高中数学第二章圆锥曲线与方程疑难规律方法学案新人教A版选修2_1
人教A版高中数学选修1-1《二章 圆锥曲线与方程 2.3 抛物线 圆锥曲线的光学性质及其应用》优质课教案_3

高中数学人教A版2003课标版选修1-1第二章圆锥曲线与方程→2.3抛物线→阅读与思考圆锥曲线的光学性质及其应用《圆锥曲线的光学性质及其应用》的教学设计第一课时抛物线的光学性质及其应用一、教学目标1.理解抛物线的光学性质,并会应用数学推理得出抛物线的光学性质,并会应用它解决数学问题。
2.会用数学建模的思想将实际生活问题数学化,也会用数学建模的思想将数学问题生活化。
二、教学重点理解抛物线的光学性质并会推导。
三、教学难点数学建模思想的应用。
四、教学过程(一)课题引入问题一:手电筒一只很小的灯泡发出的光,会分散地射向各方,但把它装在圆柱形手电筒里,经过适当调节,就能射出一束比较强的平行光线。
这是为什么呢?设计意图:从生活中的一个例子出发,提出问题,引发学生的求知欲,从而提出课题。
(二)课题提出抛物线的光学性质:从抛物线的焦点发出的光,经过抛物线反射后,反射光线都平行于抛物线的轴。
抛物线这种聚焦特性,成为聚能装置或定向发射装置的最佳选择.例如探照灯、汽车大灯等反射镜面的纵剖线是抛物线,把光源置于它的焦点处,经镜面反射后能成为平行光束,使照射距离加大,并可通过转动抛物线的对称轴方向,控制照射方向.卫星通讯像碗一样接收或发射天线,一般也是以抛物线绕对称轴旋转得到的,把接收器置于其焦点,抛物线的对称轴跟踪对准卫星,这样可以把卫星发射的微弱电磁波讯号射线,最大限度地集中到接收器上,保证接收效果;反之,把发射装置安装在焦点,把对称轴跟踪对准卫星,则可以使发射的电磁波讯号射线能平行地到达卫星的接收装置,同样保证接收效果.最常见的太阳能热水器,它也是以抛物线镜面聚集太阳光,以加热焦点处的贮水器的.问题二:生活问题数学化要探究抛物线的光学性质,首先必须将这样一个光学实际问题,转化为数学问题,进行解释论证,那么我们如何用数学语言阐述并证明抛物线的光学性质?设计意图:提出抛物线的光学性质,并通过列举它在生活中的大量应用,让学生感知数学无处不在,并有将生活问题数学化的欲望。
2021_2022学年高中数学第2章圆锥曲线与方程测评含解析新人教A版选修2_1

第二章测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.方程x 2+2y 2=4所表示的曲线是()A.焦点在x 轴的椭圆B.焦点在y 轴的椭圆C.抛物线D.圆 方程化为x 24+y 22=1,因此其表示焦点在x 轴的椭圆.2.已知椭圆x 2a 2+y 2b 2=1(a>b>0)分别过点A (2,0)和B (0,-1),则该椭圆的焦距为() A.√3 B.2√3 C.√5 D.2√5a=2,b=1,所以a 2=4,b 2=1,所以c=√a 2-b 2=√4-1=√3,所以2c=2√3.故选B .3.已知双曲线x 2a 2−y 2b 2=1(a>0,b>0)的渐近线方程为y=±2√33x ,则此双曲线的离心率为()A.√72B.√133C.53D.√213x 轴上,所以ba=2√33,于是e=ca=√1+(b a)2=√73=√213.4.已知抛物线C :y 2=8x 焦点为F ,点P 是C 上一点,O 为坐标原点,若△POF 的面积为2,则|PF|等于() A.5B.3C.72D.4F (2,0),设P (x 0,y 0),则12·2·|y 0|=2,所以|y 0|=2,于是x 0=12,于是|PF|=x 0+p2=52.5.已知一个动圆P 与圆O :x 2+y 2=1外切,而与圆C :x 2+y 2-6x+8=0内切,则动圆圆心P 的轨迹是() A.双曲线的一支 B.椭圆 C.抛物线D.圆R ,依题意有|PO|=R+1,|PC|=R-1,因此|PO|-|PC|=2,而|OC|=3,由双曲线定义知点P 的轨迹为双曲线的右支.6.已知点A 是抛物线y 2=2px (p>0)上一点,点F 是抛物线的焦点,O 为坐标原点,当|AF|=4时,∠OFA=120°,则抛物线的准线方程是()A.x=-1B.x=-3C.x=-1或x=-3D.y=-1∠BFA=∠OFA-90°=30°,过点A 作准线的垂线AC ,过点F 作AC 的垂线,垂足分别为C ,B.如图,A 点到准线的距离为d=|AB|+|BC|=p+2=4,解得p=2,则抛物线的准线方程是x=-1. 故选A.7.双曲线C :x 2-y 23=1的一条渐近线与抛物线M :y 2=4x 的一个交点为P (异于坐标原点O ),抛物线M 的焦点为F ,则△OFP 的面积为() A.2√33B.4√33C.23D.43解析双曲线C :x 2-y 23=1的一条渐近线方程为y=√3x ,将y=√3x 代入抛物线方程,可得3x 2=4x ,解得x=0(舍)或x=43,所以P 43,4√33,又抛物线y 2=4x 的焦点F (1,0),则△OFP 的面积为S=12×1×4√33=2√33.故选A .8.已知双曲线的中心在坐标原点,对称轴为坐标轴,若双曲线的一个焦点坐标为(0,√5),且圆x 2+(y-√5)2=1与双曲线的渐近线相切,则双曲线的方程是() A.x 24-y 2=1B.y 24-x 2=1C.x 26-y 2=1D.y 26-x 2=1(0,√5),则c=√5.由题意可知焦点在y 轴上, 设双曲线为y 2a2−x 2b 2=1,渐近线为by ±ax=0.焦点到渐近线的距离为1=√a 2+b 2=b ,即b=1,a=√c 2-b 2=2,则双曲线的方程是y 24-x 2=1,故选B.9.已知点P (x 0,y 0)在椭圆x 212+y 23=1上,其左、右焦点分别是F 1,F 2,若∠F 1PF 2为钝角,则x 0的取值X 围是() A.(-3,3)B.(-∞,-2√2)∪(2√2,+∞)C.(-∞,-3)∪(3,+∞)D.(-2√2,2√2)F 1(-3,0),F 2(3,0),所以PF 1⃗⃗⃗⃗⃗⃗⃗ =(-3-x 0,-y 0),PF 2⃗⃗⃗⃗⃗⃗⃗ =(3-x 0,-y 0),则PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =x 02+y 02-9,而y 02=3-14x 02, 所以PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =34x 02-6.又∠F 1PF 2为钝角,所以34x 02-6<0,解得-2√2<x 0<2√2.10.椭圆x 2a2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1,F 2,上顶点为A ,若△AF 1F 2的面积为√3,且∠F 1AF 2=4∠AF 1F 2,则椭圆方程为() A.x 23+y 2=1B.x 23+y 22=1 C.x 24+y 2=1D.x 24+y 23=1△AF 1F 2中,AF 1=AF 2,∠F 1AF 2=4∠AF 1F 2,则∠AF 1F 2=30°,所以bc =√33. 又△AF 1F 2面积为√3, 即S=12×2c×b=√3,解得b=1,c=√3,则a=√b 2+c 2=2, 所以椭圆方程为x 24+y 2=1.11.直线y=k (x-1)与椭圆C :x 24+y 22=1交于不同的两点M ,N ,椭圆x 24+y 22=1的一个顶点为A (2,0),当△AMN 的面积为√103时,则k 的值为()A.±√2B.±√3C.±1D.±√5y=k (x-1)与椭圆C 联立{y =k (x -1),x 24+y 22=1消元可得(1+2k 2)x 2-4k 2x+2k 2-4=0,设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,∴|MN|=√1+k 2·√(x 1+x 2)2-4x 1x 2=2√(1+k 2)(4+6k 2)1+2k 2.∵A (2,0)到直线y=k (x-1)的距离为d=√1+k 2, ∴△AMN 的面积S=12|MN|d=|k |√4+6k 21+2k 2.∵△AMN 的面积为√103, ∴|k |√4+6k 21+2k 2=√103, ∴k=±1,故选C .12.如图所示,过抛物线y 2=2px (p>0)的焦点F 的直线l ,交抛物线于点A ,B.交其准线于点C ,若|BC|=√2|BF|,且|AF|=√2+1,则此抛物线的方程为()A.y 2=√2xB.y 2=2xC.y 2=√3xD.y 2=3x,过点A 作AD 垂直于抛物线的准线,垂足为D ,过点B 作BE 垂直于抛物线的准线,垂足为E ,点P 为准线与x 轴的交点,由抛物线的定义,|BF|=|BE|,|AF|=|AD|=√2+1,因为|BC|=√2|BF|,所以|BC|=√2|BE|,所以∠DCA=45°, |AC|=√2|AD|=2+√2,|CF|=2+√2−√2-1=1, 所以|PF|=√2=√22,即p=|PF|=√22,所以抛物线的方程为y 2=√2x ,故选A.二、填空题(本大题共4小题,每小题5分,共20分)13.已知双曲线C :y 2a 2−x 2b 2=1的焦距为4,点P (1,√3)在双曲线C 的渐近线上,则C 的方程为.C :y 2a2−x 2b2=1的渐近线方程为y=±a bx ,∵双曲线C :y 2a 2−x 2b 2=1的焦距为4,点P (1,√3)在C 的渐近线上,可得a=√3b ,∴2c=4, ∵c 2=a 2+b 2,∴a 2=3,b 2=1, ∴双曲线C 的方程为y 23-x 2=1.故答案为y 23-x 2=1.2=114.若直线x-my+m=0经过抛物线x 2=2py (p>0)的焦点,则p=.直线x-my+m=0可化为x-m (y-1)=0,所以直线x-my+m=0过点(0,1), 即抛物线x 2=2py (p>0)的焦点F 为(0,1),∴p2=1,则p=2,故答案为2.15.已知双曲线E :x 2a2−y 2b 2=1(a>0,b>0)与抛物线C :y 2=2px (p>0)有共同的一个焦点,过双曲线E 的左焦点且与抛物线C 相切的直线恰与双曲线E 的一条渐近线平行,则E 的离心率为.,所以c=p2,p=2c ,抛物线方程为y 2=4cx ,设双曲线的左焦点为F 1,F 1(-c ,0),过F 1与一条渐近线y=ba x 平行的直线方程为y=ba (x+c ), 由{y 2=4cx ,y =ba(x +c )得by 2-4acy+4bc 2=0, 所以Δ=16a 2c 2-16b 2c 2=0,所以a=b ,从而c=√a 2+b 2=√2a ,离心率为e=ca =√2. √216.已知椭圆方程为x 2a2+y 2b2=1(a>b>0),双曲线方程为x 2m2−y 2n 2=1(m>0,n>0),若该双曲线的两条渐近线与椭圆的四个交点以及椭圆的两个焦点恰为一个正六边形的六个顶点,则椭圆的离心率与双曲线的离心率之和为.