初一数学平面图形的认识单元测试试题

合集下载

七年级平面图形的认识(一)单元测试卷(解析版)

七年级平面图形的认识(一)单元测试卷(解析版)

2.如图 1,△ ABC 中,∠ ABC=∠ BAC,D 是 BC 延长线上一动点,连接 AD,AE 平分∠ CAD 交 CD 于点 E,过点 E 作 EH⊥AB,垂足为点 H.直线 EH 与直线 AC 相交于点 F.设∠ AEH=
,∠ ADC= .
(1)求证:∠ EFC=∠ FEC; (2)①若∠ B=30°,∠ CAD=50°,则 =________, =________; ②试探究 与 的关系,并说明理由; (3)若将“D 是 BC 延长线上一动点”改为“D 是 CB 延长线上一动点”,其它条件不变,请在 图 2 中补全图形,并直接写出 与 的关系. 【答案】 (1)证明:∵ ∠ ABC=∠ BAC,EH⊥AB. ∴ ∠ EFC=∠ AFH=90°-∠ BAC,∠ FEC=90°-∠ ABC, ∴ ∠ EFC=∠ FEC.
一、初一数学几何模型部分解答题压轴题精选(难)
1.如图 1,点 为直线 上一点,过点 作射线 ,使
,将一直角三角
板的直角顶点放在点 处,一边 在射线 上,另一边 在直线 的下方.
(1)将图 1 中的三角板绕点 逆时针旋转至图 ,使一边 在
的内部,且恰好平

,问:此时直线 是否平分
?请直接写出结论:直线 ________(平


.:(2)①∵ ∠ CAD=50°,AE 平分∠ CAD, ∴ ∠ =∠ AFH-∠ EAC=90°-∠ BAC-∠ EAC=90°-30°-25°=35°. ∵ ∠ ACB=∠ ABC+∠ BAC=60°,∠ CAD=50°, ∴ ∠ =180°-∠ ACB-∠ CAD=180°-60°-50°=70°. 故答案为:35°,70°. 【分析】(1)利用等角的余角相等的性质证明即可.(2)①利用外角定理和角平分线的性质求 解即可;②分别用∠ 和∠ 表示出∠ AEC 即可解.(3)画出图形,将所有的角度集中在△ CEF 的内角和上,列出等式求解即可.

第6章 平面图形的认识(一)数学七年级上册-单元测试卷-苏科版(含答案)

第6章 平面图形的认识(一)数学七年级上册-单元测试卷-苏科版(含答案)

第6章平面图形的认识(一)数学七年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,在,,,,点P为斜边上一动点,过点P作于点,于点,连结,则线段的最小值为()A.1.2B.2.4C.2.5D.4.82、钟表上6时整,钟表的时针和分针构成多少度的角?()A.180°B.150°C.120°D.90°3、已知在同一平面上有A,B,C三点,且AB=3,BC=2,则AC的长为()A.5B.1C.5或1D.不能确定4、下列语句中,是真命题的是( )A.相等的角是对顶角B.同旁内角互补C.过一点不只有一条直线与已知直线垂直 D.对于直线 a、b、c,如果 b∥a,c∥a,那么 b∥c5、如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为()A.53°B.37°C.47°D.123°6、把15°48′36″化成以度为单位是()A.15.8°B.15.4836°C.15.81°D.15.36°7、如图,点P,Q分别是菱形ABCD的边AD,BC上的两个动点,若线段PQ长的最大值为8,最小值为8,则菱形ABCD的边长为( )A.4B.10C.12D.168、平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-3,0),B(0,2),C(3,0),D(0,-2),则四边形ABCD是()A.矩形B.菱形C.正方形D.平行四边形9、如图,已知在中,,的高线,相交于点O,则的度数为()A.120°B.125°C.135°D.145°10、如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=55º,则∠BOD的度数是()A.35ºB.70ºC.55ºD.110º11、如图,点P是直线a外的一点,点A,B,C在直线a上,且PB⊥a于B,PA⊥PC,则下列错误语句是()A.线段PB的长是点P到直线a的距离B.PA,PB,PC三条线段中,PB最短C.线段AC的长是点A到直线PC的距离D.线段PC的长是点C到直线PA的距离12、下列命题中,是真命题的是()A.同位角相等B.相等的角是对顶角C.邻补角一定互补D.有且只有一条直线与已知直线垂直13、如图,表示点D到AB所在直线的距离的是()A.线段AD的长度B.线段AE的长度C.线段BE的长度D.线段DE的长度14、下列命题中,是假命题的是()A.对顶角相等B.两点之间,线段最短C.互补的两个角不一定相等 D.同位角相等15、根据下图,下列说法中错误的是()A.图①中直线经过点B.图②中直线,相交于点C.图③中点在线段上D.图④中射线与线段有公共点二、填空题(共10题,共计30分)16、在平面直角坐标系中,点A(3,4)与点B(-1,2)的距离是________。

