2020中考数学重要知识点总汇

合集下载

中考数学必考知识点大全

中考数学必考知识点大全

中考数学必考知识点大全1.整数的加减乘除运算:掌握整数的加减乘除运算法则,包括加法、减法、乘法和除法。

2.分数的加减乘除运算:掌握分数的加减乘除运算法则,包括分数的加法、减法、乘法和除法。

3.百分数的计算:掌握百分数的计算方法,包括百分数的转化和百分数之间的比较。

4.小数的加减乘除运算:掌握小数的加减乘除运算法则,包括小数的加法、减法、乘法和除法。

5.整式的加减乘除运算:掌握整式的加减乘除运算法则,包括整式的加法、减法、乘法和除法。

6.一元一次方程与一元一次不等式:掌握一元一次方程和一元一次不等式的解法和问题的应用。

7.二次根式:掌握二次根式的定义和性质,包括二次根式的化简和运算。

8.平方根与立方根:掌握平方根和立方根的计算方法和性质,包括平方根和立方根的开放计算和化简。

9.平面图形的面积和周长:掌握各种平面图形的面积和周长的计算方法,包括矩形、正方形、三角形、梯形、圆等。

10.空间图形的体积和表面积:掌握各种空间图形的体积和表面积的计算方法,包括长方体、正方体、三棱锥、四棱锥、棱柱、棱台、球等。

11.初等概率与统计:掌握初等概率和统计的基本概念和计算方法,包括样本空间、事件、概率、频率、直方图等。

12.等比数列与等差数列:掌握等比数列和等差数列的定义和性质,包括等比数列和等差数列的通项公式和求和公式。

13.直角三角形的性质与应用:掌握直角三角形的性质和定理,包括勾股定理、正弦定理、余弦定理等。

14.平行线与相交线:掌握平行线和相交线的基本性质和判定方法,包括平行线的性质、相交线的性质和相交线的角度关系。

15.二次函数与二次方程:掌握二次函数和二次方程的定义和性质,包括二次函数的图像、二次方程的解法和二次函数和二次方程在实际问题中的应用。

2020中考数学知识点口诀汇总

2020中考数学知识点口诀汇总

2020中考数学知识点口诀汇总合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。

去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。

恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。

(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。

因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。

“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。

一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。

一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。

一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。

分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。

2020中考数学知识点总结及考点分值(完整版)

2020中考数学知识点总结及考点分值(完整版)

中考数学知识点总结第一章:实数本节知识点试题特点:中考所占分数不多,一般为2-6分,占全卷3%左右。

考点一:实数的概念及分类考点二:实数的倒数、相反数和绝对值考点三:平方根、算术平方根和立方根考点四:科学计数法和近似数考点五:实数大小的比较考点六:实数的运算基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数1、有理数:任何一个有理数总可写成qp 的形式,其中p 、q 是互质的整数,这是有理数重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a 1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n次方根(1)平方根,算术平方根:设a≥0,称a叫a的平方根,a叫a的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a叫实数a的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

2020年中考数学考点梳理:相似三角形和解直角三角形

2020年中考数学考点梳理:相似三角形和解直角三角形

知识点:一、比例线段1、比:选用同一长度单位量得两条线段。

a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m :n (或nm b a =) 2、比的前项,比的后项:两条线段的比a :b 中。

a 叫做比的前项,b 叫做比的后项。

说明:求两条线段的比时,对这两条线段要用同一单位长度。

3、比例:两个比相等的式子叫做比例,如dc b a = 4、比例外项:在比例d cb a =(或a :b =c :d )中a 、d 叫做比例外项。

5、比例内项:在比例d cb a =(或a :b =c :d )中b 、c 叫做比例内项。

6、第四比例项:在比例dcb a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。

7、比例中项:如果比例中两个比例内项相等,即比例为abb a =(或a:b=b:c 时,我们把b 叫做a 和d 的比例中项。

8、比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么,这四条线段叫做成比例线段,简称比例线段。

9、比例的基本性质:如果a :b =c :d 那么ad =bc 逆命题也成立,即如果ad =bc ,那么a :b =c :d10、比例的基本性质推论:如果a :b=b :d 那么b 2=ad ,逆定理是如果b 2=ad 那么a :b=b :c 。