椭圆方程为x 2a 2+y 2b 2=1(a>b>0),双曲线方程为x 2m 2−y 2n 2=1(m>0,n>0),若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,可得椭圆的焦点坐标F 2(c ,0),F 1(-c ,0),正六边形的一个顶点Ac 2,√32c .|AF 1|+|AF 2|=(c2(√3c 2)(c2-c) (√3c 2)=2a , 因为√3c+c=2a ,所以椭圆离心率e 1=ca =√3-1,因为双曲线的渐近线的斜率为√3,即nm =√3,可得双曲线的离心率为e 2=√1+n 2m 2=2.所以e 1+e 2=√3-1+2=√3+1. 故答案为√3+1. √3+1三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知双曲线C 的一个焦点与抛物线C 1:y 2=-16x 的焦点重合,且其离心率为2. (1)求双曲线C 的方程;(2)求双曲线C 的渐近线与抛物线C 1的准线所围成三角形的面积.抛物线C 1:y 2=-16x 的焦点坐标为(-4,0),因此可设双曲线方程为x 2a2−y 2b 2=1(a>0,b>0),则依题意有{c =4,c a =2,解得a 2=4,b 2=12, 故双曲线C 的方程为x 24−y 212=1.(2)抛物线C 1的准线方程为x=4,双曲线C 的渐近线方程为y=±√3x , 于是双曲线C 的渐近线与抛物线C 1的准线的两个交点为(4,4√3),(4,-4√3), 所围成三角形的面积S=12×8√3×4=16√3.18.(本小题满分12分)已知抛物线x 2=-2py (p>0)上纵坐标为-p 的点到其焦点F 的距离为3. (1)求抛物线的方程;(2)若直线l 与抛物线以及圆x 2+(y-1)2=1都相切,求直线l 的方程.由已知得抛物线的准线方程为y=p2,则由抛物线的定义知p+p2=3,则p=2,所以抛物线的方程为x 2=-4y.(2)由题意知直线l 的斜率存在,设其方程为y=kx+b ,则有{y =kx +b ,x 2=-4y ,消去y 得x 2+4kx+4b=0,则有Δ=16k 2-16b=0,即k 2=b.又直线l 与圆x 2+(y-1)2=1都相切,所以√k 2+1=1.解方程组{√k 2+1=1,k 2=b ,得{k =0,b =0或{k =√3,b =3或{k =-√3,b =3,故所求直线l 的方程为y=0或y=√3x+3或y=-√3x+3. 19.(本小题满分12分)已知F 1,F 2是椭圆M :y 2a2+x 2b 2=1(a>b>0)的两个焦点,椭圆M 的离心率为√63,P (x 0,y 0)是M 上异于上下顶点的任意一点,且△PF 1F 2面积的最大值为2√2.(1)求椭圆M 的方程;(2)若过点C (0,1)的直线l 与椭圆C 交于A ,B 两点,AC ⃗⃗⃗⃗⃗ =2CB ⃗⃗⃗⃗⃗ ,求直线l 的方程.据题意,得{ ca =√63,12×2c ×b =2√2,c 2=a 2-b 2,∴a 2=6,b 2=2.∴椭圆M 的方程为y 26+x 22=1.(2)据题设知,直线AB 的斜率存在,设直线l 的方程为y=kx+1. 据{y =kx +1,y 26+x 22=1,得(3+k 2)x 2+2kx-5=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2k3+k 2,x 1x 2=-53+k 2. ∵AC⃗⃗⃗⃗⃗ =2CB ⃗⃗⃗⃗⃗ , ∴(-x 1,1-y 1)=2(x 2,y 2-1). ∴x 1=-2x 2.∴x 1+x 2=-x 2=-2k3+k 2,则x 2=2k3+k 2.又x 1x 2=-2x 22=-53+k 2,∴(2k3+k 2)2=53+k 2×12, ∴k=±√5.故直线l 的方程为y=-√5x+1或y=√5x+1.20.(本小题满分12分)已知点F 是抛物线C :x 2=2py (p>0)的焦点,点M 是抛物线上的定点,且MF ⃗⃗⃗⃗⃗⃗ =(4,0). (1)求抛物线C 的方程;(2)直线AB 与抛物线C 交于不同两点A (x 1,y 1),B (x 2,y 2),且x 2-1=x 1+m 2(m 为常数),直线l 与AB 平行,且与抛物线C 相切,切点为N ,试问△ABN 的面积是否是定值.若是,求出这个定值;若不是,请说明理由. 设M (x 0,y 0),由题知F (0,p2),所以MF ⃗⃗⃗⃗⃗⃗ =(-x 0,p 2-y 0)=(4,0).所以{-x 0=4,p 2-y 0=0,即{x 0=-4,y 0=p 2. 代入x 2=2py (p>0)中,得16=p 2,解得p=4. 所以抛物线C 的方程为x 2=8y.(2)由题意知,直线AB 的斜率存在,设其方程为y=kx+b. 由{y =kx +b ,x 2=8y ,消去y ,整理得x 2-8kx-8b=0, 则x 1+x 2=8k ,x 1x 2=-8b.∴y 1+y 2=k (x 1+x 2)+2b=8k 2+2b ,设AB 的中点为Q , 则点Q 的坐标为(4k ,4k 2+b ). 由条件,设切线方程为y=kx+t , 由{y =kx +t ,x 2=8y ,消去y 整理得x 2-8kx-8t=0.∵直线与抛物线相切, ∴Δ=64k 2+32t=0. ∴t=-2k 2. ∴x 2-8kx+16k 2=0, ∴x=4k , ∴y=2k 2.∴切点N 的坐标为(4k ,2k 2). ∴NQ ⊥x 轴,∴|NQ|=(4k 2+b )-2k 2=2k 2+b. ∵x 2-x 1=m 2+1,又∵(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=64k 2+32b.∴2k 2+b=(m 2+1)232.∴S △ABN =12|NQ|·|x 2-x 1|=12·(2k 2+b )·|x 2-x 1|=(m 2+1)364.∵m 为常数,∴△ABN 的面积为定值,且定值为(m 2+1)364.21.(本小题满分12分)已知F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a>b>0)的左、右焦点,点P -1,√22在椭圆E 上,且抛物线y 2=4x 的焦点是椭圆E 的一个焦点. (1)求椭圆E 的标准方程;(2)过点F 2作不与x 轴重合的直线l ,设l 与圆x 2+y 2=a 2+b 2相交于A ,B 两点,且与椭圆E 相交于C ,D 两点,当F 1A ⃗⃗⃗⃗⃗⃗⃗ ·F 1B ⃗⃗⃗⃗⃗⃗⃗ =1时,求△F 1CD 的面积.y 2=4x 焦点为F (1,0),则椭圆E 的焦点F 1(-1,0),F 2(1,0). 2a=|PF 1|+|PF 2|=2√2. 解得a=√2,c=1,b=1,所以椭圆E 的标准方程为x 22+y 2=1.(2)由已知,可设直线l 方程为x=ty+1,A (x 1,y 1),B (x 2,y 2).联立{x =ty +1,x 2+y 2=3,得(t 2+1)y 2+2ty-2=0,易知Δ>0.则{y 1+y 2=-2tt 2+1,y 1y 2=-2t 2+1.F 1A ⃗⃗⃗⃗⃗⃗⃗ ·F 1B⃗⃗⃗⃗⃗⃗⃗ =(x 1+1)(x 2+1)+y 1y 2=(ty 1+2)(ty 2+2)+y 1y 2 =(t 2+1)y 1y 2+2t (y 1+y 2)+4=2-2t 2t 2+1.因为F 1A ⃗⃗⃗⃗⃗⃗⃗ ·F 1B ⃗⃗⃗⃗⃗⃗⃗ =1, 所以2-2t 2t 2+1=1,解得t 2=13.联立{x =ty +1,x 22+y 2=1,得(t 2+2)y 2+2ty-1=0,Δ=8(t 2+1)>0.设C (x 3,y 3),B (x 4,y 4), 则{y 3+y 4=-2tt 2+2,y 3y 4=-1t 2+2.S △F 1CD =12|F 1F 2|·|y 3-y 4|=√8(1+t 2)t 2+2=√8×4373=4√67. 22.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的长轴长为2√2,离心率为√22.(1)求椭圆C 的方程;(2)过动点M (0,m )(m>0)的直线交x 轴于点N ,交椭圆C 于点A ,P (P 在第一象限),且点M 是线段PN 的中点.过点P 作x 轴的垂线交椭圆C 于另一点Q ,延长QM 交椭圆C 于点B.①设直线PM 、QM 的斜率分别为k ,k',证明kk '为定值;②求直线AB 斜率取最小值时,直线PA 的方程.由题意得2a=2√2,ca =√22, 所以a=√2,c=1,b=√a 2-c 2=√2-1=1. 故椭圆方程为x 22+y 2=1.(2)①设P (x 0,y 0)(x 0>0,y 0>0),由M (0,m ),可得P (x 0,2m ),Q (x 0,-2m ), 所以直线PM 的斜率k=2m -m x 0=m x 0,直线QM 的斜率k'=-2m -m x 0=-3mx 0.此时kk '=-13,所以kk '为定值-13.②设A (x 1,y 1),B (x 2,y 2),直线PA 的方程为y=kx+m ,直线QB 的方程为y=-3kx+m.联立{y =kx +m ,x 22+y 2=1,整理得(2k 2+1)x 2+4kmx+2m 2-2=0, 由{Δ=16k 2m 2-8(m 2-1)(2k 2+1)>0,x 0x 1=2m 2-22k 2+1, 可得x 1=2m 2-2(2k 2+1)x 0, y 1=kx 1+m=k 2m 2-2(2k 2+1)x 0+m ,同理x 2=2m 2-2(18k 2+1)x 0,y 2=-3kx 2+m=-3k2m 2-2(18k 2+1)x 0+m.所以x 1-x 2=32k 2(m 2-1)(2k 2+1)(18k 2+1)x 0, y 1-y 2=3k 2m 2-2(18k 2+1)x 0+k2m 2-2(2k 2+1)x 0,y 1-y 2=2k (m 2-1)24p 2+4(2k 2+1)(18k 2+1)x 0=8k (m 2-1)6k 2+1(2k 2+1)(18k 2+1)x 0,所以k AB =y 1-y 2x 1-x 2=6k 2+14k=146k+1k ,由m>0,x 0>0,可知k>0,所以6k+1k≥2√6,当且仅当k=√66时取等号.由P (x 0,2m ),m>0,x 0>0在椭圆C :x 22+y 2=1上,得x 0=√2-8m 2, k=m x 0=√2-8m 2,此时√2-8m2=√66,即m=√77,word11 / 11 由Δ>0得,m 2<2k 2+1,所以k=√66时,m=√77符合题意.所以直线AB 的斜率最小时,直线PA 的方程为y=√66x+√77.。
【全程复习方略】2014-2015学年高中数学 2.1.1曲线与方程课件 新人教A版选修2-1

错因剖析
将方程转化变形时漏掉阴影处,即忽略了根式应有
意义
【防范措施】 合理进行转化 将方程变形时,前后应保持等价,否则,变形后的方程表示 的曲线不是原方程代表的曲线.另外当方程中含有根式时,要注 意根式必须有意义.如本例含有根式,在化简时就容易忽视根式 必须有意义而导致错误.