苏科版七年级数学上册第6章平面图形的认识(一)单元测试卷 【含答案】

苏科版七年级数学上册第6章平面图形的认识(一)单元测试卷 【含答案】

苏科版七年级数学上册第6章平面图形的认识(一)单元测试卷一、选择题1.如图所示,下列说法中正确的是( )A.∠ADE就是∠D B.∠ABC可以用∠B表示C.∠ABC和∠ACB是同一个角D.∠BAC和∠DAE是不同的两个角2.如图所示,关于线段、射线和直线的条数,下列说法正确的是( )A.五条线段,三条射线B.三条线段,两条射线,一条直线C.三条射线,三条线段D.三条线段,三条射线3.轩轩同学带领自己的学习小组成员预习了“线段、射线、直线”一节的内容后,对图展开了讨论,下列说法不正确的是( )A.直线MN与直线NM是同一条直线B.射线PM与射线MN是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段4.如图,遵义的红军烈士陵园集中了建国后在遵义各处找到的红军遗骨,故又称红军山,陵园正面是在纪念遵义会议五十周年时兴建的一座别具特色的纪念碑.从山脚一点A到纪念碑底部一点B,沿右边楼梯直行和沿左边弯曲的盘山公路走相比,缩短了行走的路程,其中蕴含的数学道理是( )A .两点确定一条直线B .两点之间,线段最短C .垂线段最短D .同一平面内垂直于同一条直线的两直线平行5.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③利用圆规可以比较两条线段的大小;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A .①④B .②③C .①②④D .①③④6.下列说法①一个角的补角大于这个角②小于平角的角是钝角③同角或等角的余角相等④若,123180∠+∠+∠= 则、、互为补角.其中正确的说法有( )1∠2∠3∠A .4个B .3个C .2个D .1个7.如图,AM 为∠BAC 的平分线,下列等式错误的是( )A .∠BAC =∠BAM B .∠BAM =∠CAM C .∠BAM =2∠CAM D .2∠CAM =∠BAC128.点P 为直线外一点,点A ,B ,C 在直线l 上,若PA=4cm ,PB=5cm ,PC=6cm ,则点P 到直线l 的距离是( )A. 4cmB. 5cmC. 不大于4cm D. 6cm 9.如果线段AB=5cm ,BC=4cm ,且A ,B ,C 在同一条直线上,那么A 、C 两点的距离是( ) A. 1cm B. 9cm C. 1cm 或9cmD. 以上答案都不正确10.同一平面内,三条不同直线的交点个数可能是( )个.A. 1或3B. 0、1或3C. 0、1或2 D. 0、1、2或3二、填空题11.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因_____.12将30°15′36″换算成度:30°15′36″= °.13如图,AB⊥CD,垂足为点B,EF平分∠ABD,则∠CBF的度数为 °.14如图,OC平分∠AOB,若∠AOC=25°,则∠AOB= 度.15如图,点A位于点O的 方向上.16.从12点整开始到1点,经过____分钟,钟表上时针和分针的夹角恰好为99°.三、解答题17.如图,已知同一平面内的四个点A、B、C、D,根据要求用直尺画图.(1)画线段AB,∠ADC;(2)找一点P,使P点既在直线AD上,又在直线BC上;(3)找一点Q,使Q到A、B、C、D四个点的距离和最短.18线段AB依次被分为2:3:4三部分,已知第一部分和第三部分中点的距离是5.4 cm,求线段AB的长.19.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.20已知∠AOB内部有三条射线,其中OE平分∠BOC,OF平分∠AOC.(1)如图1,若∠AOB=90°,∠AOC=30°,求EOF的度数;(2)如图2,若∠AOB=α,求∠EOF的度数(用含α的式子表示);(3)若将题中的“OE平分∠BOC,OF平分∠AOC”的条件改为“∠EOB=∠BOC,∠COF=∠AOC”,且∠AOB=α,求∠EOF的度数(用含α的式子表示)21.如图1直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,射线OE平分∠AOD.(1)若∠COE=40°,则∠BOD=.(2)若∠COE=α,求∠BOD(请用含α的代数式表示);(3)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE与∠BOD之间有怎样的数量关系?并说明理由.22.将一副三角板中的两块直角三角尺的直角顶点C按照如图①的方式叠放在一起(∠A=30°,∠ABC=60°,∠E=∠EDC=45°),且三角板ACB的位置保持不动.(1)将三角板DCE绕点C按顺时针方向旋转至图②,若∠ACE=60°,求∠DCB的度数.(2)将三角板DCE绕点C按顺时针方向旋转,当旋转到ED∥AB时,求∠BCE的度数(请先在备用图上补全相应的图形).(3)当0°<∠BCE<180°且点E在直线BC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠BCE所有可能的值;若不存在,请说明理由.23.如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C 在线段AP上,D在线段BP上),运动的时间为t.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.24.已知直线AB过点O,∠COD=90°,OE是∠BOC的平分线.(1)操作发现:①如图1,若∠AOC=40°,则∠DOE=②如图1,若∠AOC=α,则∠DOE=(用含α的代数式表示)(2)操作探究:将图1中的∠COD绕顶点O顺时针旋转到图2的位置,其他条件不变,②中的结论是否成立?试说明理由.(3)拓展应用:将图2中的∠COD绕顶点O逆时针旋转到图3的位置,其他条件不变,若∠AOC=α,求∠DOE 的度数,(用含α的代数式表示)答案一、选择题1.B2.解:如图:由直线、射线及线段的定义可知:线段有:AB、BC、CA;射线有:AD、AE;直线有:DE.即有三条线段,两条射线,一条直线.故选:B.3.解:A、直线MN与直线NM是同一条直线,原说法正确,故本选项不符合题意;B、射线PM与射线MN不一定是同一条射线,原说法错误,故本选项符合题意;C、射线PM与射线PN是同一条射线,原说法正确,故本选项不符合题意;D、线段MN与线段NM是同一条线段,原说法正确,故本选项不符合题意;故选:B.4.解:从山脚一点A到纪念碑底部一点B,沿右边楼梯直行和沿左边弯曲的盘山公路走相比,缩短了行走的路程,其中蕴含的数学道理是:两点之间,线段最短.故选:B.5.A 6.D 7.C8. C【考点】点到直线的距离解:∵4<5<6,∴根据从直线外一点到这条直线上所有点连线中,垂线段最短,可知点P到直线l的距离是4cm或比4cm小的数,即不大于4cm,故选C.【分析】根据垂线段最短得出点P到直线l的距离是4cm或比4cm小的数,即可得出选项9. C【考点】两点间的距离解:当点C在AB之间时,AC=AB﹣BC=5﹣4=1(cm);当点C在点B的右侧时,AC=AB+BC=5+4=9(cm).故选:C.【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题.当点C在AB之间时,AC=AB﹣BC;当点C在点B的右侧时,AC=AB+BC.10. D【考点】点到直线的距离解:如图,三条直线的交点个数可能是0或1或2或3.故选D.【分析】根据两直线平行和相交的定义作出图形即可得解.二、填空题11.两点之间线段最短12将30°15′36″换算成度:30°15′36″= °.【考点】度分秒的换算.见试题解答内容【分析】先把36″除以60化为0.6′,再加上15′为15.6′,再除以60化为度,与30合并在一起即可.解:36″=36÷60=0.6′;30°15′36″=30+15.6÷60=30.26°.故30.26.13如图,AB⊥CD,垂足为点B,EF平分∠ABD,则∠CBF的度数为 °.【考点】角平分线的定义;垂线.见试题解答内容【分析】根据垂线的定义可知,∠ABD的度数是90°,根据角平分线的定义,可求∠DBE的度数,再根据对顶角相等可求∠CBF的度数.解:∵AB⊥CD,∴∠ABD=90°,∵EF平分∠ABD,∴∠DBE=45°,∴∠CBF=45°.故45.14如图,OC平分∠AOB,若∠AOC=25°,则∠AOB= 度.【考点】角平分线的定义.见试题解答内容【分析】根据角平分线的定义求解.解:∵∠AOC=25°,OC平分∠AOB,∴∠AOB=2∠AOC=50°,故答案为50°.15如图,点A位于点O的 方向上.【考点】方向角.见试题解答内容【分析】根据方位角的概念直接解答即可.解:点A 位于点O 的北偏西30°方向上.16.18或52211三、解答题17.解:(1)如图所示,线段AB 、∠ADC 即为所求;(2)直线AD 与直线BC 交点P 即为所求;(3)如图所示,点Q即为所求.18.73°.19.解:(1)∵M 是AB 的中点∴MB=40(2)∵N 为PB 的中点,且NB=14 ∴PB=2NB=2×14=28(3)∵MB=40,PB=28 ∴PM=MB﹣PB=40﹣28=1220.解:AB=8.1 cm21.解:(1)若∠COE =40°,∵∠COD =90°,∴∠EOD =90°﹣40°=50°,∵OE 平分∠AOD ,∴∠AOD =2∠EOD =100°,∴∠BOD =180°﹣100°=80°;(2)∵∠COE =α,∴∠EOD =90﹣α,∵OE 平分∠AOD ,∴∠AOD =2∠EOD =2(90﹣α)=180﹣2α,∴∠BOD =180°﹣(180﹣2α)=2α;(3)如图2,∠BOD +2∠COE =360°,理由是:设∠BOD =β,则∠AOD =180°﹣β,∵OE 平分∠AOD ,∴∠EOD = ∠AOD = =90°﹣β,121802β︒-12∵∠COD =90°,∴∠COE =90°+(90°﹣β)=180°﹣β,1212即∠BOD +2∠COE =360°.故(1)80°;(2)2α;(3)∠BOD +2∠COE =360°,理由见详解.22.解:(1)如图中,∵∠ACB =∠ECD =90°,∴∠ECB =∠ACD ,∵∠ACE =60°,∴∠BCE =∠ACD =30°,∴∠BCD =∠BCE +∠ECD =30°+90°=120°,故答案为120°;(2)如图中,当DE ∥AB 时,延长BC 交DE 于M ,∴∠B =∠DMC =60°,∵∠DMC =∠E +∠MCE ,∴∠ECM =15°,∴∠BCE =165°,当D ′E ′∥AB 时,∠E ′CB =∠ECM =15°,∴当ED ∥AB 时,∠BCE 的度数为165°或15°;(3)存在.如图,①CD ∥AB 时,∠BCE =30°,②DE ∥BC 时,∠BCE =45°,③CE ∥AB 时,∠BCE =120°,④DE ∥AB 时,∠BCE =165°,⑤当AC ∥DE 时,∠BCE =135°综上所述,当0°<∠BCE <180°且点E 在直线BC 的上方时,这两块三角尺存在一组边互相平行,∠BCE 的值为30°或45°或120°或165°或135°.23.(1) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t =1(s),所以(cm).111PC =⨯=因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t =1(s),所以(cm).故BD =2PC.212BD =⨯=因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP .因为AB =12cm ,所以(cm).1112433AP AB ==⨯=(2) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t =2(s),所以(cm).122PC =⨯=因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t =2(s),所以(cm).故BD =2PC.224BD =⨯=因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP .因为AB =12cm ,所以(cm).1112433AP AB ==⨯=(3) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t (s),所以(cm).PC t =因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t (s),所以(cm).故BD =2PC.2BD t =因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP .因为AB =12cm ,所以(cm).1112433AP AB ==⨯=(4) 本题需要对以下两种情况分别进行讨论.(i) 点Q 在线段AB 上(如图①).因为AQ -BQ =PQ ,所以AQ =PQ +BQ .因为AQ =AP +PQ ,所以AP =BQ .因为,所以.13AP AB =13BQ AP AB ==故.因为AB =12cm ,所以(cm).13PQ AB AP BQ AB =--=1112433PQ AB ==⨯=(ii) 点Q 不在线段AB 上,则点Q 在线段AB 的延长线上(如图②).因为AQ -BQ =PQ ,所以AQ =PQ +BQ .因为AQ =AP +PQ ,所以AP =BQ .因为,所以.故.13AP AB =13BQ AP AB ==1433AQ AB BQ AB AB AB =+=+=因为AB =12cm ,所以(cm).411233PQ AQ AP AB AB AB =-=-==综上所述,PQ 的长为4cm 或12cm.24.解:(1)如图1,∵∠COD=90°,∴∠AOC+∠BOD=90°,∵∠AOC=40°,∴∠BOD=50°,∴∠BOC=∠COD+∠BOD=90°+50°=140°,∵OE 平分∠BOC,∴∠BOE=∠BOC=70°,∴∠DOE=∠BOE-∠BOD=20°,12②如图1,由(1)知:∠AOC+∠BOD=90°,∵∠AOC=α,∴∠BOD=90°﹣α,∴∠BOC=∠COD+∠BOD=90°+90°﹣α=180°﹣α,∵OE 平分∠BOC,∴∠BOE=∠BOC=90°﹣α,1212∴∠DOE=∠BOE﹣∠BOD=90°﹣α﹣(90°﹣α)=α,1212(2)(1)中的结论还成立,理由是:如图2,∵∠AOC+∠BOC=180°,∠AOC=α,∴∠BOC=180°﹣α,∵OE 平分∠BOC,∴∠EOC=∠BOC=90°﹣α,1212∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣(90°﹣α)=α;1212(3)如图3,∵∠AOC+∠BOC=180°,∠AOC=α,∴∠BOC=180°﹣α,∵OE 平分∠BOC,∴∠EOC=∠BOC=90°﹣α,1212∵∠COD=90°,∴∠DOE=∠COD+∠COE=90°+(90°﹣α)=180°﹣α.1212。