说明:两个论是比积相等的式子叫做等积式。

比例的基本性质及推例式与等积式互化的理论依据。

11、合比性质:如果d c b a =,那么d dc b b a +=+ 12.等比性质:如果n m d c b a ===K ,(0≠+++m d b Λ),那么ban d b m c a =++++++ΛΛ说明:应用等比性质解题时常采用设已知条件为k ,这种方法思路单一,方法简单不易出错。

13、黄金分割把一条线段分成两条线段,使较长的线段是原线段与较小的线段的比例中项,叫做把这条线段黄金分割。

中考数学必背知识点(精简必背)

中考数学必背知识点(精简必背)

中考数学必背知识点(精简必背)中考数学必背知识点一、不为零的量1.分式 $\frac{A}{B}$,分母 $B\neq 0$;2.二次方程 $ax^2+bx+c=0$($a\neq 0$);3.一次函数 $y=kx+b$($k\neq 0$);4.反比例函数 $y=\frac{k}{x}$($k\neq 0$);5.二次函数 $y=ax^2+bx+c=0$($a\neq 0$)。

二、非负数1.$|a|\geq 0$;2.$a\geq 0$($a\geq 0$);3.$a^{2n}\geq 0$($n$ 为自然数)。

三、绝对值:$|a|=\begin{cases}a。

& a\geq 0\\-a。

& a<0\end{cases}$四、重要概念1.平方根与算术平方根:如果 $x^2=a$($a\geq 0$),则称 $x$ 为 $a$ 的平方根,记作:$x=\pm\sqrt{a}$,其中$x=\sqrt{a}$ 称为 $x$ 的算术平方根;2.负指数:$a^{-p}=\frac{1}{a^p}$;3.零指数:$a=1$($a\neq 0$);4.科学计数法:$a\times 10^n$($n$ 为整数,$1\leqa<10$)。

五、重要公式一)幂的运算性质1.同底数幂的乘法法则:$a^m\timesa^n=a^{m+n}$($a\neq 0$,$m$,$n$ 都是正数);2.幂的乘方法则:$(a^m)^n=a^{mn}$($m$,$n$ 都是正数);3.积的乘方法则:$(ab)^n=a^n\times b^n$($n$ 为正整数);4.同底数幂的除法法则:$\frac{a^m}{a^n}=a^{m-n}$($a\neq 0$,$m$,$n$ 都是正数,且 $m>n$)。

二)整式的运算1.平方差公式:$(a+b)(a-b)=a^2-b^2$;2.完全平方公式:$(a\pm b)^2=a^2\pm 2ab+b^2$。

中考数学必考知识点归纳

中考数学必考知识点归纳

中考数学必考知识点归纳一、数与代数。

1. 有理数。

- 有理数的概念:整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

- 数轴:规定了原点、正方向和单位长度的直线叫做数轴。

数轴上的点与有理数一一对应。

- 相反数:只有符号不同的两个数叫做互为相反数,0的相反数是0。

若a与b互为相反数,则a + b=0。

- 绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

即| a|=a(a≥0) -a(a<0)。

- 有理数的运算:- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。

- 减法法则:减去一个数等于加上这个数的相反数。

- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。

- 除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。

- 乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。

a^n 中,a叫做底数,n叫做指数。

2. 实数。

- 无理数:无限不循环小数叫做无理数,如√(2)、π等。

- 实数的概念:有理数和无理数统称为实数。

实数与数轴上的点一一对应。

- 实数的运算:实数的运算顺序为先算乘方、开方,再算乘除,最后算加减;有括号的先算括号里面的。

3. 代数式。

- 代数式的概念:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式,单独的一个数或者一个字母也是代数式。