(3)方程x+y-2=0是以A(2,0),B(0,2)为端点的线段的方程.
(
)
【解析】(1)错误,曲线的方程必须满足两个条件. (2)正确,根据曲线的方程和方程的曲线的概念,不满足方程 F(x,y)=0的点,显然不在曲线C上. (3)错误,以方程的解为坐标的点不一定在线段AB上,如M(-4,6) 就不在线段AB上. 答案:(1)〓 (2)√ (3)〓
【拓展类型】曲线的交点问题 【备选例题】(1)若直线x-2y-2k=0与y=x+k的交点在曲线 x2+y2=25上,则k的值是( A.1 B.-1 )
C.1或-1
2
D.以上都不对
2
(2)求直线y=x+ 3 与曲线y= 1 x2的交点.
【解析】(1)选C.联立得方程组 (-4k,-3k),代入圆的方程中. 即(-4k)2+(-3k)2=25,所以k=〒1.
【微思考】 (1)是否所有曲线都有相应的方程? 提示:不一定,有的曲线有方程,有的曲线就没有方程.如图,随 意画一条曲线,则求不出方程与之对应.
(2)怎样判断方程是曲线的方程? 提示:判断方程是否是曲线的方程,要从两个方面着手,一是检 验曲线上点的坐标是否都适合方程,二是检验以方程的解为坐 标的点是否都在曲线上.
f (x 0,y0 ) 0, (1)若P(x0,y0)为C1,C2交点,则 g(x 0,y0 ) 0.
人教版A版高中数学选修2-1课后习题解答

高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、例:(1)若x2x 2 0,则 x 1;(2) 若x 1,则x2x 20 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称 . 这是真命题 .(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:证明:命题的逆否命题是:若 a b 1,则 a2b22a 4b 3a2b22a 4b 3 (a b) (a b) 2 (a b )2b当 a b 1时原式 a b 2 2 b 3 a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则 a,b 都是偶数 . 这是假命题 .否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数 . 这是假命题 .逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b 不都是偶数 . 这是真命题 .高中数学选修2-1 课后习题答案 [ 人教版 ] ( 2)逆命题:若方程x2x m 0 有实数根,则 m 0 . 这是假命题 .否命题:若 m 0 ,则方程 x2x m 0 没有实数根 . 这是假命题 .逆否命题:若方程x2x m 0 没有实数根,则m 0 . 这是真命题 .3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是O 的两条互相平分的相交弦,交点是E,若 E和圆心 O 重合,则 AB,CD 是经过圆心 O 的弦, AB,CD 是两条直径 . 若 E 和圆心O 不重合,连结AO, BO ,CO 和DO,则OE是等腰AOB,COD的底边上中线,所以,OE AB OE CD.,AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的 . 所以, E 和 O 必然重合 . 即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件 .2、(1) p 是 q 的必要条件;(2)p是q的充分条件;( 3) p 是 q 的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形 .( 2)必要性:如果ABC 是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a2 b2 c2 ab ac bc 0所以 a2 b2 c2 ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假.2、(1)真;(2)假.3、(1) 2 2 5 ,真命题;(2)3不是方程x290 的根,假命题;(3) ( 1)21,真命题 .习题 1.3 A组(P18)1、(1) 4 {2,3} 或 2 {2,3} ,真命题;(2)4{2,3} 且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1) 2 不是有理数,真命题;(2)5是15的约数,真命题;(3) 2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组(P18)(1)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(2)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(3)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题;(4)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题.2、(1)真命题;(2)真命题;(3)真命题.练习( P26)1、(1)n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题 1.4 A组(P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题.2、(1)真命题;(2)真命题;(3)真命题.3、(1)x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3)x R, x2x 1 0 ;(4)所有四边形的对角线不互相垂直.习题 1.4 B组(P27)( 1)假命题 . 存在一条直线,它在y 轴上没有截距;( 2)假命题 . 存在一个二次函数,它的图象与x轴不相交;( 3)假命题 . 每个三角形的内角和不小于 180 ;( 4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1)n N ,n2 0 ;(2)P { P P 在圆 x2 y2 r 2上}, OP r (O 为圆心);(3)( x, y) {( x, y) x, y是整数 } , 2x 4y 3 ;( 4)x0 { x x 是无理数}, x03 { q q 是有理数} .6、(1) 3 2 ,真命题;(2) 5 4 ,假命题;( 3)x0 R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1) p q;(2) ( p) ( q) ,或( p q) .2、(1)Rt ABC , C 90,A, B, C 的对边分别是 a, b, c ,则 c2 a2 b2;(2)ABC ,A, B, C 的对边分别是a b c a, b, c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a 32 , b 18 .25 253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率 k CA2 0 22 t2 t1 t 2所以, k CB2kCA由直线的点斜式方程,得直线 CB 的方程为 y2 t 2 ( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t) .由于点 M 是线段 AB 的中点,由中点坐标公式得xt, y 4 t .t4 t ,22由 x得 t 2x ,代入 y2 2得 y42x,即 x y 20 ⋯⋯①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y 1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c 0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点 M 的轨迹方程为 x 2y 24.4、解法一:设圆 x 2 y 2 6x 5 0 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CMAB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]所以,yy 1 (x 3, x0)x 3x化简得 x 2y 2 3x 0 (x 3, x 0)当 x 3 时, y0 ,点 (3,0) 适合题意;当 x 0 时, y0 ,点 (0,0) 不合题意 .解方程组x 2 y 2 3x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 2 3x0 ,5x 3.OCM 是直角三角形,3解法二:注意到利用勾股定理,得 x 2 y 2 ( x 3)2 y 2 9 ,即 x 2 y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为 xy 1 .a b因为直线 l 经过点 P(3,4) ,所以34 1 因此, ab 4a 3ba b由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3y 0 .2、解:如图,设动圆圆心 M 的坐标为 (x, y) .y由于动圆截直线 3x y 0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD4 .过点M 分别CMF E作直线 3xy 0 和 3x y 0 的垂线,垂足分别为 E ,DF ,则 AE4, CF 2 . A3x y3x yME, MF10 .10Ox连接 MA , MC ,因为 MAMC ,(第 2题)22CF 22 则有, AE MEMF所以, 16 (3 x y)24 (3 x y) 2 ,化简得, xy 10 .10 10因此,动圆圆心的轨迹方程是xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1 PF2 20 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1;(2) y2 x2 1;(3) x2 y2 1,或 y2 x2 16 16 36 16 36 163、解:由已知, a 5 , b 4 ,所以c a2 b2 3.(1)AF1 B 的周长 AF1 AF2 BF1 BF2.由椭圆的定义,得 AF1 AF2 2a , BF1 BF2 2a .所以,AF1B 的周长4a20 .(2)如果 AB 不垂直于x轴,AF1B的周长不变化 .这是因为①②两式仍然成立,AF1B 的周长20,这是定值.4、解:设点 M 的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x 1) ;kAMx 1直线 BM 的斜率y(x 1) ;kBMx 1由题意,得kAM2 ,所以y 2 y (x 1, y 0) k BM x 1 x 1化简,得 x 3 ( y 0)因此,点 M 的轨迹是直线 x 3 ,并去掉点 ( 3,0) .练习( P48)yB2 1、以点B2(或B1)为圆心,以线段OA2 (或 OA1)为半径画圆,圆与 x 轴的两个交点分别为 F1 , F2. A 1 F1O点 F1 , F2就是椭圆的两个焦点.B 1 这是因为,在 Rt B2OF2中, OB2 b , B2 F2 OA2 a ,(第 1题)所以, OF2 c . 同样有 OF1 c .2、(1)焦点坐标为( 8,0) , (8,0) ;14 .1.F2A2x( 2)焦点坐标为 (0,2) , (0, 2) .3、(1)x 2 y 21;( 2) y2x 2 1 .36 3225 164、(1)x 2y21( 2) x2y21 ,或 y 2x 2 1. 94100 64100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是 1 ,316 12 2因为221,所以,椭圆x 2y 2 1 更圆,椭圆 9x 2y 2 36 更扁;3216 12(2)椭圆 x29 y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是10 ,36105 因为2210,所以,椭圆x 2y 2 1 更圆,椭圆 x 2 9 y 2 36更扁 .356106、(1) (3, 8) ; (2) (0,2) ; (3) ( 48 , 70) .7、82 . 