七年级平面图形的认识(一)单元测试题(Word版 含解析)

七年级平面图形的认识(一)单元测试题(Word版 含解析)

一、初一数学几何模型部分解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.如图AB∥CD,点H在CD上,点E、F在AB上,点G在AB、CD之间,连接FG、GH、HE,HG⊥HE,垂足为H,FG⊥HG,垂足为G.(1)求证:∠EHC+∠GFE=180°.(2)如图2,HM平分∠CHG,交AB于点M,GK平分∠FGH,交HM于点K,求证:∠GHD=2∠EHM.(3)如图3,EP平分∠FEH,交HM于点N,交GK于点P,若∠BFG=50°,求∠NPK的度数. 【答案】(1)解:∵HG⊥HE,FG⊥HG∴FG∥EH,∴∠GFE+∠HEF=180°,∵AB∥CD∴∠BEH=∠CHE∴∠EHC+∠GFE=180°(2)解:设∠EHM=x,∵HG⊥HE,∴∠GHK=90°-x,∵MH平分∠CHG,∴∠EHC=90°-2x,∵AB∥CD∴∠HMB=90°-x,∴∠HMB=∠MHG=90°-x,∵AB∥CD,∴∠BMH+∠DHM=180°,即∠BMH+∠GHM+∠GHD =180°,∴90°-x+90°-x+∠GHD =180°,解得,∠GHD =2x,∴∠GHD=2∠EHM;(3)解:延长FG,GK,交CD于R,交HE于S,如图,∵AB∥CD,∠BFG=50°∴∠HRG=50°∵FG⊥HG,∴∠GHR=40°,∵HG⊥HE,∴∠EHG=90°,∴∠CHE=180°-90°-40°=50°,∵AB∥CD,∴∠FEH=∠CHE=50°,∵EP是∠HEF的平分线,∴∠SEP= ∠FEH=25°,∵GH平分∠HGF,∴∠HGS= ∠HGF=45°,∴∠HSG=45°,∵∠SEP+∠SPE=∠HSP=45°,∴∠EPS=20°,即∠NPK=20°.【解析】【分析】(1)根据HG⊥HE,FG⊥HG可证明FG∥EH,从而得∠GFE+∠HEF=180°,再根据AB∥CD可得∠BEH=∠CHE,进而可得结论;(2)设∠EHM=x,根据MH是∠CHG的平分线可得∠MHG=90°-x,∠EHC=90°-2x,根据平行线的性质得∠HMB=90°-x,从而得∠HMB=∠MHG,再由平行线的性质得∠BMH+∠DHM=180°,从而可得结论;(3)分别延长FG,GK,交CD于R,交HE于S,由AB∥CD得∠HRG=50°,由FG⊥HG得∠GHR=40°,由MH平分∠CHG得∠CHE=50°,由AB∥CD得∠MEH=∠CHE=50°,可得∠SEP=25°,最后由三角形的外角可得结论.3.如图(1),在△ABC和△EDC中,D为△ABC边AC上一点,CA平分∠BCE,BC=CD,AC=CE.(1)求证:△ABC≌△EDC;(2)如图(2),若∠ACB=60°,连接BE交AC于F,G为边CE上一点,满足CG=CF,连接DG交BE于H.①求∠DHF的度数;②若EB平分∠DEC,试说明:BE平分∠ABC.【答案】(1)证明:∵CA平分∠BCE,∴∠ACB=∠ACE.在△ABC和△EDC中.∵BC=CD,∠ACB=∠ACE,AC=CE.∴△ABC≌△EDC(SAS).(2)解:①在△BCF和△DCG中∵BC=DC, ∠BCD=∠DCE,CF=CG,∴△BCF≌△DCG(SAS),∴∠CBF=∠CDG.∵∠CBF+∠BCF=∠CDG+∠DHF∴∠BCF=∠DHF=60°.②∵EB平分∠DEC,∴∠DEH=∠BEC.∵∠DHF=60°,∴∠HDE=60°-∠DEH.∵∠BCE=60°+60°=120°,∴∠CBE=180°-120°-∠BEC=60°-∠BEC.∴∠HDE=∠CBE. ∠A=∠DEG.∵△ABC≌△EDC, △BCF≌△DCG(已证)∴∠BFC=∠DGC,∵∠ABF=∠BFC-∠A, ∠HDE=∠DGC-∠DEG,∴∠ABF=∠HDE,∴∠ABF=∠CBE,∴BE平分∠ABC.【解析】【分析】(1)由角平分线定义得出∠ACB=∠ACE,由ASA证明△ABC≌△EDC即可.(2)①由ASA证明△BCF≌△DCG,得出∠CBF=∠CDG;在△BCF,△DHF中,由三角形内角和定理得出∠BCF=∠DHF=60°.②由全等三角形的性质得出∠A=∠DEG,∠ABF=∠BFC-∠A, ∠HDE=∠DGC-∠DEG,从而得出∠ABF=∠HDE,∠ABF=∠CBE,即BE平分∠ABC.4.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD。