- 整式:单项式和多项式统称为整式。

单项式是数与字母的乘积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。

- 整式的加减:实质是合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。

初三数学知识点考点归纳总结

初三数学知识点考点归纳总结一. 代数运算1.1 有理数有理数的四则运算,分数的加减乘除运算,化简分数、约分、分数转小数与百分数。

1.2 代数式代数式的基本概念、同类项合并、分配律、消元、整除关系、基本恒等式。

1.3 方程式一元一次方程式的解及其应用,一元二次方程式的解及其应用,二元一次方程式的解及其应用。

1.4 比例比例的概念、性质,比例的计算及应用,重复比例,反比例定理及其应用。

二. 几何与图形2.1 三角形角的概念、角度和弧度的转换,三角形的分类及性质,三角形的内角和定理,三角形的外角和定理。

2.2 直线与角平行直线和平行线特征及其性质,垂直直线和直角的特征及其性质,角的大小以及相邻角、对顶角等相关概念。

2.3 圆和圆的性质圆的基本性质,弧、弦、切线、割线等相关概念及其性质,圆内接四边形和正多边形。

2.4 空间几何与立体图形线面体的概念,正方体、长方体、棱柱、棱锥、圆柱、圆锥的性质和计算。

三. 概率与统计3.1 随机事件和概率事件的概念和性质,基本事件概率、加法规则,条件概率和乘法规则,概率分布和直方图的绘制。

3.2 常见概率问题求样本空间、容斥原理,贝叶斯定理,计算机模拟实验,概率统计中的应用问题。

四. 函数4.1 一些常见函数幂函数、指数函数、对数函数、三角函数、反三角函数的基本概念和性质。

4.2 函数的运算函数的加、减、乘、除的运算,函数的复合运算,导数的概念,导数的基本应用:切线问题和极值点问题。

以上是初三数学知识点考点的归纳总结。

需要注意的是,以上知识点只是初三数学所要学习的知识点的一个大致的方向,可能还存在某些细节问题需要重点学习。

同时,不管学习的什么知识点,都需要掌握好其基本概念和方法,这样才能在应用中灵活运用,解决问题,取得相应的成绩。

中考数学复习知识点归纳总结6篇

中考数学复习知识点归纳总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。

2. 数的运算:加减乘除四则运算,乘方、开方运算,分数运算,小数运算等。

3. 代数表达式:用字母表示数,表达数量关系和变化规律。

4. 方程与不等式:解一元一次方程,解一元一次不等式,理解函数的概念。

二、几何与图形1. 几何概念:点、线、面、体,角、度数,平行、垂直等基本几何概念。

2. 图形与变换:平移、旋转、对称等图形变换,相似图形,全等图形。

3. 面积与体积:计算平面图形的面积,计算立体图形的体积。

4. 解析几何:理解直线的方程,理解圆及其方程。

三、函数与图像1. 函数的概念:理解变量间的关系,用解析式表示函数关系。

2. 函数的运算:函数的加减法,函数的乘法,复合函数。

3. 函数的图像:理解函数的图像及其变换,根据图像理解函数的性质。

4. 反函数与对称函数:理解反函数的概念,理解对称函数的概念。

四、数据与概率1. 数据收集与整理:理解数据收集的方法,会用统计图表表示数据。

2. 数据的计算:平均数、中位数、众数等统计量的计算,方差和标准差的计算。

3. 概率的概念:理解概率的基本概念,会计算事件的概率。

4. 概率的应用:理解概率在生活中的应用,会解决与概率相关的问题。

五、综合与实践1. 图形的变换与对称:运用几何知识解决实际问题,理解图形的变换和对称。

2. 函数的实际应用:理解函数在实际问题中的应用,如利润、成本等问题。

3. 数据的分析与决策:运用统计知识解决实际问题,理解数据的分析与决策。

4. 课题学习与研究性学习:理解课题学习与研究性学习的意义和方法。

在中考数学复习过程中,我们需要对以上知识点进行全面的梳理和总结,形成系统的知识框架。

同时,我们需要关注考试动态和命题趋势,结合历年真题进行有针对性的练习和巩固。

此外,我们还要注重解题技巧和策略的学习和应用,提高解题效率和准确性。

希望同学们能够认真复习备考,取得优异的成绩!篇2一、数与代数(一)数的认识复习要点:整数、小数、分数、百分数的认识及其关系,数的运算规则和运算性质。

中考数学必考知识点归纳整理

中考数学必考知识点归纳整理一、整数与有理数1.整数的概念及性质:整数的定义、相反数、绝对值、大小比较等。

2.有理数的概念及性质:有理数的定义、分数与小数的关系等。

3.整数与有理数的四则运算:加法、减法、乘法、除法的运算法则和性质。

4.整数与有理数的混合运算:根据题目要求进行整数与有理数的混合运算。