5 3737 7习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x 2 ( y 3)2 x 2 ( y 3) 2 10 以及椭圆的定义得,点 M 的轨迹是以 F 1(0, 3) , F 2 (0,3) 为焦点,长轴长为 10 的椭圆 .它的方程是y 2x 2 1.25 162、(1)x 2y 21; ( 2)y 2x 21 ;(3) x2y 21 ,或 y 2x 21.36 3225 9494049403、(1)不等式 2 x 2 , 4 y 4 表示的区域的公共部分;(2)不等式 25 x2 5 , 10 y10表示的区域的公共部分 .图略 .334、(1)长轴长 2a8,短轴长 2b 4 ,离心率 e 3 ,2焦点坐标分别是 ( 2 3,0) , (2 3,0) ,顶点坐标分别为 ( 4,0) , (4,0) , (0, 2) , (0,2) ;(2)长轴长 2a18 ,短轴长 2b6 ,离心率 e2 2 ,3焦点坐标分别是 (0, 6 2) , (0,6 2) ,顶点坐标分别为 (0, 9) ,(0,9) , ( 3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2 y2 1,或 y2 x2 1 ;8 5 9 81 9(3) x2 y2 1,或 y 2 x2 1 .25 9 25 96、解:由已知,椭圆的焦距F1F2 2.因为PF1F2的面积等于1,所以,1F1F2 y P 1,解得y P1. 2代入椭圆的方程,得x2 1 1 ,解得 x 15 .P5 4 215 l所以,点 P 的坐标是1) ,共有 4 个 .( ,2 QA 7、解:如图,连接 QA . 由已知,得 QA QP . O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以OA OP(第 7题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点,r为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x2 y21 ,得 9x2 6mx 2 18 0.x m 代入椭圆方程92m2 4这个方程根的判别式36m2 36(2m2 18)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 3 2,3 2) 时,直线与椭圆相交. ( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为 M (x, y) .则 x x1 x2 m .2 3因为点 M 在直线 y 3 x m 上,与 x m联立,消去 m ,得3x 2y 0 .2 3这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .高中数学选修2-1 课后习题答案 [ 人教版 ]x2y29、3.5252 2.87521.10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km. 习题 2.2 B 组( P50)1、解:设点 M 的坐标为 ( x, y) ,点 P 的坐标为( x0, y0),则 x x0,y 3y0 . 所以 x0 x ,y0 2 y ⋯⋯① .2 3因为点 P(x0 , y0 ) 在圆上,所以 x02 y02 4 ⋯⋯②.将①代入②,得点 M 的轨迹方程为 x2 4 y2 4,即 x2 y2 19 4 9所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P( x, y) ,半径为 R ,两已知圆的圆心分别为 O1, O2.分别将两已知圆的方程x 2 y2 6x 5 0 , x2 y2 6x 91 0配方,得(x 3)2 y 2 4 , ( x 3)2 y2 100当 P 与O1: ( x 3)2 y2 4 外切时,有O1P R 2 ⋯⋯①当P 与O2:( x 3)2y2100内切时,有O2P 10 R⋯⋯②①②两式的两边分别相加,得 O1P O2 P 12即, ( x 3)2 y2 (x 3) 2 y2 12 ⋯⋯③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2 y2 12 x ⋯⋯④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⋯⋯⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⋯⋯⑥36 27由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,6 3 . 解法二:同解法一,得方程( x 3)2 y2 ( x 3)2 y2 12 ⋯⋯①由方程①可知,动圆圆心P(x, y) 到点O1( 3,0)和点O2(3,0) 距离的和是常数12,第11页共38页。
高中数学 第二章《圆锥曲线与方程》2.1圆锥曲线学案 新人教版选修2-1

第2章圆锥曲线与方程2.1 圆锥曲线二、预习指导1.预习目标(1)认识用平面截圆锥面得到的各种曲线;(2)掌握椭圆、双曲线、抛物线的定义;(3)会根据不同的已知条件,利用圆锥曲线的定义判断动点的轨迹.2.预习提纲(1)查找有关轨迹的概念,回答下列问题:①平面内到线段两端点距离相等的点的轨迹是____________;②平面内到定点的距离等于定长的点的轨迹是____________;③空间中到定点的距离等于定长的点的轨迹是____________.(2)阅读教材选修4-1的71页到78页,教材选修2-1的25页到27页写下列空格:①一个平面截一个圆锥面,改变平面的位置,可得到如下图形____________,____________,____________,____________,____________;②平面内到两个定点F1,F2的距离_____等于常数(__________)的点的轨迹叫做椭圆,两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的__________;③平面内到两个定点F1,F2的距离____________等于常数(______________)的点的轨迹叫做双曲线,两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距;④平面内到一个定点F和一条定直线l(________________)的距离________的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的_________.(3)阅读课本例1,动手实践借助细绳画椭圆,结合课本27页习题2.1第3题,动手实践借助拉链画双曲线,并说明理由,以此加深对椭圆、双曲线定义的认识.3.典型例题例1 动点P(x,y)与两个定点A(-2,0)、B(2,0)构成的三角形周长为10.(1)试证:动点P在一个椭圆上运动;(2)写出这个椭圆的焦点坐标.分析:找动点P满足的条件,利用圆锥曲线的定义.解:(1)由题意得:PA+PB+AB=10,AB=4,故PA+PB=6>4.由椭圆的定义得:动点P在以A(-2,0)、B(2,0)为焦点的椭圆上运动.(2)由(1)得:这个椭圆的两个焦点坐标为A(-2,0)、B(2,0).点评:在圆锥曲线(椭圆、双曲线、抛物线)的定义中,条件都有特定的限制,如在具体问题中不加以判断,会造成错解.如本题中PA+PB=6>4是十分必要的.在椭圆的定义中,PF1+PF2等于常数,常数大于F1F2的判断是必不可少的.若常数等于F 1F 2,则轨迹是线段F 1F 2;若常数小于F 1F 2,则不表示任何图形.在双曲线的定义中,注意两个限制:一是常数小于F 1F 2,二是差的绝对值,两者缺一不可.若PF 1-PF 2是正常数且常数小于F 1F 2,则点的轨迹是双曲线以F 2为焦点的一支;若PF 2-PF 1是正常数且常数小于F 1F 2,则点的轨迹是双曲线以F 1为焦点的一支;若|PF 1-PF 2|是常数且等于F 1F 2,则点的轨迹是两条射线;若PF 1-PF 2是常数且等于F 1F 2,则点的轨迹是以F 2为端点与F 1F 2同向的射线;若PF 2-PF 1是常数且等于F 1F 2,则点的轨迹是以F 1为端点与F 1F 2反向的射线. 在抛物线的定义中,当点F 在直线l 上时,则点P 的轨迹是过点F 与直线l 垂直的直线.例2 已知圆()221:31C x y ++=和圆()222:39C x y -+=,动圆M 同时与圆C 1及圆C 2相外切,试问动圆圆心M 在怎样的曲线上运动?分析:两圆外切,则圆心距等于半径之和.解: 设动圆的半径为R ,则由动圆M 同时与圆C 1及圆C 2相外切得:1213MC R MC R =+⎧⎨=+⎩ 消去R 得:MC 2-MC 1=2,故可知动点M 到两定点C 1,C 2的距离之差是常数2.由双曲线的定义得:动圆圆心M 在双曲线的一支(左边的一支)上运动.点评:本题由于动点M 到两定点C 1,C 2的距离之差是常数,而不是差的绝对值为常数,因此其轨迹只能是双曲线的一支.这一点在应用过程中要特别注意.4.自我检测(1)已知点A (1,0)、B (-1,0),动点P 满足:PA +PB =4,则动点P 的轨迹是__ .(2)已知点A (-2,0)、B (2,0),动点M 满足:|MA -MB |=2,则动点M 的轨迹是 ____ ,其两个焦点分别为 .(3)已知定点A (1,0)和定直线l :x = -3,若点N 到定点A 与到定直线l 的距离相等,则点N 的轨迹是 ,其焦点为 ,准线为 .(4)已知点A (-2,0)、B (2,0),动点M 满足:|MA -MB |=4,则动点M 的轨迹是 _.(5)在△ABC 中,B (0,-3),C (0,3),且AB ,BC ,AC 成等差数列,试证:点A 在以B 、C 为焦点的椭圆上运动.三、课后巩固练习A 组1.用合适的选项填写下列轨迹 ( 要求只填写序号 )①直线;②圆;③椭圆;④双曲线;⑤双曲线的一支;⑥抛物线;⑦线段(1)动点P 到两定点F 1(-4,0)、F 2(4,0)的距离和是8,则动点P 的轨迹为_______; (2)已知椭圆的焦点为F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得PQ =PF 2,那么动点Q 的轨迹是_________;(3)动点P 到直线x +4=0的距离减去它到M (2,0)的距离之差等于2,则动点P 的轨迹是___________;(4)经过定圆外一定点,并且与定圆外切的动圆圆心的轨迹是__________.2.已知O (0,0)、A0)为平面内两个定点,动点P 满足:PO +PA =2,求动点P 的轨迹.3.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且b ,a ,c 成等差数列,b ≥c .已知顶点B 、C 的坐标为B (-1,0),C (-1,0).试证:点A 在以B 、C 为焦点的左半椭圆上运动.4.在△ABC 中,A 为动点,(,0)(,0)(0)22a a B C a ->、为定点,且满足:1s i n s i n s i n 2C B A -=,试问动点A 在怎样的曲线上运动?B 组5.圆O 1与圆O 2的半径分别为1和2,O 1O 2=4,动圆与圆O 1内切而与圆O 2外切,则动圆圆心的轨迹是_____________________.6.已知定点A (-3,3)和定直线l :x =-3,若点N 到定点A 与到定直线l 的距离相等,则点N 的轨迹是 .7.已知圆的方程为22100x y +=,点A 的坐标为(-6,0),M 是圆O 上的任意一点,AM 的垂直平分线交OM 于点P ,试证明:点P 在以A 、O 为焦点的椭圆上运动.C 组8.已知A(0,7)、B(0,-7)、C(12,2),以C 为一个焦点作过A 、B 的椭圆,记椭圆的另一个焦点为F ,证明:点F 在以A(0,7)、B(0,-7)为焦点的双曲线的一支上运动.9.已知两个同心圆,其半径分别为R ,r (R >r ),AB 为小圆的一条定直径,求证:以大圆切线为准线,且过A 、B 两点的抛物线的焦点F 在以A 、B 为焦点的椭圆上.10.若一个动点P (x ,y )到定点F 1(-1,0),F 2(1,0)距离之和为定值m (m ≥0),试讨论点P 的轨迹.