平面图形的认识(一)单元测试卷附答案

平面图形的认识(一)单元测试卷附答案

一、初一数学几何模型部分解答题压轴题精选(难)1.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.(1)当时,的值为________.(2)如何理解表示的含义?(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.【答案】(1)5或-3(2)解:∵ = ,∴表示到-2的距离(3)解:∵点、在0到3(含0和3)之间运动,∴0≤a≤3, 0≤b≤3,当时, =0+2=2,此时值最小,故最小值为2;当时, =2+5=7,此时值最大,故最大值为7【解析】【解答】(1)∵,∴a=5或-3;故答案为:5或-3;【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;(2)此题就是求表示数b的点与表示数-2的点之间的距离;(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.2.如图,直线m与直线n互相垂直,垂足为O,A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点P,在点A、B的运动过程中,∠APB的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(2)若△ABO的两个外角的平分线AQ、BQ相交于点Q,AP的延长线交QB的延长线于点C,在点A、B的运动过程中,∠Q和∠C的大小是否会发生变化?若不发生变化,请求出∠Q和∠C的度数;若发生变化,请说明理由.【答案】(1)解:不变化.理由:∵AP和BP分别是∠BAO和∠ABO的平分线,∠AOB=90°,∴∠APB=180°(∠OAB+∠ABO)=180° ×90°=135°(2)解:都不变.理由:∵AQ和BQ分别是∠BAO的邻补角和∠ABO的邻补角的平分线,AP和BP分别是∠BAO和∠ABO的平分线,∴∠CAQ=∠QBP=90°,又∠APB=135°,∴∠Q=45°,∴∠C=45°【解析】【分析】根据角平分线定义和三角形内角和定理得到∠APB=180° −(∠OAB+∠ABO);根据邻补角的平分线互相垂直,得到∠CAQ=∠QBP=90°,由∠APB的度数,求出∠Q和∠C的度数.3.探究题学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题。

最新苏教版七年级数学上册第六单元《平面图形的认识》测试卷(附答案)

最新苏教版七年级数学上册第六单元《平面图形的认识》测试卷(附答案)

最新苏教版七年级数学上册第六单元《平面图形的认识》测试卷(附答案)最新苏教版七年级数学上册第六单元《平面图形的认识》测试卷(附答案)一、选择题(每小题3分,共21分)1.下列说法正确的是()A。

过一点P只能作一条直线。

B。

射线AB和射线BA表示同一条射线。

C。

直线AB和直线BA表示同一条直线。

D。

射线a比直线b短。

2.如图5-Z-1,由点O测点A的方向是()A。

北偏南60°B。

南偏西60°C。

南偏西30°D。

西偏南30°3.如图5-Z-2,OA⊥OB,∠BOC=30°,OD平分∠AOC,则∠BOD的度数是()A。

40°B。

60°C。

20°D。

30°4.若直线l上一点P和直线l外一点Q的距离为8 cm,则点Q到直线l的距离是()A。

等于8 cmB。

小于或等于8 cmC。

大于8 cmD。

以上三种都有可能5.如图5-Z-3所示,OC⊥AB,∠COD=45°,则图中互为补角的角共有()A。

1对B。

2对C。

3对D。

4对6.在图5-Z-4中,线段的条数为()A。

9B。

10C。

13D。

157.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β-∠γ的值为()A。

45°B。

60°C。

90°D。

180°二、填空题(每小题3分,共24分)8.已知∠A=40°,则∠A的余角的度数是( 50°)。

9.工人师傅在砌墙时,先在两端各固定一点,中间拉紧一条细线,然后沿着细线砌墙就能砌直。

运用的数学原理:(同一直线上的三点确定一条直线)。

10.9:30时,钟表的时针和分针构成的角的度数是( 105°)。

11.如图5-Z-5,已知BC=4,BD=7,D是线段AC的中点,则AB=( 15 )。

12.把16°15′化为度是( 16.25°)。

第6章 平面图形的认识(一)数学七年级上册-单元测试卷-苏科版(含答案)