二、代数式与方程式1.代数式的概念及性质:代数式的定义、项、系数、次数等。

2.代数式的运算:加法、减法、乘法、除法、乘方等运算法则。

3.一元一次方程及其应用:方程的定义、基本性质、解方程的方法及应用。

4.一元一次不等式及其应用:不等式的定义、基本性质、解不等式的方法及应用。

三、平面图形与尺规作图1.平面图形的基本概念与性质:点、线、面的定义及性质。

2.四边形的性质:平行四边形、矩形、正方形、菱形、长方形的性质与判定等。

3.三角形的性质:等边三角形、等腰三角形、直角三角形的性质与判定等。

4.尺规作图:已知条件作图、已知作图求解等。

四、数据与统计1.数据的收集与整理:问卷调查、实验等方式收集数据,并对数据进行整理与分类。

2.数据的表示与分析:数据的图表表示,如条形图、折线图等,以及对数据的分析与解读。

3.统计相关性与预测:根据数据的相关性进行预测与判断。

五、几何变换1.平移、旋转、翻转的概念与性质:几何图形进行平移、旋转、翻转时的性质与规律。

2.平移、旋转、翻转的判定与作图:根据题目要求判断是否满足平移、旋转、翻转的条件,并进行作图。

六、函数与图像1.函数的概念与性质:函数的定义、自变量、因变量、函数值等。

2.函数的表示与性质:函数的图像、函数的单调性、函数的奇偶性等。

3.函数的运算:函数的加减乘除、函数的复合等运算法则。

4.函数的应用:函数的实际问题应用,如函数的最值、函数的变化规律等。

七、比例与相似1.比例的概念与性质:比例的定义、比例的性质、比例的性质与判定等。

2.比例的运算:比例的加减乘除、比例的复合等运算法则。

2020年中考数学知识点总结第12讲 二次函数的图象与性质

当Δ=b2-4ac>0,两个不相等的实数根;
当Δ=b2-4ac=0,两个相等的实数根;
当Δ=b2-4ac<0,无实根
例:已经二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两个实数根为2,1.
6.二次函数与不等式
抛物线y=ax2+bx+c=0在x轴上方的部分点的纵坐标都为正,所对应的x的所有值就是不等式ax2+bx+c>0的解集;在x轴下方的部分点的纵坐标均为负,所对应的x的值就是不等式ax2+bx+c<0的解集.
第12讲二次函数的图象与性质
一、知识清单梳理
知识点一:二次函数的概念及解析式
关键点拨与对应举例
1.一次函数的定义
形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.
例:如果函数y=(a-1)x2是二次函数,那么a的取值范围是a≠0.
2.解析式
(1)三种解析式:①一般式:y=ax2+bx+c;②顶点式:y=a(x-h)2+k(a≠0),其中二次函数的顶点坐标是(h,k);③交点式:y=a(x-x1)(x-x2),其中x1,x2为抛物线与x轴交点的横坐标.
(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.
若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.
知识点二:二次函数的图象与性质
例:当0≤x≤5时,抛物线y=x2+2x+7的最小值为7.
开口
向上
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页,共24页 第2页,共24页学校___________ 班级___________ 姓名___________ 学号___________…………☉…不…☉…要…☉…在…☉…密…☉…封…☉…线…☉…内…☉…作…☉…答………………中考数学复习重要知识点总汇知识点一;实数的分为两类:有理数和无理数1,有理数的表现形式有:整数 、 分数 、 有限小数 、 无限循环小数四种。

2,无理数的表现形式有: π 、无限不循环的小数、 开方开不尽所得的数。

( 如:33 060sin )知识点二;绝对值:(1)若⎪⎩⎪⎨⎧≤-≥=)0)0(a a a a a 则(则(2)0≥a 知识点三;倒数:没有倒数。

,的倒数是0)0(1≠a aa 知识点四;平方根:,)0a a a a ,算术平方根是的平方根是(±≥注意:4的平方根是( ),算术平方根是( ),立方根是( ) 知识点五;幂的运算: )0(10≠=a a负整数指数幂:)0()1(1≠==-a aa a nn n 同底数幂乘法:n m n m a a a •⇔+, 幂的乘方:m n n m mn a a a )()(⇔⇔ 积的乘方;m m m ab b a )(⇔知识点六:乘法公式:22))(b a b a b a -⇔-+( 因式分解的步骤: 首先提取公因式,然后考虑用公式。