题号我们身边的圆锥曲线圆锥曲线的发现确实是一个伟大的发现.在笛卡尔直角坐标系中,这些曲线的方程是二次方程,所以圆锥曲线又叫做二次曲线.对于二次曲线的价值大概还没有人会估计得过高.在我们的实际生活中处处都有圆锥曲线.例如,我们的地球绕太阳运行的轨道是椭圆,太阳系的其他行星的运行轨道都是椭圆.这个事实是由开普勒第一定律确定的,之所以沿着椭圆轨道运动,是因为每一个行星在每一个瞬间都有不超过某一个值的速度.事实证明,假如这个速度过大了,运动就会沿着抛物线或双曲线轨道运行.相对于一个静止的物体,并按照万有引力定律受它吸引的物体运动,不可能有任何其他的轨道.因此,二次曲线实际上是以我们的宇宙为基础的.又如,如果让抛物线绕其轴旋转,就得到一个叫做旋转抛物面的曲面.在抛物面的轴上,有一个具有美妙性质的焦点,任何一条通过该点的直线由抛物面上反射出来之后,在指向上都平行于抛物面的轴.而这意味着如果把探照灯做成抛物面的形状,并且把灯泡放在焦点上,那么从抛物面上反射回来的所有光线就形成一束平行光束.这显然是一个很大的优点,因为正是这样一束光线在空间中,甚至于在离光源距离相当大的情况下,很少扩散.当然,实际上我们得不到理想的平行光束,因为灯泡不是一个点,但对于实用的目的来说,只要接近于这样的光束就够了.天文望远镜上的反射镜也是利用抛物面的形状制作的.它的作用刚好和探照灯的作用相反:探照灯的反射镜把光线反射到空间,天文望远镜的反射面则把来自宇宙的光线聚焦到自己的焦点上.只要用放大镜组瞄准这个焦点就行了,这样,我们就会得到聚焦到其光线的那个星球的信息,这比肉眼观察所能提供的信息要多得多.那条不穿过双曲线的对称轴叫做双曲线的虚轴.如果使双曲线绕这条轴旋转,那么,形成的曲面(这样的曲面称为单叶双曲面)也有许多实际用处.单叶双曲面是直纹曲面.上面有两组母直线族,各组内母线彼此不相交,而与另一组母线永远相交.正是这种性质在技术中得到了应用.例如,用直立木杆造水塔,如果把这些杆垂直地放置,那就只能得到一个很不牢固的建筑物,他会因为非常小的负荷而损坏.如果立杆时,使他们构成一个单叶双曲面(就是两组母线族),并使他们的交点处连接在一起,就会得到一个非常轻巧而又非常坚固的建筑物.许多化工厂或热电厂的冷却塔就是利用了这个原理.在尝试解决古代名题的过程中,所发现的各种美妙曲线远不限于螺线,蚌线和圆锥曲线.可是,不管找到了多少美妙的曲线,他们还是解决不了古代名题.要知道,正像我们还记得的那样,要求不只是解出这些名题,而是除了直尺和圆规外,不准利用其他任何工具.而仅仅利用这两种工具能否解决其中任何一个问题呢?这个问题该如何回答呢?如果这个答案存在的话,对这个问题给与肯定的回答,原则上显得比给与否定的回答更容易,只不过需要尝试才能找到这个答案.经过或多或少接连不断的寻找,这种题解通常可以找到.在题解不存在的情况下,事情则难办的多.这时,只停留在普通的几何直观上,几乎不可能得到所需要的答案.在这种情况下,可以对问题进行精确的代数分析,以便归结为完成某些代数方程的不可能性证明解答这个问题的不可能性.这样,就要求助于代数!2.1 圆锥曲线自我检测(1)以A,B为焦点的椭圆 (2) 以A,B为焦点的双曲线,A(-2,0)、B(2,0) (3)抛物线,A(1,0) ,l:x= -3 (4) 以A,B为端点的两条射线(5)因为AB,BC,AC成等差数列,所以AB+AC =2BC=12>BC,因此点A在以B、C为焦点的椭圆上运动.课后巩固练习A组1.(1)⑦;(2)②;(3)⑥;(4)⑤ 2.以O,A为焦点的椭圆3.证明略 4.点A在以B,C为焦点的双曲线的右支上B组5.以O1,O2为焦点的双曲线的一支 6.过点A且垂直于l的直线7.8.证明略C组9.证明略10.当m<2时,轨迹不存在;当m=2是,轨迹是以F1F2为端点的线段;当m>2时,轨迹是以F1F2为焦点的椭圆。
2019年高中数学第二章圆锥曲线与方程章末检测新人教A版选修2-1

章末检测(二) 圆锥曲线与方程时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.双曲线x 23-y 26=1的右焦点到渐近线的距离是( )A. 3 B . 6 C .3D .6解析:双曲线的焦点到渐近线的距离等于b ,即b = 6. 答案:B2.设P 是双曲线x 2a 2-y 29=1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1,F 2分别是双曲线的左、右焦点,若|PF 1|=3,则|PF 2|等于( ) A .4 B .6 C .7D .8解析:由渐近线方程y =32x ,且b =3,得a =2,由双曲线的定义,得|PF 2|-|PF 1|=4,又|PF 1|=3,∴|PF 2|=7. 答案:C3.方程(x -y )2+(xy -1)2=0的曲线是( ) A .一条直线和一条双曲线 B .两条双曲线 C .两个点 D .以上答案都不对解析:(x -y )2+(xy -1)2=0⇔⎩⎪⎨⎪⎧x -y =0,xy -1=0.⎩⎪⎨⎪⎧x =1,y =1,或⎩⎪⎨⎪⎧x =-1,y =-1.答案:C4.已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点,在△AF 1B 中,若有两边之和是10,则第三边的长度为( ) A .6 B .5 C .4D .3解析:根据椭圆定义,知△AF 1B 的周长为4a =16,故所求的第三边的长度为16-10=6. 答案:A5.已知椭圆x2a 2+y22=1的一个焦点为(2,0),则椭圆的方程是( )A.x 24+y 22=1 B.x 23+y 22=1 C .x 2+y 22=1D.x 26+y 22=1 解析:由题意知,椭圆焦点在x 轴上,且c =2, ∴a 2=2+4=6,因此椭圆方程为x 26+y 22=1,故选D.答案:D6.如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆解析:由条件知|PM |=|PF |,∴|PO |+|PF |=|PO |+|PM |=|OM |=k >|OF |, ∴P 点的轨迹是以O ,F 为焦点的椭圆. 答案:A7.从抛物线y 2=4x 上一点P 引其准线的垂线,垂足为M ,设抛物线的焦点为F , 且|PF |=5,则△MPF 的面积为( ) A .5 6 B.2534C .20D .10解析:由题意,设P ⎝ ⎛⎭⎪⎫y 204,y 0,则|PF |=|PM |=y 204+1=5,所以y 0=±4, 所以S △MPF =12|PM |·|y 0|=10.答案:D8.椭圆x 24+y 23=1的离心率为e ,点(1,e )是圆x 2+y 2-4x -4y +4=0的一条弦的中点,则此弦所在直线的方程是( )A .3x +2y -4=0B .4x +6y -7=0C .3x -2y -2=0D .4x -6y -1=0解析:依题意得e =12,圆心坐标为(2,2),圆心(2,2)与点⎝ ⎛⎭⎪⎫1,12的连线的斜率为2-122-1=32,所求直线的斜率等于-23,所以所求直线方程是y -12=-23(x -1),即4x +6y -7=0,选B.答案:B9.已知定点A (2,0),它与抛物线y 2=x 上的动点P 连线的中点M 的轨迹方程为( ) A .y 2=2(x -1) B .y 2=4(x -1) C .y 2=x -1D .y 2=12(x -1)解析:设P (x 0,y 0),M (x ,y ),则⎩⎪⎨⎪⎧x =x 0+22y =y2,所以⎩⎪⎨⎪⎧x 0=2x -2y 0=2y,由于y 20=x 0,所以4y 2=2x -2,即y 2=12(x -1).答案:D10.设F 1,F 2为椭圆x 24+y 2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P 、Q 两点,当四边形PF 1QF 2的面积最大时,PF 1→·PF 2→的值等于( ) A .0 B .2C .4D .-2解析:易知当P ,Q 分别在椭圆短轴端点时, 四边形PF 1QF 2的面积最大.此时,F 1(-3,0),F 2(3,0),P (0,1), ∴PF 1→=(-3,-1),PF 2→=(3,-1), ∴PF 1→·PF 2→=-2. 答案:D11.已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作y 轴垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为( ) A .2 B .3 C.52D.32解析:由题意知F (1,0),|AC |+|BD |=|AF |+|FB |-2=|AB |-2,即|AC |+|BD |取得最小值时当且仅当|AB |取得最小值.依抛物线定义知当|AB |为通径,即|AB |=2p =4时,为最小值,所以|AC |+|BD |的最小值为2. 答案:A12.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是( )A.⎝ ⎛⎭⎪⎫14,94B.⎝ ⎛⎭⎪⎫23,1C.⎝ ⎛⎭⎪⎫12,23 D.⎝ ⎛⎭⎪⎫0,12 解析:由题意:B ⎝ ⎛⎭⎪⎫c ,b 2a ,∴k =b 2ac +a =a -c a =1-e ,∴13<1-e <12,∴12<e <23,故选C. 答案:C二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上)13.已知F 1(-1,0),F 2(1,0)是椭圆x 2a 2+y 2b 2=1的两个焦点,若椭圆上一点P 满足|PF 1|+|PF 2|=4,则椭圆的离心率e =________.解析:由椭圆定义得|PF 1|+|PF 2|=4,所以2a =4,解得a =2,又c =1,所以e =c a =12.答案:1214.已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点, 若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________. 解析:由双曲线的方程可知a =1,c =2, ∴||PF 1|-|PF 2||=2a =2, ∴|PF 1|2-2|PF 1||PF 2|+|PF 2|2=4, ∵PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=(2c )2=8, ∴2|PF 1||PF 2|=4,∴(|PF 1|+|PF 2|)2=8+4=12, ∴|PF 1|+|PF 2|=2 3. 答案:2 315.过抛物线x 2=2py (p >0)的焦点F 作倾斜角为30°的直线,与抛物线分别交于A ,B 两点(点A 在y 轴左侧),则|AF ||FB |=________.解析:由题意可得焦点F ⎝ ⎛⎭⎪⎫0,p 2,故直线AB 的方程为y =33x +p 2,与x 2=2py 联立得A ,B 两点的横坐标为x A =-33p ,x B =3p ,故A ⎝ ⎛⎭⎪⎫-33p ,16p ,B ⎝⎛⎭⎪⎫3p ,32p ,所以|AF |=23p ,|BF |=2p ,所以|AF ||BF |=13.答案:1316. 已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是________.解析:设抛物线焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1, 则|AA 1|+|BB 1|=2|OO 1|=4,由抛物线定义得|AA 1|+|BB 1|=|FA |+|FB |,∴|FA |+|FB |=4,故F 点的轨迹是以A ,B 为焦点,长轴长为4的椭圆(去掉长轴两端点). 答案:x 24+y 23=1(y ≠0)三、解答题(本大题共有6小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(12分)如果直线l 过定点M (1,2)且与抛物线y =2x 2有且只有一个公共点,求直线l 的方程.解析:①当直线l 的斜率不存在时,x =1与对称轴平行,有一个交点;②当直线l 的斜率存在时,设直线方程为y -2=k (x -1),与y =2x 2联立,得2x 2-kx +k -2=0, 由Δ=k 2-8(k -2)=0得k =4, 所以直线l 的方程为y =4x -2.综上,直线l 的方程为x =1或y =4x -2.18.(12分)已知双曲线的中心在原点,过右焦点F (2, 0)作斜率为 35的直线,交双曲线于M ,N 两点,且|MN |=4,求双曲线方程.