第6章平面图形的认识(一)数学七年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、已知∠α=35°,则∠α的补角的度数是()A.55°B.65°C.145°D.165°2、下列说法:①把弯曲的河道改直,能够缩短航程,这是由于两点之间线段最短;②若线段,则点是线段的中点;③射线与射线是同一条射线;④连结两点的线段叫做这两点的距离;⑤将一根细木条固定在墙上,至少需要两根钉子,是因为两点确定一条直线.其中说法正确的有()A.1个B.2个C.3个D.4个3、某测绘装置上一枚指针原来指向南偏东50º,把这枚指针逆时针方向旋转周,那么指针应指向( )A.北偏东40ºB.南偏西40ºC.北偏西50ºD.南偏西50º4、如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是()A. B. C. D.85、如图,∠AOC=∠BOD=90°,∠AOD=140°,则∠BOC的度数为( )A.30°B.35°C.40°D.50°6、如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是()A.30°B.45°C.60°D.90°7、如图,直线AB与CD相交于点O,若∠AOC= ∠AOD,则∠BOD的度数为()A.30°B.45°C.60°D.135°8、如图所示,下列各组判断错误的是()A.∠1和∠4是对顶角B.∠2和∠3是同位角C.∠2和∠4是同旁内角D.∠1和∠2是内错角9、平面直角坐标系中,点A(-3,2),,,若∥x轴,则线段的最小值及此时点的坐标分别为()A.6,B.2,C.2,D.3,10、如图,C为射线AB上一点,AB=30,AC比BC的多5,P,Q两点分别从A,B两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB上沿AB方向运动,运动时间为t 秒,M为BP的中点,N为QM的中点,以下结论:①BC=2AC;②AB=4NQ;③当PB= BQ时,t=12,其中正确结论的个数是()A.0B.1C.2D.311、如图,点O在直线AB上,OD是∠AOC的平分线,OE是∠COB的平分线.若∠DOC=70°,则∠BOE的度数是()A.30°B.40°C.25°D.20°12、如图,直线AB,CD相交于点O,∠EOD=90°,若∠AOE=2∠AOC,则∠DOB的度数为()A.25°B.30°C.45°D.60°13、如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是()A.26°B.64°C.54°D.以上答案都不对14、下列说法错误的是()A.无数条直线可交于一点B.直线的垂线有无数条,但过一点与直线垂直的直线只有一条C.直线的平行线有无数条,但过直线外一点的平行线只有一条D.互为邻补角的两个角一个是钝角,一个是锐角15、如图,O是直线AB上一点,∠AOD=120°,∠AOC=90°,OE平分∠BOD,则图中和为180°的两个角有( )A.3对B.4对C.5对D.6对二、填空题(共10题,共计30分)16、如图,是直线上一点,射线、分别是,的平分线,若,则________.17、如图,已知C、D是AB上两点,且AB=20cm,CD=6cm,M是AD的中点,N是BC的中点,则线段MN的长为________cm.18、如图将两块三角板的直角顶点重叠在一起,∠DOB与∠DOA的比是2:11,则∠BOC=________.19、38°41′的余角等于________,补角等于________.20、如图,直线、相交于点,,垂足为点,,则________.21、“互补的两个角一定是一个锐角、一个钝角”是假命题,我们可以举反例:________.22、已知点A的坐标为(1,0),点P在直线y=﹣x上运动,则PA的最小值为________.23、一副三角板如图摆放,若,则的度数是________.24、34.37°=34°________′________″.25、如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,那么点B到直线CD的距离是线段________的长.三、解答题(共5题,共计25分)26、一个角的余角比它的补角还多1°,求这个角.27、如图,直线AB、CD、EF相交于点O,∠DOB是它的余角的2倍,∠AOE=2∠DOF,且有OG⊥AB,求∠EOG的度数.28、已知,如图,直线AB和CD相交于点O,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠AOC和∠BOD的度数.29、如图,已知线段AB的长度是xcm,线段BC的长度比线段AB的长度的2倍多1cm,线段AD的长度比线段BC长度的2倍少1cm,求线段BC,AD和CD的长.30、已知线段AB,请根据下列要求画图并计算.(1)延长线段AB至C,使BC=2AB,用刻度尺取AC的中点D;(2)若AB=6,求BD的长.参考答案一、单选题(共15题,共计45分)1、C2、B3、A4、B5、C6、C7、B8、D9、D10、C11、D12、B14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、。

七年级上册数学单元测试卷-第6章 平面图形的认识(一)-苏科版(含答案)

七年级上册数学单元测试卷-第6章平面图形的认识(一)-苏科版(含答案)一、单选题(共15题,共计45分)1、如图所示,从点O出发的5条射线,可以组成的角的个数是().A.4B.6C.8D.102、下列说法正确的是()A.若,则点C是线段的中点B.C.射线和射线是同一条射线D.钟表上的时间是11点10分,此时时针与分针所成的夹角是3、如图,公园A在公园B的北偏东50°方向,公园C在公园B的北偏西25°方向,若A,B两公园到公园C的两直线的夹角∠C为35°,那么公园C在公园A的()A.西北方向B.北偏西60°方向C.北偏西70°方向D.南偏东75°方向4、若∠AOB=45°,∠BOC=30°,则∠AOC的度数是()A.15°B.30°C.75°D.15°或75°5、如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为()A.左转80°B.右转80°C.左转100°D.右转100°6、下列说法:①如果∠1+ ∠2+∠3=180°,那么∠1,∠2,∠3三个角互为补角;②如果∠A+ ∠B=90°,那么∠A与∠B互为余角;③“对顶角相等”成立,反之“相等的角是对顶角”也成立;④两条直线被第三条直线所截,同位角相等;⑤两点之间,线段最短. 正确的个数是()A.2个B.3个C.4个D.5个7、如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()A. B. C. D.8、时钟的时针在不停的旋转,时针从上午的6时到9时,时针旋转的旋转角是()A.30°B.60°C.90°D.9°9、如图,已知CO⊥AB于点O,∠AOD=5∠DOB+6°,则∠COD的度数()A.58°B.59°C.60°D.61°10、如图,直线a∥b,直线c与直线a,b分别交于A,B两点,AC⊥AB于点A,交直线b 于点C,如果∠1=58°,那么∠2的度数为()A.32°B.42°C.58°D.122°11、如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB =6,EF=2,则BC的长为( )A.8B.10C.12D.1412、如图,已知∠AOC=∠BOD=90º,∠AOD=150º,则∠BOC的度数为()A.30ºB.45ºC.50ºD.60º13、如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个14、如图∠AOB=60°,射线OC平分∠AOB,以OC为一边作∠COP=15°,则∠BOP=()A.15°B.45°C.15°或30°D.15°或45°15、如果线段AB=5cm,BC=4cm,且A,B,C,D,在同一条直线上,那么A,C两点的距离是()A.1cmB.9cmC.1cm或9cmD.以上答案都不正确二、填空题(共10题,共计30分)16、数轴上A、B表示的数分别是 -2 和5,则A、B之间的距离是________个单位长度.17、当时钟的时间为8:20分时,时针与分针的夹角为________度.18、如图,从A地到B地共有五条路,人们常常选择第③条,请用几何知识解释原因________.19、在平面直角坐标系中,边长为3的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点。

平面图形的认识(一)单元测试题(含答案)

平⾯图形的认识(⼀)单元测试题(含答案)⼀、选择题(每⼩题3分,共30分)1.如图,已知点P 是直线a 外的⼀点,点A 、B 、C 在直线a 上,且PB ⊥a ,垂⾜是B ,P A ⊥PC ,则下列错误的语句是()A.线段PB 的长是点P 到直线a 的距离B.P A 、PB 、PC 三条线段中,PB 最短C.线段AC 的长是点A 到直线PC 的距离D.线段PC 的长是点C 到直线P A 的距离2.如图,已知ON ⊥L ,OM ⊥L ,所以OM 与ON 重合,其理由是() A.两点确定⼀条直线B.在同⼀平⾯内,经过⼀点有且只有⼀条直线与已知直线垂直C.在同⼀平⾯内,过⼀点只能作⼀条垂线D.垂线段最短3.⽤⼀副学⽣⽤的三⾓板的内⾓(其中⼀个三⾓板的内⾓是45°,45°,90°;另⼀个是30°,60°,90°)可以画出⼤于0°且⼩于等于150°的不同⾓度的⾓共有()种. A.8B.9C.10D.114.如果∠α与∠β是邻补⾓,且∠α>∠β,那么∠β的余⾓是()A.21(∠α+∠β) B.21∠α C.21(∠α-∠β) D.不能确定 5.已知α、β都是钝⾓,甲、⼄、丙、丁四⼈计算61(α+β)的结果依次是28°、48°、60°、88°,其中只有⼀⼈计算正确,他是() A.甲B.⼄C.丙D.丁6.下列语句:①⼀条直线有且只有⼀条垂线;②不相等的两个⾓⼀定不是对顶⾓;③两条不相交的直线叫做平⾏线;④若两个⾓的⼀对边在同⼀直线上,另⼀对边互相平⾏,则这两个⾓相等;⑤不在同⼀直线上的四个点可画6条直线;⑥如果两个⾓是邻补⾓,那么这两个⾓的平分线组成的图形是直⾓. 其中错误的有() A.2个B.3个C.4个D.5个7.如图,AC ⊥BC ,AD ⊥CD ,AB =a ,CD =b ,则AC 的取值范围是() A.⼤于bB.⼩于aC.⼤于b 且⼩于aD.⽆法确定8.如图,B 是线段AD 的中点,C 是BD 上⼀点,则下列结论中错误的是()、 A.BC =AB -CDB.BC =21错误!未找到引⽤源。