十字相乘试一试,最后是个乘积式。

知识点六:二次根式运算:a a =2)0()(2≥=a a a知识点七;特殊三角函数值:sin300=21=cos600 sin600=cos300=23sin450=cos45022=tan300=33 tan6003=)0(-≠÷⇔a a a a n m n m 2222)b ab a b a +±⇔±(第3页,共24页 第4页,共24页…………☉…不…☉…要…☉…在…☉…密…☉…封…☉…线…☉…内…☉…作…☉…答……………一元二次方程复习知识点一;一元二次方程的定义和解法1,一元二次方程的定义:方程化简整理后;只含有一个未知数并 且未知数的最高次数是2次的整式方程叫做一元二次方程。

2,一元二次方程的一般形式:ax 2+bx+c=0(a ≠0) 对应题型解析:5.若方程(m-3)x 2+2x+m 2-9=0是关于x 的一元二次方程,且常数项为0,则m 的值是多少?知识点二;一元二次方程的解使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根) 对应题型解析:1,关于x 的一元二次方程(a+1)x 2-ax+a -1=0的一个根为0,则a=( )2,若关于x 的方程x 2+bx+a=0(a ≠0)的根为x=-a ,则代数式b-a=( )3,已知m 是方程x 2-2017x+1=0的一个根,试求m 2-2016m+120172+m 的值。

4.若a 是方程x 2+x-1=0的根,求代数式a 3+2a 2-7的值.5.若a 是方程x 2-5x+1=0的根,求代数式a 2+21a 的值知识点三;一元二次方程的解法1,直接开平方法;适合解能化成x 2=p(p ≥0)和(mx+n)2=p(p ≥0)思考:已知(a 2+b 2-1)2=9,则a 2+b 2=?2,配方法:用配方法解一元二次方程的步骤: 移项:把常数项移到方程的——————— 化1:把二次项系数化为——————配方:方程两边都加上————————————————;开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.3,公式法:①一元二次方程根的判别式: ac b42-=∆② 一元二次方程)0(02≠=++a c bx ax当b 2-4ac ≥ 0时,的求根公式是③用公式法解一元二次方程的一般步骤:例2:当m 取什么值时,关于x 的方程()010222=++--mx x m m为一元二次方程。

2.已知关于x 的一元二次方程(k-2)x 2 +(k 2-1)x+2=0的一次项系数为3, 3.已知关于x 的方程ax 2+4x=3x 2+5是一元二次方程,则a 应满足————。

4.已知关于x 的方程(k 2-4)x 2 + 1-k x+5=0是一元二次方程,则k 应满足————。

1 24)1(2=x 315322=-x )(8)132=+x )((03-)1-442=x ()(用配方法解方程2x 2+x-6=0042>-=ac b 042=-=ac b 042<-=ac b第5页,共24页 第6页,共24页学校___________ 班级___________ 姓名___________ 学号___________…………☉…不…☉…要…☉…在…☉…密…☉…封…☉…线…☉…内…☉…作…☉…答………………1、把方程化成一般形式, 并写出a ,b ,c 的值。

2、求出b 2-4ac 的值。

3、代入求根公式.4、写出方程的解: x 1=?, x 2=?应用引申:(1)若二次三项式 )02≠++a c bx ax (是一个完全平方式,那么(2)若方程ax 2+bx+c=0有实数根,则只考虑 042≥-=∆ac b 即可。

若方程ax 2+bx+c=0有两个实数根,则要考虑 042≥-=∆ac b ,和a ≠0。

对应题型解析:1,用公式法解下列方程(1)2x 2+3x -4=0; (2)16y 2+9=24y ; (3)5(x 2+1)-7x =0.2. 应用题型(1)k 取何值时一元二次方程kx 2-2x+3=0有实数根.(2)k 取何值时方程kx 2-2x+3=0有实数根.(3) 对于方程: 不论p 为何值时,方程总有两个不相等的实数根。

(4)关于x 的一元二次方程 0112)2-12=-+-x k x k (有两个不等的实数根,求k 的取值。

(4)因式分解法:①方程应满足的条件;方程左边可以分解为两个一次式的乘积,右边等于0. ②步骤:先把左边分解因式,再根据:如果两个因式的积等于零,那么至少有一个因式等于零,降次分写为两个一次方程求解。