解析:设所求双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),由右焦点为F (2,0)知c =2,b 2=4-a 2,则双曲线方程为x 2a 2-y 24-a 2=1.直线MN 的方程为:y =35(x -2),代入双曲线方程整理,得 (20-8a 2)x 2+12a 2x +5a 4-32a 2=0. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-12a 220-8a 2,x 1x 2=5a 4-32a220-8a 2.∴|MN |=1+⎝⎛⎭⎪⎫352×x 1+x 22-4x 1x 2=85× ⎝ ⎛⎭⎪⎫-12a 220-8a 22-4·5a 4-32a 220-8a 2=4. 解得:a 2=1,∴b 2=4-1=3. 故所求双曲线方程为:x 2-y 23=1. 19.(12分)已知抛物线的顶点在原点,焦点F 在x 轴正半轴上,且过点P (2,2),过F 的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点.(1)求抛物线的方程;(2)设直线l 是抛物线的准线,求证:以AB 为直径的圆与准线l 相切. 解析:(1)设抛物线y 2=2px (p >0),将点(2,2)代入得p =1. ∴y 2=2x 为所求抛物线的方程.(2)证明:设l AB 的方程为:x =ty +12,代入y 2=2x 得:x 2-(1+2t 2)x +14=0,设AB 的中点为M (x 0,y 0),则x 0=1+2t 22.∴点M 到准线l 的距离d =x 0+12=1+2t 22+12=1+t 2,又AB =x 1+x 2+p =1+2t 2+1=2+2t 2,∴d =12AB ,故以AB为直径的圆与准线l 相切.20.(12分)正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y 2=2px (p >0)上,求这个正三角形的边长.解析:如图所示,设正三角形OAB 的顶点A ,B 在抛物线上,且坐标分别为A (x 1,y 1),B (x 2,y 2),则y 21=2px 1,y 22=2px 2.又|OA |=|OB |,所以x 21+y 21=x 22+y 22,即x 21-x 22+2px 1-2px 2=0,整理得(x 1-x 2)(x 1+x 2+2p )=0.因为x 1>0,x 2>0,2p >0,所以x 1=x 2,由此可得|y 1|=|y 2|,即点A ,B 关于x轴对称.由此得∠AOx =30°,所以y 1=33x 1,与y 21=2px 1联立,解得y 1=23p .所以|AB |=2y 1=43p .21.(13分)已知椭圆的一个顶点为A (0,-1),焦点在x 轴上.若右焦点F 到直线x -y +22=0的距离为3. (1)求椭圆的方程;(2)设直线y =kx +m (k ≠0)与椭圆相交于不同的两点M ,N .当|AM |=|AN |时,求m 的取值范围.解析:(1)依题意,可设椭圆方程为x 2a2+y 2=1,则右焦点为F (a 2-1,0).由题意,知|a 2-1+22|2=3,解得a 2=3.故所求椭圆的方程为x 23+y 2=1.(2)设点M ,N 的坐标分别为M (x M ,y M ),N (x N ,y N ),弦MN 的中点为P (x P ,y P ).由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,得(3k 2+1)x 2+6mkx +3(m 2-1)=0.∵直线y =kx +m (k ≠0)与椭圆相交于不同的两点, ∴Δ=(6mk )2-4(3k 2+1)×3(m 2-1)>0⇒m 2<3k 2+1, ①∴x P =x M +x N2=-3mk3k 2+1, 从而y P =kx P +m =m3k 2+1,∴k AP =y P +1x P =-m +3k 2+13mk. 又|AM |=|AN |, ∴AP ⊥MN ,则-m +3k 2+13mk =-1k,即2m =3k 2+1,②把②代入①,得m 2<2m ,解得0<m <2. 由②,得k 2=2m -13>0,解得m >12.综上可得,m 的取值范围是12<m <2.点P⎝ ⎛⎭⎪⎫1,32在椭圆E 22.(13分)已知椭圆E 的方程为:x 2a 2+y 2b2=1(a >b >0),其右焦点为F 2(1,0),上.(1)求椭圆E 的方程;(2)过椭圆E 的左顶点A 作两条互相垂直的直线分别与椭圆E 交于(不同于点A 的)两点M ,N .问:直线MN 是否一定经过x 轴上一定点?若是,求出定点坐标;若不是,说明理由.解析:(1)∵椭圆E 的右焦点为F 2(1,0),∴c =1,左焦点为F 1(-1,0),∵点P ⎝ ⎛⎭⎪⎫1,32在椭圆E 上. ∴2a =|PF 1|+|PF 2| =+2+⎝ ⎛⎭⎪⎫322+-2+⎝ ⎛⎭⎪⎫322=4. ∴a =2,b =a 2-c 2= 3. ∴椭圆E 的方程为x 24+y 23=1.(2)由(1)知A 点坐标为(-2,0),设直线AM 的方程为y =k (x +2),则由⎩⎪⎨⎪⎧y =k x +3x 2+4y 2=12⇒(3+4k 2)x 2+16k 2x +16k 2-12=0,解得M ⎝ ⎛⎭⎪⎫6-8k 23+4k 2,12k 3+4k 2, 同理可得N ⎝ ⎛⎭⎪⎫6k 2-83k 2+4,-12k 3k 2+4. 若6-8k 23+4k 2=6k 2-83k 2+4,则得k 2=1,即直线MN 的方程为x =-27,此时过x 轴上一点Q ⎝ ⎛⎭⎪⎫-27,0.当k 2≠1时,假设直线MN 过x 轴上一定点Q ′(m,0),则Q ′M →∥NQ ′→,又Q ′M →=⎝ ⎛⎭⎪⎫6-8k 23+4k2-m ,12k 3+4k 2,NQ ′→=⎝ ⎛⎭⎪⎫m -6k 2-83k 2+4,12k 3k 2+4, 则由Q ′M →∥NQ ′→,解得m =-27.∴直线MN 过x 轴上一定点Q ⎝ ⎛⎭⎪⎫-27,0.。
2021_2022高中数学第二章圆锥曲线与方程1曲线与方程2求曲线的方程3课件新人教A版选修2

2.1 曲线与方程
2.1.2 求曲线的方程
【学习要求】 1.掌握求轨迹方程时建立坐标系的一般方法,熟悉求曲线方程
的四个步骤以及利用方程研究曲线五个方面的性质. 2.掌握求轨迹方程的几种常用方法. 【学法指导】
通过建立直角坐标系得到曲线的方程,从曲线方程研究曲线的 性质和位置关系,进一步感受坐标法的作用和数形结合思想.
因为曲线在 x 轴的上方,所以 y>0. 虽然原点 O 的坐标(0,0)是这个方程的解,但不属于已知曲线, 所以曲线的方程应是 y=18x2 (x≠0). 小结 (1)求曲线方程时,建立的坐标系不同,得到的方程也 不同.
(2)求曲线轨迹方程时,一定要注意检验方程的解与曲线上点 的坐标的对应关系,对于坐标适合方程但又不在曲线上的点 应注意剔除.
例 2 讨论方程 y2=1-x2x (x≥0)的曲线性质,并画出图形. 解 (1)范围:∵y2≥0,又 x2≥0,∴1-x>0. 解得 x<1,∴0≤x<1. 又当 x=0 时,y=0,∴曲线过原点. 当 x→1 时,y2→+∞,∴y2≥0. 综上可知,曲线分布在两平行直线 x=0 和 x=1 之间.
当堂检测
1.在△ABC 中,若 B、C 的坐标分别是(-2,0)、(2,0),BC
边上的中线的长度为 5,则 A 点的轨迹方程是 ( D )
AHale Waihona Puke x2+y2=5B.x2+y2=25
C.x2+y2=5 (y≠0) D.x2+y2=25 (y≠0)
解析 BC 的中点为原点,BC 边上的中线长为 5,即 OA =5.设 A(x,y),则有 x2+y2=25 (y≠0).
知识要点
1.解析几何研究的主要问题: (1)根据已知条件,求出__表__示___曲__线__的__方__程____; (2)通过曲线的方程,研究_曲__线__的___性__质______.
高中数学新人教A版选修2-1课件:第二章圆锥曲线与方程2.4.2抛物线的简单几何性质

> 0.
即 A=0(直线与抛物线的对称轴平行,即相交);
≠ 0,
(2)直线与抛物线相切⇔有一个公共点,即
= 0.
≠ 0,
(3)直线与抛物线相离⇔没有公共点,即
< 0.
课堂篇探究学习
探究一
探究二
探究三
当堂检测
变式训练2设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l
③当Δ<0时,即k>1时,l与C没有公共点,此时直线l与C相离.
综上所述,(1)当k=1或k=0时,直线l与C有一个公共点;
(2)当k<1,且k≠0时,直线l与C有两个公共点;
(3)当k>1时,直线l与C没有公共点.
课堂篇探究学习
探究一
探究二
探究三
当堂检测
反思感悟方程思想解决直线与抛物线的位置关系
题,通过我们学过的数学知识进行求解.利用抛物线模型解决问题
时,关键是建立坐标系得到抛物线的标准方程,一般都是将抛物线
的顶点作为坐标原点,将对称轴作为x轴或y轴建立坐标系,其次要注
意抛物线上关键点的坐标,并善于运用抛物线的对称性进行求解.
课堂篇探究学习
探究一
探究二
探究三
当堂检测
变式训练3如图是抛物线形拱桥,当水面到直线l时,拱顶离水面2
图形
对称轴
x轴
焦点
F
顶点
原点(0,0)
准线
x=-2
离心率
e=1
p
2
x轴
,0
p
开口方向 向右
p
F - ,0
2
p
y轴
F 0,
p
y轴
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 圆锥曲线与方程1 利用椭圆的定义解题椭圆定义反映了椭圆的本质特征,揭示了曲线存在的几何性质.有些问题,如果恰当运用定义来解决,可以起到事半功倍的效果,下面通过几个例子进行说明. 1.求最值例1 线段|AB |=4,|PA |+|PB |=6,M 是AB 的中点,当P 点在同一平面内运动时,PM 的长度的最小值是( ) A.2 B. 2 C. 5 D.5解析 由于|PA |+|PB |=6>4=|AB |,故由椭圆定义知P 点的轨迹是以M 为原点,A 、B 为焦点的椭圆,且a =3,c =2,∴b =a 2-c 2= 5.于是PM 的长度的最小值是b = 5. 答案 C 2.求动点坐标例2 椭圆x 29+y 225=1上到两个焦点F 1,F 2的距离之积最大的点的坐标是________.解析 设椭圆上的动点为P ,由椭圆的定义可知 |PF 1|+|PF 2|=2a =10, 所以|PF 1|·|PF 2|≤⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=⎝ ⎛⎭⎪⎫1022=25,当且仅当|PF 1|=|PF 2|时取等号.由⎩⎪⎨⎪⎧|PF 1|+|PF 2|=10,|PF 1|=|PF 2|,解得|PF 1|=|PF 2|=5=a ,此时点P 恰好是椭圆短轴的两端点, 即所求点的坐标为(±3,0). 答案 (±3,0)点评 由椭圆的定义可得“|PF 1|+|PF 2|=10”,即两个正数|PF 1|,|PF 2|的和为定值,结合基本不等式可求|PF 1|,|PF 2|积的最大值,结合图形可得所求点P 的坐标. 3.求焦点三角形面积例3 如图所示,已知椭圆的方程为x 24+y 23=1,若点P 在第二象限,且∠PF 1F 2=120°,求△PF 1F 2的面积.解 由已知,得a =2,b =3, 所以c =a 2-b 2=1,|F 1F 2|=2c =2. 在△PF 1F 2中,由余弦定理,得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1|·|F 1F 2|·cos 120°, 即|PF 2|2=|PF 1|2+4+2|PF 1|, ①由椭圆定义,得|PF 1|+|PF 2|=4, 即|PF 2|=4-|PF 1|. ②将②代入①,得|PF 1|=65.所以12P F F S △=12|PF 1|·|F 1F 2|·sin 120°=12×65×2×32=335,即△PF 1F 2的面积是335.点评 在△PF 1F 2中,由椭圆的定义及余弦定理可得关于|PF 1|,|PF 2|的方程组,消去|PF 2|可求|PF 1|.从以上问题,我们不难发现,凡涉及椭圆上的点及椭圆焦点的问题,我们应首先考虑利用椭圆的定义求解.2 如何求椭圆的离心率1.由椭圆的定义求离心率例1 以椭圆的焦距为直径并过两焦点的圆,交椭圆于4个不同的点,顺次连接这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为________.