七年级数学平面图形的认识(一)单元测试卷(解析版)

一、初一数学几何模型部分解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.如图,已知:点不在同一条直线, .(1)求证: .(2)如图②,分别为的平分线所在直线,试探究与的数量关系;(3)如图③,在(2)的前提下,且有,直线交于点,,请直接写出 ________.【答案】(1)证明:过点C作,则,∵∴∴(2)解:过点Q作,则,∵,∴∵分别为的平分线所在直线∴∴∵∴(3):1:2:2【解析】【解答】解:(3)∵∴∴∵∴∵∴∴∴∴ .故答案为: .【分析】(1)过点C作,则,再利用平行线的性质求解即可;(2)过点Q作,则,再利用平行线的性质以及角平分线的性质得出,再结合(1)的结论即可得出答案;(3)由(2)的结论可得出,又因为,因此,联立即可求出两角的度数,再结合(1)的结论可得出的度数,再求答案即可.3.如图(1),在△ABC和△EDC中,D为△ABC边AC上一点,CA平分∠BCE,BC=CD,AC=CE.(1)求证:△ABC≌△EDC;(2)如图(2),若∠ACB=60°,连接BE交AC于F,G为边CE上一点,满足CG=CF,连接DG交BE于H.①求∠DHF的度数;②若EB平分∠DEC,试说明:BE平分∠ABC.【答案】(1)证明:∵CA平分∠BCE,∴∠ACB=∠ACE.在△ABC和△EDC中.∵BC=CD,∠ACB=∠ACE,AC=CE.∴△ABC≌△EDC(SAS).(2)解:①在△BCF和△DCG中∵BC=DC, ∠BCD=∠DCE,CF=CG,∴△BCF≌△DCG(SAS),∴∠CBF=∠CDG.∵∠CBF+∠BCF=∠CDG+∠DHF∴∠BCF=∠DHF=60°.②∵EB平分∠DEC,∴∠DEH=∠BEC.∵∠DHF=60°,∴∠HDE=60°-∠DEH.∵∠BCE=60°+60°=120°,∴∠CBE=180°-120°-∠BEC=60°-∠BEC.∴∠HDE=∠CBE. ∠A=∠DEG.∵△ABC≌△EDC, △BCF≌△DCG(已证)∴∠BFC=∠DGC,∵∠ABF=∠BFC-∠A, ∠HDE=∠DGC-∠DEG,∴∠ABF=∠HDE,∴∠ABF=∠CBE,∴BE平分∠ABC.【解析】【分析】(1)由角平分线定义得出∠ACB=∠ACE,由ASA证明△ABC≌△EDC即可.(2)①由ASA证明△BCF≌△DCG,得出∠CBF=∠CDG;在△BCF,△DHF中,由三角形内角和定理得出∠BCF=∠DHF=60°.②由全等三角形的性质得出∠A=∠DEG,∠ABF=∠BFC-∠A, ∠HDE=∠DGC-∠DEG,从而得出∠ABF=∠HDE,∠ABF=∠CBE,即BE平分∠ABC.4.如图,EF⊥AB于F,CD⊥AB于D,点在AC边上,且∠1=∠2= .(1)求证:EF∥CD;(2)若∠AGD=65°,试求∠DCG的度数.【答案】(1)证明:∵EF⊥AB于F,CD⊥AB于D,∴∠BFE=∠BDC=90°,∴EF∥CD.(2)解:∵EF∥CD,∴∠2=∠DCE=50°,∵∠1=∠2,∴∠1=∠DCE,∴DG∥BC,∴∠AGD=∠ACB=65°,∴∠DCG=【解析】【分析】(1)由垂直的定义,可求得∠BFE=∠CDF=90°,可证明EF∥CD;(2)利用(1)的结论,结合条件可证明DG∥BC,利用平行线的性质可得∠AGD=∠ACB= ,则∠DCG=∠ACB-∠2即可求得.5.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,继续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,继续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始继续旋转2α至OA2;第3步,从OA2开始继续旋转3α至OA3,∁….例如:当α=30°时,OA1, OA2, OA3, OA4的位置如图2所示,其中OA3恰好落在ON 上,∠A3OA4=120°;当α=20°时,OA1, OA2, OA3, OA4, OA3的位置如图3所示,其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.解决如下问题:(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是________;(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3, OA4并求出α的值;(3)若α<36°,且∠A2OA4=20°,则对应的α值是________(4)(选做题)当OA i所在的射线是∠A i OA k(i,j,k是正整数,且OA j与OA k不重合)的平分线时,旋转停止,请探究:试问对于任意角α(α的度数为正整数,且α=180°),旋转是否可以停止?写出你的探究思路.【答案】(1)45°(2)解:如图所示.∵α<30°,∴∠A0OA3<180°,4α<180°.∵OA4平分∠A2OA3,∴2(180°﹣6α)+ =4α,解得:(3),,(4)解:对于角α=120°不能停止.理由如下:无论a为多少度,旋转过若干次后,一定会出现OA i是∠A i OA K是的角平分线,所以旋转会停止.但特殊的,当a为120°时,第一次旋转120°,∠MOA1=120°,第二次旋转240°时,与OM 重合,第三次旋转360°,又与OM重合,第四次旋转480°时,又与OA1重合,…依此类推,旋转的终边只会出现“与OM重合”或“与OA1重合”两种情况,不会出第三条射线,所以不会出现OA i是∠A i OA K是的角平分线这种情况,旋转不会停止【解析】【解答】解:(1)解:如图所示.aφ=45°,【分析】(1)根据题意,明确每次旋转的角度,计算即可;(2)根据各角的度数,找出等量关系式,列出方程,求出α的度数即可;(3)类比第(2)小题的算法,分三种情况讨论,求出α的度数即可;(4)无论a为多少度,旋转很多次,总会出一次OA i是∠A i OA K是的角平分线,但当a=120度时,只有两条射线,不会出现OA i是∠A i OA K是的角平分线,所以旋转会中止.6.(1)思考探究:如图①,的内角的平分线与外角的平分线相交于点,请探究与的关系是________.(2)类比探究:如图②,四边形中,设,,,四边形的内角与外角的平分线相交于点 .求的度数.(用,的代数式表示)(3)拓展迁移:如图③,将(2)中改为,其它条件不变,请在图③中画出,并直接写出 ________.(用,的代数式表示)【答案】(1)(2)解:延长、,交于点 .,由(1)知:∴ .(3)【解析】【解答】解:(1)∵平分,平分,∴,∵是的外角∴∵是的外角∴( 3 )延长,交于点 . 作与外角的平分线相交于点 . 如图:,【分析】(1)利用角平分线求出∠PCD= ∠ACD,∠PBD= ∠ABC,再利用三角形的一个外角定理即可求出.(2)延长BA、CD交于点F,然后根据(1)的结题可得到∠P的表达式.(3)延长AB、DC交于F,然后根据(1)的结题可得到∠P的表达式.7.如图,已知CD∥EF,A,B分别是CD和EF上一点,BC平分∠ABE,BD平分∠ABF(1)证明:BD⊥BC;(2)如图,若G是BF上一点,且∠BAG=50°,作∠DAG的平分线交BD于点P,求∠APD 的度数:(3)如图,过A作AN⊥EF于点N,作AQ∥BC交EF于Q,AP平分∠BAN交EF于P,直接写出∠PAQ=________.【答案】(1)证明:∵BC平分∠ABE,BD平分∠ABF∴∠ABC= ∠ABE,∠ABD= ∠ABF∴∠ABC+∠ABD= (∠ABE+∠ABF)= ×180°=90°∴BD⊥BC(2)解:∵CD∥EFBD平分∠ABF∴∠ADP=∠DBF= ∠ABF,∠DAB+∠ABF=180°又AP平分∠DAG,∠BAG=50°∴∠DAP= ∠DAG∴∠APD=180°-∠DAP-∠ADP=180°-∠DAG-∠ABF=180°- (∠DAB-∠BAG)-∠ABF=180°-∠DAB+ ×50°-∠ABF=180°- (∠DAB+∠ABF)+25°=180°- ×180°+25°=115°(3)45°【解析】【解答】(3)解:如图,∵AQ∥BC∴∠1=∠4,∠2+∠3+∠4=180°,∵BC平分∠ABE,∴∠1=∠2=∠4,∴∠3+∠4=90°,又∵CD∥EF,AN⊥EF,AP平分∠BAN∴∠PAN= (90°-∠3),∠NAQ=90°-∠4,∴∠PAQ=∠PAN+∠NAQ= (90°-∠3)+(90°-∠4)=45°- ∠3+90°-∠4=135°-(∠3+∠4)=135°-90°=45°.【分析】(1)根据角平分线和平角的定义可得∠CBD=90°,即可得出结论;(2)根据平行线的性质以及角平分线的定义可得∠ADP=∠DBF= ∠ABF,∠DAB+∠ABF=180°,∠DAP= ∠DAG,然后根据出三角形内角和即可求出∠APD的度数;(3)根据平行线的性质以及角平分线的定义可得∠1=∠2=∠4,∠2+∠3+∠4=180°,即∠3+∠4=90°,根据垂直和平行线的性质以及角平分线的定义可得∠PAN= (90°-∠3),∠NAQ=90°-∠4,则∠PAQ=∠PAN+∠NAQ= (90°-∠3)+(90°-∠4),代入计算即可求解.8.