对应训练1,用因式分解法解方程:注意:解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法)方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法。

2,利用分解因式法解下列各题(1)若 求x 2+y 2(2)若(x+y )(x+y-3)=15,求x+y(3)若(x 2+x )2+6(x 2+x)-7=0,求x达标训练2)2().4(=--+x x x 0183)6(082)5(22=--=-+x x x x 042=-ac b 2)2)(3p x x =--(xx x x 2)2(;052)1(22==-)1()1(2).3(2+=+x x x 012)()(22222=-+-+y x y x第7页,共24页 第8页,共24页…………☉…不…☉…要…☉…在…☉…密…☉…封…☉…线…☉…内…☉…作…☉…答……………1,把22410x x +-=配方成()2x m n -=的形式,则m= ,n= 。

2,若22x x m -=可以用公式法求解出两根,则m 的范围 。

3,若2342x x k -+是一个完全平方式,则k= 。

4,若22560x xy y --=,且0xy ≠,则xy= 。

5,下面是某同学在一次测试中解答的填空题(1)若22x a =,则x a =,(2)方程()211x x x -=-的根为12x =, (3)若分式2231x x x --+的值为0,则x=3或x=-1.其中正确的题共有 个。

知识点四;一元二次方程根与系数的关系(1)如果一元二次方程的两个根分别 是 x 1 、x 2 .那么(2)若方程ax 2+bx+c=0 (a ≠0 ≥∆ 0)满足下列条件时,会得到什么结论? (1)若两根互为相反数,则b ————-0;(2)若两根互为倒数,则a ————-c; (3)若一根为0,则c ————0 ; (4)若一根为1,则a+b+c ————(5)若a-b+c=0 则有一个根为————。

(6)若a 、c 异号方程一定有——————-根. (3)若告知x 1,x 2是方程02=++c bx ax 的两根,则可得到下列结论。

对应题型练习:1,设x 1,x 2是方程 利用根与系数的关系, 求下列各式的值:2,若关于x 的方程2x 2+5x +n =0的一个根是-2,求它的另一个根及n 的值 3.若关于x 的一元二次方程x 2+2x-5=0的两根为a,b;求aba a 22+的值。

4,已知m 是方程x 2-x-2=0的实数根,求代数式 的值。

知识点五;一元二次方程的实际应用问题(1) 一个两位数个位数字为a,十位数字为b,则这个两位数是_________.(2) n 边形的对角线条数_________. (3) 同学会上,x 位同学相互握手,则握手的总次_________.(4) 一开始,有1患流感,若平均每人传播给x 人,第一轮传播后有______人患流感,第二轮传播共有_______人患流感? (5) 若平均增长(或降低)百分率为x,增长(或降低)前的量是a,增长(或降低)2次后达到的量是b,则它们的数量关系可表示为a(1±x)2=b (6)利润问题中的数量关系:总利润=一件利润⨯数量 一件利润= 售价-进价 21).2(x x -)0(02≠=++a c bx ax abx x -=+210,0)1(≥∆≠a 用于求题目中字母的取值范围,0)3(222121=++=++c bx ax c bx ax acx x a b x x =•-=+2121,)2(用于求解题目中含有与x 1,x 2有关的代数式的值1,2012,,012,012,222-==+=--=--=--≠ab b a x x b a b b a a b a b a 的两个根,是方程则)满足(例如:若221)).(1(x x -)12)((2+--mm m m 的根03422=-+x x第9页,共24页 第10页,共24页学校___________ 班级___________ 姓名___________ 学号___________…………☉…不…☉…要…☉…在…☉…密…☉…封…☉…线…☉…内…☉…作…☉…答………………对应题型练习:(只列方程不解答)1,有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?2,一个小组有若干人,新年互送贺卡一张,若全组共送贺卡72张,则这个小组有多少人?3,要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?4.某电视机厂1999年生产一种彩色电视机,每台成本 3000元,由于该厂不断进行技术革新,连续两年降低成本, 至2001年这种彩电每台成本仅为1920元,设平均每年降低成本的百分率。

相关文档
最新文档