解析 如图所示,设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),半焦距为c ,由题意知∠F 1AF 2=90°,∠AF 2F 1=60°.∴|AF 2|=c ,|AF 1|=2c ·sin 60°=3c .∴|AF 1|+|AF 2|=2a =(3+1)c . ∴e =c a=23+1=3-1.答案3-1点评 本题利用了圆及正六边形的几何性质,并结合椭圆的定义,化难为易,使问题简单解决.2.解方程(组)求离心率例2 椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1(-c ,0),A (-a ,0)、B (0,b )是两个顶点,如果F 1到直线AB 的距离为b7,则椭圆的离心率e =________.解析 如图所示,直线AB 的方程为x -a +yb=1,即bx -ay +ab =0.∵点F 1(-c ,0)到直线AB 的距离为b7,∴b7=|-bc +ab |a 2+b 2,∴7|a -c |=a 2+b 2,即7a 2-14ac +7c 2=a 2+b 2. 又∵b 2=a 2-c 2,整理,得5a 2-14ac +8c 2=0. 两边同除以a 2并由e =c a知,8e 2-14e +5=0, 解得e =12或e =54(舍去).答案 123.利用数形结合求离心率例3 在平面直角坐标系中,已知椭圆x 2a +y 2b =1(a >b >0),圆O 的半径为a ,过点P ⎝ ⎛⎭⎪⎫a 2c ,0作圆O 的两条切线,且这两条切线互相垂直,则离心率e =________. 解析 如图所示,切线PA 、PB 互相垂直,PA =PB .又OA ⊥PA ,OB ⊥PB ,OA =OB , 则四边形OAPB 是正方形, 故OP =2OA ,即a 2c =2a ,∴e =c a =22. 答案224.综合类例4 设M 为椭圆x 2a 2+y 2b2=1上一点,F 1、F 2为椭圆的左、右焦点,如果∠MF 1F 2=75°,∠MF 2F 1=15°,求椭圆的离心率. 解 由正弦定理得2c sin 90°=|MF 1|sin 15°=|MF 2|sin 75°=|MF 1|+|MF 2|sin 15°+sin 75°=2asin 15°+sin 75°,∴e =c a =1sin 15°+cos 15°=12sin 60°=63.点评 此题可推广为若∠MF 1F 2=α,∠MF 2F 1=β,则椭圆的离心率e =cosα+β2cosα-β2.3 活用双曲线定义妙解题在解双曲线中的有关求动点轨迹、离心率、最值等问题时,若能灵活应用双曲线的定义,能把大题化为小题,起到事半功倍的作用.下面举例说明. 1.求动点轨迹例1 一动圆C 与两定圆C 1:x 2+(y -5)2=1和圆C 2:x 2+(y +5)2=16都外切,求动圆圆心C 的轨迹方程.解 设动圆圆心为C (x ,y ),半径为r , 因为动圆C 与两定圆相外切,所以⎩⎪⎨⎪⎧|CC 1|=r +1,|CC 2|=r +4,即|CC 2|-|CC 1|=3<|C 1C 2|=10,所以点C 的轨迹是以C 1(0,5),C 2(0,-5)为焦点的双曲线的上支,且a =32,c =5,所以b 2=914.故动圆圆心C 的轨迹方程为4y 29-4x 291=1(y ≥32).点评 依据动圆与两定圆外切建立关系式,易得到|CC 2|-|CC 1|=3<|C 1C 2|,从而判断出C 的轨迹是双曲线的一支,最后求出a ,b 即可写出轨迹方程,这里一定要注意所求的轨迹是双曲线的一支还是两支. 2.求焦点三角形的周长例2 过双曲线x 216-y 29=1左焦点F 1的直线与左支交于A 、B 两点,且弦AB 长为6,则△ABF 2(F 2为右焦点)的周长是________.解析 由双曲线的定义知|AF 2|-|AF 1|=8,|BF 2|-|BF 1|=8, 两式相加得|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=|AF 2|+|BF 2|-|AB |=16, 从而有|AF 2|+|BF 2|=16+6=22,所以△ABF 2的周长为|AF 2|+|BF 2|+|AB |=22+6=28. 答案 28点评 与焦点有关的三角形周长问题,常借助双曲线的定义解决,注意解决问题时的拼凑技巧. 3.最值问题例3 已知F 是双曲线x 23-y 2=1的右焦点,P 是双曲线右支上一动点,定点M (4,2),求|PM |+|PF |的最小值.解 设双曲线的左焦点为F ′,则F ′(-2,0),由双曲线的定义知:|PF ′|-|PF |=2a =23, 所以|PF |=|PF ′|-23,所以|PM |+|PF |=|PM |+|PF ′|-23,要使|PM |+|PF |取得最小值,只需|PM |+|PF ′|取得最小值,由图可知,当P 、F ′、M 三点共线时,|PM |+|PF ′|最小,此时|MF ′|=210, 故|PM |+|PF |的最小值为210-2 3.点评 本题利用双曲线的定义对F 的位置进行转换,然后再根据共线易求得最小值.另外同学们不妨思考一下:(1)若将M 坐标改为M (1,1),其他条件不变,如何求解呢?(2)若P 是双曲线左支上一动点,如何求解呢? 4.求离心率范围例4 已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,试求该双曲线离心率的取值范围. 解 因为|PF 1|=4|PF 2|,点P 在双曲线的右支上, 所以设|PF 2|=m ,则|PF 1|=4m ,由双曲线的定义,则|PF 1|-|PF 2|=4m -m =2a , 所以m =23a .又|PF 1|+|PF 2|≥|F 1F 2|, 即4m +m ≥2c ,所以m ≥25c ,即23a ≥25c ,所以e =c a ≤53.又e >1,所以双曲线离心率的取值范围为1<e ≤53.点评 本题利用双曲线的定义及三角形的两边之和与第三边之间的关系建立了关于双曲线基本量a ,c 的不等关系,使问题得以巧妙地转化、获解.4 抛物线的焦点弦例1 如图所示,AB 是抛物线y 2=2px (p >0)过焦点F 的一条弦.设A (x 1,y 1)、B (x 2,y 2),AB 的中点M (x 0,y 0),过A 、M 、B 分别向抛物线的准线l 作垂线,垂足分别为A 1、M 1、B 1,则有以下重要结论:(1)以AB 为直径的圆必与准线相切;(2)|AB |=2(x 0+p2)(焦点弦长与中点坐标的关系);(3)|AB |=x 1+x 2+p ;(4)A 、B 两点的横坐标之积,纵坐标之积为定值,即x 1x 2=p 24,y 1y 2=-p 2;(5)A 1F ⊥B 1F ;(6)A 、O 、B 1三点共线; (7)1|FA |+1|FB |=2p. 以下以第(7)条结论为例证明: 证明 当直线AB 的斜率不存在, 即与x 轴垂直时,|FA |=|FB |=p , ∴1|FA |+1|FB |=1p +1p =2p . 当直线AB 的斜率存在时,设直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,并代入y 2=2px ,∴⎝⎛⎭⎪⎫kx -kp 22=2px ,即k 2x 2-p (2+k 2)x +k 2p 24=0.设A (x A ,y A ),B (x B ,y B ),则x A +x B =p (k 2+2)k 2,x A x B =p 24.∵|FA |=x A +p 2,|FB |=x B +p2, ∴|FA |+|FB |=x A +x B +p ,|FA |·|FB |=⎝⎛⎭⎪⎫x A +p 2⎝ ⎛⎭⎪⎫x B +p 2=x A x B +p 2(x A +x B )+p 24=p 2(x A +x B +p ).∴|FA |+|FB |=|FA |·|FB |·2p,即1|FA |+1|FB |=2p. 点评 该结论是抛物线过焦点的弦所具有的一个重要性质,解题时,不可忽视AB ⊥x 轴的情况.例2 设F 为抛物线y 2=4x 的焦点,A ,B ,C 为该抛物线上三点,若FA →+FB →+FC →=0,则 |FA →|+|FB →|+|FC →|=________.解析 设A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3),又F (1,0).由FA →+FB →+FC →=0知(x 1-1)+(x 2-1)+(x 3-1)=0, 即x 1+x 2+x 3=3,|FA →|+|FB →|+|FC →|=x 1+x 2+x 3+32p =6.答案 65 求曲线方程的常用方法曲线方程的求法是解析几何的重要内容和高考的常考点.求曲线方程时,应根据曲线的不同背景,不同的结构特征,选用不同的思路和方法,才能简捷明快地解决问题.下面对其求法进行探究. 1.定义法求曲线方程时,如果动点轨迹满足已知曲线的定义,则可根据题设条件和图形的特点,恰当运用平面几何的知识去寻求其数量关系,再由曲线定义直接写出方程,这种方法叫做定义法. 例1 如图,点A 为圆形纸片内不同于圆心C 的定点,动点M 在圆周上,将纸片折起,使点M 与点A 重合,设折痕m 交线段CM 于点N .现将圆形纸片放在平面直角坐标系xOy 中,设圆C :(x +1)2+y 2=4a 2 (a >1),A (1,0),记点N 的轨迹为曲线E .(1)证明曲线E 是椭圆,并写出当a =2时该椭圆的标准方程;(2)设直线l 过点C 和椭圆E 的上顶点B ,点A 关于直线l 的对称点为点Q ,若椭圆E 的离心率e ∈⎣⎢⎡⎦⎥⎤12,32,求点Q 的纵坐标的取值范围.解 (1)依题意,直线m 为线段AM 的垂直平分线,∴|NA |=|NM |.∴|NC |+|NA |=|NC |+|NM |=|CM |=2a >2,∴N 的轨迹是以C 、A 为焦点,长轴长为2a ,焦距为2的椭圆.当a =2时,长轴长为2a =4,焦距为2c =2, ∴b 2=a 2-c 2=3.∴椭圆的标准方程为x 24+y 23=1.(2)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).由(1)知:a 2-b 2=1.又C (-1,0),B (0,b ), ∴直线l 的方程为x -1+yb =1,即bx -y +b =0.设Q (x ,y ),∵点Q 与点A (1,0)关于直线l 对称,∴⎩⎪⎨⎪⎧y x -1·b =-1,b ·x +12-y2+b =0,消去x 得y =4bb +1. ∵离心率e ∈⎣⎢⎡⎦⎥⎤12,32,∴14≤e 2≤34,即14≤1a 2≤34,∴43≤a 2≤4. ∴43≤b 2+1≤4,即33≤b ≤3, ∵y =4b b 2+1=4b +1b≤2,当且仅当b =1时取等号. 又当b =3时,y =3;当b =33时,y =3.∴3≤y ≤2. ∴点Q 的纵坐标的取值范围是[3,2]. 2.直接法若题设条件有明显的等量关系,或者可运用平面几何的知识推导出等量关系,则可通过“建系、设点、列式、化简、检验”五个步骤直接求出动点的轨迹方程,这种“五步法”可称为直接法.例2 已知直线l 1:2x -3y +2=0,l 2:3x -2y +3=0.有一动圆M (圆心和半径都在变动)与l 1,l 2都相交,并且l 1,l 2被截在圆内的两条线段的长度分别是定值26,24.求圆心M 的轨迹方程.解 如图,设M (x ,y ),圆半径为r ,M 到l 1,l 2的距离分别是d 1,d 2,则d 21+132=r 2,d 22+122=r 2, ∴d 22-d 21=25, 即⎝⎛⎭⎪⎫3x -2y +3132-⎝ ⎛⎭⎪⎫2x -3y +2132=25,化简得圆心M 的轨迹方程是(x +1)2-y 2=65. 点评 若动点运动的规律是一些几何量的等量关系,则常用直接法求解,即将这些关系直接转化成含有动点坐标x ,y 的方程即可. 3.待定系数法若已知曲线(轨迹)的形状,求曲线(轨迹)的方程时,可由待定系数法求解.例3 已知椭圆的对称轴为坐标轴,O 为坐标原点,F 是一个焦点,A 是一个顶点,若椭圆的长轴长是6,且cos∠OFA =23,求椭圆的方程.解 椭圆的长轴长为6,cos∠OFA =23,所以点A 不是长轴的顶点,是短轴的顶点,所以|OF |=c ,|AF |=|OA |2+|OF |2=b 2+c 2=a =3,c 3=23,所以c =2,b 2=32-22=5,故椭圆的方程为x 29+y 25=1或x 25+y 29=1.4.