将一副三角板中的两块直角三角尺的直角顶点按如图所示的方式叠放在一起(其中,,),固定三角板,另一三角板的边从边开始绕点顺时针旋转,设旋转的角度为.(1)当时;若,则的度数为________;(2)若,求的度数;(3)由(1)(2)猜想与的数量关系,并说明理由;(4)当时,这两块三角尺是否存在一组边互相垂直?若存在,请直接写出所有可能的值,并指出哪两边互相垂直(不必说明理由);若不存在,请说明理由.【答案】(1)150°(2)∵∠ACB=130°,∠ACD=90°,∴∠DCB=130°−90°=40°,∴∠DCE=90°−40°=50°;(3)∠ACB+∠DCE=180°,理由如下:①当时,如图1,∵∠ACB=∠ACD+∠DCB=90°+∠DCB,∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+90°=180°;②当时,如图2,∠ACB+∠DCE=180°,显然成立;③当时,如图3,∠ACB+∠DCE=360°-90°-90°=180°.综上所述:∠ACB+∠DCE=180°;(4)存在,理由如下:①若AD⊥CE时,如图4,则 =90°-∠A=90°-60°=30°,②若AC⊥CE时,如图5,则 =∠ACE=90°,③若AD⊥BE时,如图6,则∠EMC=90°+30°=120°,∵∠E=45°,∴∠ECD=180°-45°-120°=15°,∴ =90°-15°=75°,④若CD⊥BE时,如图7,则AC∥BE,∴ =∠E=45°.综上所述:当 =30°时,AD⊥CE,当 =90°时,AC⊥CE,当 =75°时,AD⊥BE,当=45°时,CD⊥BE.【解析】【解答】(1)①∵∠ECB=90°,∠DCE=30°,∴∠DCB=90°−30°=60°,∴∠ACB=∠ACD+∠DCB=90°+60°=150°,故答案是150°;【分析】(1)①先根据直角三角板的性质求出∠DCB的度数,进而可得出∠ACB的度数;②由∠ACB=130°,∠ACD=90°,可得出∠DCB的度数,进而得出∠DCE的度数;(2)根据(1)中的结论可提出猜想,再分3种情况:①当时,②当时,③当时,分别证明∠ACB与∠DCE的数量关系,即可;(3)分4种情况:①若AD⊥CE时,②若AC⊥CE时,③若AD⊥BE时,④若CD⊥BE 时,分别求出的值,即可.9.直线MN与直线PQ相交于O,∠POM=60°,点A在射线OP上运动,点B在射线OM 上运动.(1)如图1,∠BAO=70°,已知AE、BE分别是∠BAO和∠ABO角的平分线,试求出∠AEB 的度数.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE 分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)在(2)的条件下,在△CDE中,如果有一个角是另一个角的2倍,请直接写出∠DCE的度数.【答案】(1)解:∵∠POM=60°,∠BAO=70°,∴∠ABO=50°.∵AE、BE分别是∠BAO和∠ABO的角平分线,∴∠EAB= ∠OAB=35°,∠EBA= ∠OBA=25°,∴∠AEB=180°-35°-25°=120°(2)解:不发生变化,理由如下:如图,延长BC、AD交于点F,∵点D、C分别是∠PAB和∠ABM的角平分线上的两点,∴∠FAB= ∠PAB= (180°-∠OAB),∠FBA= ∠MBA= (180°-∠OBA),∴∠FAB+∠FBA= (180°-∠OAB)+ (180°-∠OBA)= (180°+∠AOB)=90°+ ∠AOB,∵∠AOB=60°,∴∠F=180°-(∠FAB+∠FBA)=90°- ∠AOB=60°,同理可求∠CED =90°- ∠F=60°;(3)∠DCE的度数40°或80°【解析】【解答】解:(3)①当∠DCE=2∠E时,显然不符合题意;②当∠DCE=2∠CDE时,∠DCE= =80°;③当∠DCE= ∠CDE时,∠DCE= =40°,综上可知,∠DCE的度数40°或80°.【分析】(1)由∠POM=60°,∠BAO=70°,可求出∠ABO的值,根据AE、BE分别是∠BAO和∠ABO的角平分线,可得∠EAB和∠EBA的值,在△EAB中,根据三角形内角和即可得出∠AEB的大小;(2)不发生变化,延长BC、AD交于点F,根据角平分线的定义以及三角形内角和可得∠F =90°- ∠AOB,∠CED =90°- ∠F,即可得出∠CED的度数;(3)分三种情况求解即可.10.如图1,已知∠MON=60°,A、B两点同时从点O出发,点A以每秒x个单位长度沿射线ON匀速运动,点B以每秒y个单位长度沿射线OM匀速运动.(1)若运动1s时,点A运动的路程比点B运动路程的2倍还多1个单位长度,运动3s 时,点A、点B的运动路程之和为12个单位长度,则x=________,y=________;(2)如图2,点C为△ABO三条内角平分线交点,连接BC、AC,在点A、B的运动过程中,∠ACB的度数是否发生变化?若不发生变化,求其值;若发生变化,请说明理由;(3)如图3,在(2)的条件下,连接OC并延长,与∠ABM的角平分线交于点P,与AB 交于点Q.①试说明∠PBQ=∠ACQ;②在△BCP中,如果有一个角是另一个角的2倍,请写出∠BAO的度数.【答案】(1)3;1(2)解:的度数不发生变化,其值求解如下:由三角形的内角和定理得点C为三条内角平分线交点,即AC平分,BC平分由三角形的内角和定理得(3)解:①由三角形的外角性质得:点C为三条内角平分线交点,即AC平分,OC平分又是的角平分线;② 是的角平分线,BC平分由三角形的外角性质得:则在中,如果有一个角是另一个角的2倍,那么一定是.【解析】【解答】(1)由题意得:化简得解得故答案为:3,1;【分析】(1)根据“路程速度时间”建立一个关于x、y的二元一次方程组,求解即可得;(2)先根据三角形的内角和定理可得,再根据角平分线的定义可得,然后根据三角形的内角和定理即可得;(3)①先根据三角形的外角性质可得,再根据角平行线的定义即可得;②先根据角平分线的定义、平角的定义得出,再根据三角形的外角性质得出,从而得出,然后根据直角三角形的性质得出,最后根据角的和差、角平分线的定义即可得.11.已知:直线AB与直线CD交于点O,过点O作OE⊥AB.(1)如图1,OP为∠AOD内的一条射线,若∠1=∠2,求证:OP⊥CD;(2)如图2,若∠BOC=2∠AOC,求∠COE的度数;(3)如图3.在(2)的条件下,过点O作OF⊥CD,经过点O画直线MN,若射线OM平分∠BOD,请直接写出图中与2∠EOF度数相等的角.【答案】(1)解:∵OE⊥AB ∴∠AOC+∠1= ∵∠1=∠2 ∴∠AOC+∠2=∴OP⊥CD(2)解:∵∠AOC+∠BOC= ,且∠BOC=2∠AOC ∴∠AOC= ∵OE⊥AB ∴∠AOE= ∴∠COE= - =(3)∠AOD、∠BOC、∠FON、∠EOM【解析】【解答】解:(3)由(2)知:∠AOC=∵射线OM平分∠BOD∴∠BOM=∠DOM=∠AON=∠CON=∵OE⊥AB,OC⊥OF∴∠AOE=∠COF=∴∠AOC=∠EOF=∴∠AOD=∠BOC=∠FON=∠EOM= =2∠EOF∴与2∠EOF度数相等的角是:∠AOD、∠BOC、∠FON、∠EOM.【分析】(1)直接根据等量代换即可证明.(2)先根据平角的定义可得∠AOC= ,再利用垂直的定义可得∠AOE= ,从而得出结论.(3)根据(2)中∠AOC= ,分别计算各角的度数,得其中∠EOF= ,根据各角的度数可得结论.12.如图,∠AOB是平角,OD是∠AOC的角平分线,∠COE=∠BOE.(1)若∠AOC= 50 ,则∠DOE=________ ;(2)若∠AOC= 50 ,则图中与∠COD互补的角为________;(3)当∠AOC的大小发生改变时,∠DOE的大小是否发生改变?为什么?【答案】(1)(2)∠BOD(3)解:不发生改变,设∠AOC=2x .∵OD是∠AOC的平分线,∴∠AOD =∠COD=x,∴∠BOC=180 ̶2x,∵∠COE=∠BOE,∴∠COE==90 +x,∴∠DOE=90 +x ̶x=90【解析】【解答】(1)解:∵∠AOC=50 ,∴∠BOC=180 130 ,∵OD是∠AOC的角平分线,∴∠AOD=∠COD=25 ,∴∠COE =∠BOE= ,∴∠DOE=115 ;故答案为:90( 2 )解:由(1)知∠AOD=∠COD=25 ,∴∠BOD=155 ,∴图中与∠COD互补的角为∠BOD;故答案为:∠BOD【分析】(1)由∠AOC=50 ,得到∠AOD=∠COD=25 ,∠BOC=130 ,求得∠COE=∠BOE=115 .即可求出∠DOE;(2)由(1)得∠AOD=∠COD=25 ,则∠BOD=155 ,即可得到答案;(3)设∠AOC=2x,则∠AOD =∠COD =x,得到∠COE=90 +x,即可得到∠DOE=90 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考资源网期待您的投稿!
- 1 -
第七章 平面图形的认识(二) 单元测试
班级 姓名 成绩
一.填空题(每空2分,共30分)
1、如图,60B
∠=︒
,当1∠= ︒时,
D E
∥B C ,理由是 。

