V2=12V,重复上述步骤。

4、适当改变电阻与电容参数值,重新观测,并记录所观测到的情况。

5、将交流电源作为信源信号,重做该实验。

五实验仪器:1、信号与系统实验箱(扩展模块、电源模块)2、示波器六实验报告内容:1、在同一坐标下记录实验内容及步骤2观察到的零输入、零状态及全响应波形。

2、分析实验结果,说明实际波形与理论分析波形差异的原因。

3、将步骤4与步骤2的结果相对比。

简述值R*C(即时间常数)变化对各响应的影响。

实验三 信号的分解与合成一 实验目的:1、观察周期方波信号的分解,并与实际计算结果相比较,得出自己的结论。

2、在本实验的基础上,熟悉周期方波信号合成与分解的原理和特点。

二 实验原理:任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。

对周期信号由它的傅里叶级数展开式∑∞-∞==k tjk kec t x 0)(ω (0ω为基波频率)可知,各次谐波为基波频率的整数倍。

而非周期信号包含了从零到无穷大的所有频率成分,每一频率成分的幅度均趋向无限小,但相对大小是不同的。

将电信号中所包含的某一频率成份提取出来的方法很多,可以通过一个LC 谐振选频网络提取,也可以通过带通滤波器提取。

本实验采用的是后一种方法。

实验中所用被测信号是50Hz 的周期方波,其复指数形式的傅里叶级数为:∑∑∞-∞=∞=--++==k k t jk k t jk k tjk ke c e c c ec t x 10)()(000ωωωk c 既包含了K 次谐波振幅也包含了K 次谐波的相位,因此工程上用它表示频谱极为方便,其双边频谱图为:09ω-07ω-05ω-03ω-0- 0 0ω 03ω 05ω 07ω 09ω|Ck| 图3-1 方波信号双边频谱因此设计带通滤波器的中心频率分别为50Hz, 150Hz,250Hz,350Hz,450Hz 并且带宽要足够的窄(高Q 值)就能够分别提取出方波信号的三、五、七、九次谐波,实现方波信号的分解。

从频谱图上可以看出方波信号随着谐波阶次的增加,分量成分越来越少。

本实验箱提取到九次谐波分量。

三 预习练习:1、认真阅读和理解教材中方波周期信号傅里叶级数的分解及合成原理。

2、理论推导,原方波信号的幅度与分解后各次谐波幅度之间存在怎样的关系(在本实验中验证)。

四 实验内容及步骤:1、输入接单片机信号发生器,选择方波,其频率应为50Hz ,记录方波信号幅值。

2、将方波信号输入到谐波产生电路的输入端,分别分解出基波及三、五、七、九次谐波,用示波器依次观察各次谐波波形(如图16-2所示),在表16-1中记录各波形幅度及频率值。

记录每次谐波的波形。

(注意基波与各次谐波的幅值关系分别大约为1:1/3,1:1/5,1:1/7,1:1/9)。

图3-2 谐波产生实验电路框图表3-1 实验数据记录3、将基波和三次谐波分量接至加法器的输入端,用示波器观察加法器输出波形,并记录之;4、再分别将五次、七次、九次谐波分量输入加法器,观测相加后的波形,记录之。

(说明:有时得不到准确的实验结果,必须从上到下逐级适当调节电位器。

每一级的第一个电位器改变相位,第二个电位器改变增益。

)5、(选做)从可调信号发生器选择频率幅度一定的方波输出,重新做此实验。

五实验仪器:1、信号与系统实验箱(信号的合成与分解模块、函数信号发生器模块)2、双踪示波器六实验报告内容:1、整理步骤2和3并绘出实验中所观察到的各种合成波形并与分解之前的波形进行比较,评述实验结果。

2、整理步骤4和5两次谐波合成实验中得到的波形结果,描绘两次得到的波形。

3、回答预习练习2中的问题。

给出推导的步骤。

实验四信号的采样与恢复一实验目的:1、了解电信号的采样方法与过程以及信号恢复的方法。

2、验证抽样定理。

二实验原理:1、离散时间信号可以从离散信号源获得,也可以从连续时间信号经抽样而获得。

抽样信号f S(t)可以看成是连续信号f(t)和一组开关函数s(t)的乘积。

即:f S(t)= f(t)×s(t)如图15-1所示。

开关函数为s(t),T S为抽样周期,其倒数f S =1/T S称为抽样频率。

图4-1 对连续时间信号进行的抽样对抽样信号进行傅里叶分析可知,抽样信号的频谱包含了原连续信号以及无限多个经过平移的原信号频谱。

平移后的频率等于抽样频率f S及其各次谐波频率2 f S,3f S,4f S,5f S ……。

当抽样信号是周期性窄脉冲时,平移后的频谱幅度按sinx/x规律衰减。

抽样信号的频谱是原信号频谱周期性的延拓,它占有的频带要比原信号频谱宽得多。

2、正如测到了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连接起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。

只要用一截止频率等于原信号频谱中最高频率f max的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器的输出可以得到恢复后的原信号。

(a)连续信号的频谱(b)高抽样频率时的抽样信号及频谱(不混叠)(c)低抽样频率时的抽样信号及频谱(混叠)图4-2 冲激抽样信号的频谱图3、信号得以恢复的条件是f S >2B,其中f S为抽样频率,B为原信号占有的频带宽度。

而f min =2B为最低的抽样频率,又称为“奈奎斯特抽样率”。

当f S <2B时,抽样信号的频谱会发生混叠,从发生混叠后的频谱中,我们无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频谱的信号是极少的,因此即使f S =2B,恢复后的信号失真还是难免的。

图15-2画出了当抽样频率f S >2B(不混叠时)及f S <2B(混叠时)两种情况下冲激抽样信号的频谱图。

实验中选用f S <2B、f S =2B、f S >2B三种情况抽样频率对连续信号进行抽样,以验证抽样定理——要使信号采样后能不失真地还原,抽样频率f S必须大于信号频率中最高频率的两倍即f S >2 f max。

4、为了实现对连续信号的抽样和抽样信号的复原,可用实验原理框图15-3的方案。

除选用足够高的抽样频率外,常采用前置低通滤波器来防止原信号频谱过宽而造成抽样后信号频谱的混叠。

但这也会造成失真。

如实验选用的信号频带较窄,则可不设置低通滤波器。

本实验就是如此。

图4-3 抽样定理实验方框图三预习练习:1、若连续时间信号为5kHz的正弦波,开关函数为15.6KHz频率的窄脉冲,试求抽样后的信号f S (t)画出波形图。

2、若连续时间信号取频率为400Hz的方波或三角波,计算其有效的频带宽度。

该信号经频率为f S的周期性脉冲抽样后,若希望通过低通滤波器后的信号失真较小,则抽样频率和低通滤波器的截止频率应取多大?四实验内容及步骤:方波信号的抽样与恢复。

(1)观察方波信号的抽样。

输入接函数信号发生器,选择01正弦波输出;调节函数信号发生器,使其输出频率为1KHz的方波作为抽样脉冲,用示波器观察抽样后的波形。

相关文档
最新文档