2、如图,如果65B
∠=︒
,A D ∥B C ,A B ∥D C ,
那么 A
∠=
︒; D ∠=
︒;B
∠=∠。

3、已知:a ∥b ,3137∠=︒,则1∠= ︒,2∠=
︒。

4、长度为2cm 、3cm 、4cm 和5cm 的4根木棒,从中任取3根, 可搭成 种不同的三角形。

5、A B C ∆的高为A D ,角平分线为A E ,中线为A F ,则把A B C ∆面积分成相等的两部分的线段是 。

6、如图,x
=
,y
=。

7、在A B C ∆中,36C ∠=︒,A B ∠=∠,则A
∠=
︒。

8、一个多边形的内角和是540︒,那么这个多边形是 边形。

9、一个多边形的内角和是外角和的4倍,那么这个多边形是 边形。

10、如图,将字母“V ” 向右平移 格会得到字母“W ”。

二.选择题(每空5分,共20分)
11、点P 为直线l 外一点,点A 、B 、C 为l 上三点,5P A c m =
,6P B cm =,
6P C cm
=,则点P 到直线l 的距离是( ).
A
、5cm B 、小于5cm C 、不大于5cm D 、7cm
12、已知O A
O B
⊥,O 为垂足,且A O C ∠∶1A O B ∠=∶2,则BOC ∠是( ).
A
、45︒ B 、135︒ C 、45︒或135︒ D 、60︒或20︒
13、如图, A B ∥C D ∥E F ,B C ∥A D , A C 平分B A D ∠ 且与E F 交于点O ,那么与A O E ∠相等的角有( )个.
A
、5 B 、4 C 、3 D 、2
14、如图,34∠=
∠,则下列条件中不能推出A B
∥C D 的是( ).
A
、1∠与2∠互余 B 、12
∠=∠
l
C
B x +10()︒
x +70()︒
y ︒
x ︒
2
13
a
b
A
B
D C
O F E B
C D A 1A E D B
C
B A
M
C
D
N 4
3 2 1
中考资源网期待您的投稿!
- 2 - C
、13∠=∠且24∠=∠ D 、B M ∥C N
三.解答题(第15、16、17、18题为15、10、10、15分)
15、如图,A D 是E A C ∠的平分线,A D ∥B C ,64B
∠=︒

你能算出E A D ∠,D A C ∠,C ∠的度数吗?
16、如图,65A
∠=︒,30A B D ∠=︒
,72A C B ∠=︒,
且C E 平分A C B ∠,求B E C ∠ 的度数。

17、图中的6个小正方形面积都为1,A 、B 、C 、D 、E 、F 是小正方形的顶点,
以这6个点为顶点,可以组成多少个面积为1的三角形?请写出所有这样的三角形(并填入相应的集合内)
锐角三角形{ } 直角三角形{ } 钝角三角形{ }
18、如图,从下列三个条件中:(1)AD ∥CB (2)AB ∥CD (3)∠A =∠C ,任选
已知: 结论: 理由:
更多试卷下载请访问:/
A
B D
E
A
C
D E
C A。

相关文档
最新文档