相关点法(或代入法)如果点P 的运动轨迹或所在的曲线已知,又点P 与点Q 的坐标之间可以建立某种关系,借助于点P 的运动轨迹便可得到点Q 的运动轨迹.例4 如图所示,从双曲线x 2-y 2=1上一点Q 引直线l :x +y =2的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程.分析 设P (x ,y ),因为P 是QN 的中点,为此需用P 点的坐标表示Q 点的坐标,然后代入双曲线方程即可.解 设P 点坐标为(x ,y ),双曲线上点Q 的坐标为(x 0,y 0), ∵点P 是线段QN 的中点, ∴N 点的坐标为(2x -x 0,2y -y 0).又点N 在直线x +y =2上,∴2x -x 0+2y -y 0=2, 即x 0+y 0=2x +2y -2.①又QN ⊥l ,∴k QN =2y -2y 02x -2x 0=1,即x 0-y 0=x -y .②由①②,得x 0=12(3x +y -2),y 0=12(x +3y -2).又∵点Q 在双曲线上,∴14(3x +y -2)2-14(x +3y -2)2=1. 化简,得⎝ ⎛⎭⎪⎫x -122-⎝ ⎛⎭⎪⎫y -122=12.∴线段QN 的中点P 的轨迹方程为⎝ ⎛⎭⎪⎫x -122-⎝ ⎛⎭⎪⎫y -122=12.点评 本题中动点P 与点Q 相关,而Q 点的轨迹确定,所以解决这类问题的关键是找出P 、Q 两点坐标间的关系,用相关点法求解.5.参数法有时求动点满足的几何条件不易得出,也无明显的相关点,但却较易发现(或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间等)的制约,即动点的坐标(x ,y )中的x ,y 分别随另一个变量的变化而变化,我们可以设这个变量为参数,建立轨迹的参数方程,这种方法叫做参数法.例5 已知点P 在直线x =2上移动,直线l 通过原点且与OP 垂直,通过点A (1,0)及点P 的直线m 和直线l 交于点Q ,求点Q 的轨迹方程. 解 如图,设OP 的斜率为k ,则P (2,2k ).当k ≠0时, 直线l 的方程:y =-1kx ;① 直线m 的方程:y =2k (x -1).②联立①②消去k 得2x 2+y 2-2x =0 (x ≠1).当k =0时,点Q 的坐标(0,0)也满足上式,故点Q 的轨迹方程为2x 2+y 2-2x =0(x ≠1).6 解析几何中的定值与最值问题1.定点、定值问题对于解析几何中的定点、定值问题,要善于运用辩证的观点去思考分析,在动点的“变”中寻求定值的“不变”性,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,揭开神秘的面纱,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口.例1 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点的直线交椭圆于A ,B 两点,OA →+OB →与a =(3,-1)共线.设M 为椭圆上任意一点,且OM →=λOA →+μOB → (λ,μ∈R ),求证:λ2+μ2为定值.证明 ∵M 是椭圆上任意一点,若M 与A 重合, 则OM →=OA →,此时λ=1,μ=0,∴λ2+μ2=1,现在需要证明λ2+μ2为定值1.设椭圆方程为x 2a 2+y 2b2=1(a >b >0),A (x 1,y 1),B (x 2,y 2),AB 的中点为N (x 0,y 0),∴⎩⎪⎨⎪⎧x 21a 2+y 21b2=1, ①x 22a 2+y 22b 2=1, ②①-②得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b2=0, 即y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=-b 2x 0a 2y 0, 又∵k AB =y 1-y 2x 1-x 2=1,∴y 0=-b 2a 2x 0.∴直线ON 的方向向量为ON →=⎝ ⎛⎭⎪⎫1,-b 2a 2,∵ON →∥a ,∴13=b 2a2.∵a 2=3b 2,∴椭圆方程为x 2+3y 2=3b 2, 又直线方程为y =x -c .联立⎩⎪⎨⎪⎧y =x -c ,x 2+3y 2=3b 2,得4x 2-6cx +3c 2-3b 2=0.∵x 1+x 2=32c ,x 1x 2=3c 2-3b 24=38c 2.又设M (x ,y ),则由OM →=λOA →+μOB →,得⎩⎪⎨⎪⎧x =λx 1+μx 2,y =λy 1+μy 2,代入椭圆方程整理得λ2(x 21+3y 21)+μ2(x 22+3y 22)+2λμ(x 1x 2+3y 1y 2)=3b 2. 又∵x 21+3y 21=3b 2,x 22+3y 22=3b 2,x 1x 2+3y 1y 2=4x 1x 2-3c (x 1+x 2)+3c 2=32c 2-92c 2+3c 2=0,∴λ2+μ2=1,故λ2+μ2为定值.例2 已知椭圆x 2a 2+y 2b2=1(a >0,b >0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x 轴正半轴和y 轴分别交于Q 、P ,与椭圆分别交于点M 、N ,各点均不重合且满足PM →=λ1MQ →,PN →=λ2NQ →. (1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l 过定点并求此定点. 解 (1)设椭圆的焦距为2c ,由题意知b =1,且(2a )2+(2b )2=2(2c )2, 又a 2=b 2+c 2,∴a 2=3.∴椭圆的方程为x 23+y 2=1.(2)由题意设P (0,m ),Q (x 0,0),M (x 1,y 1),N (x 2,y 2), 设l 方程为x =t (y -m ),由PM →=λ1MQ →知(x 1,y 1-m )=λ1(x 0-x 1,-y 1), ∴y 1-m =-y 1λ1,由题意y 1≠0,∴λ1=m y 1-1.同理由PN →=λ2NQ →知λ2=m y 2-1.∵λ1+λ2=-3,∴y 1y 2+m (y 1+y 2)=0,①联立⎩⎪⎨⎪⎧x 2+3y 2=3,x =t (y -m )得(t 2+3)y 2-2mt 2y +t 2m 2-3=0,∴由题意知Δ=4m 2t 4-4(t 2+3)(t 2m 2-3)>0, ②且有y 1+y 2=2mt 2t 2+3,y 1y 2=t 2m 2-3t 2+3,③③代入①得t 2m 2-3+2m 2t 2=0,∴(mt )2=1, 由题意mt <0,∴mt =-1,满足②,得l 方程为x =ty +1,过定点(1,0),即Q 为定点. 2.最值问题解决圆锥曲线中的最值问题,一般有两种方法:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来解非常巧妙;二是代数法,将圆锥曲线中的最值问题转化为函数问题(即根据条件列出所求的目标函数),然后根据函数的特征选用参数法、配方法、判别式法、三角有界法、函数单调法及基本不等式法等,求解最大或最小值.例3 已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),P 是双曲线右支上的动点,则|PF |+|PA |的最小值为________.解析 设右焦点为F ′,由题意可知F ′坐标为(4,0),根据双曲线的定义,|PF |-|PF ′|=4,∴|PF |+|PA |=4+|PF ′|+|PA |,∴要使|PF |+|PA |最小,只需|PF ′|+|PA |最小即可,|PF ′|+|PA |最小需P 、F ′、A 三点共线,最小值即4+|F ′A |=4+9+16=4+5=9. 答案 9点评 “化曲为直”求与距离有关的最值是平面几何中一种巧妙的方法,特别是涉及圆锥曲线上动点与定点和焦点距离之和的最值问题常用此法.例4 已知平面内一动点P 到点F (1,0)的距离与点P 到y 轴的距离的差等于1.过点F 作两条斜率存在且互相垂直的直线l 1,l 2,设l 1与轨迹C 相交于点A ,B ,l 2与轨迹C 相交于点D ,E ,求AD →·EB →的最小值.解 设动点P 的坐标为(x ,y ), 由题意有(x -1)2+y 2-|x |=1. 化简得y 2=2x +2|x |.当x ≥0时,y 2=4x ;当x <0时,y =0.所以,动点P 的轨迹C 的方程为y 2=4x (x ≥0)和y =0 (x <0).如图,由题意知,直线l 1的斜率存在且不为0,设为k ,则l 1的方程为y =k (x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x得k 2x 2-(2k 2+4)x +k 2=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1,x 2是上述方程的两个实根, 于是x 1+x 2=2+4k2,x 1x 2=1.因为l 1⊥l 2,所以l 2的斜率为-1k.设D (x 3,y 3),E (x 4,y 4),则同理可得x 3+x 4=2+4k 2,x 3x 4=1. 故AD →·EB →=(AF →+FD →)·(EF →+FB →) =AF →·EF →+AF →·FB →+FD →·EF →+FD →·FB → =|AF →|·|FB →|+|FD →|·|EF →| =(x 1+1)(x 2+1)+(x 3+1)(x 4+1) =x 1x 2+(x 1+x 2)+1+x 3x 4+(x 3+x 4)+1=1+⎝⎛⎭⎪⎫2+4k 2+1+1+(2+4k 2)+1=8+4⎝⎛⎭⎪⎫k 2+1k2≥8+4×2k 2·1k2=16.当且仅当k 2=1k2,即k =±1时,AD →·EB →取得最小值16.7 圆锥曲线中存在探索型问题存在探索型问题作为探索性问题之一,具备了内容涉及面广、重点题型丰富等命题要求,方便考查分析、比较、猜测、归纳等综合能力,因而受到命题人的喜爱.圆锥曲线存在探索型问题是指在给定题设条件下是否存在某个数学对象(数值、性质、图形)使某个数学结论成立的数学问题.本节仅就圆锥曲线中的存在探索型问题展开,帮助复习. 1.常数存在型问题例1 直线y =ax +1与双曲线3x 2-y 2=1相交于A ,B 两点,是否存在这样的实数a ,使A ,B 关于直线y =2x 对称?请说明理由.分析 先假设实数a 存在,然后根据推理或计算求出满足题意的结果,或得到与假设相矛盾的结果,从而否定假设,得出某数学对象不存在的结论.解 设存在实数a ,使A ,B 关于直线l :y =2x 对称,并设A (x 1,y 1),B (x 2,y 2),则AB 中点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22.依题设有y 1+y 22=2·x 1+x 22,即y 1+y 2=2(x 1+x 2), ①又A ,B 在直线y =ax +1上,∴y 1=ax 1+1,y 2=ax 2+1,∴y 1+y 2=a (x 1+x 2)+2, ②由①②,得2(x 1+x 2)=a (x 1+x 2)+2, 即(2-a )(x 1+x 2)=2,③联立⎩⎪⎨⎪⎧y =ax +1,3x 2-y 2=1得(3-a 2)x 2-2ax -2=0,∴x 1+x 2=2a3-a2,④把④代入③,得(2-a )·2a3-a2=2, 解得a =32,经检验符合题意,∴k AB =32,而k l =2,∴k AB ·k l =32×2=3≠-1.故不存在满足题意的实数a . 2.点存在型问题例2 在平面直角坐标系中,已知圆心在第二象限,半径为22的圆与直线y =x 相切于原点O ,椭圆x 2a 2+y 29=1与圆C 的一个交点到椭圆两焦点的距离之和为10.(1)求圆C 的方程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.分析 假设满足条件的点Q 存在,根据其满足的几何性质,求出Q 的坐标,则点Q 存在,若求不出Q 的坐标,则点Q 就不存在. 解 (1)由题意知圆心在y =-x 上, 设圆心的坐标是(-p ,p )(p >0), 则圆的方程可设为(x +p )2+(y -p )2=8, 由于O (0,0)在圆上,∴p 2+p 2=8,解得p =2, ∴圆C 的方程为(x +2)2+(y -2)2=8.(2)椭圆x 2a 2+y 29=1与圆C 的一个交点到椭圆两焦点的距离之和为10,由椭圆的定义知2a =10,a =5,∴椭圆右焦点为F (4,0).假设存在异于原点的点Q (m ,n )使|QF |=|OF |,则有⎩⎪⎨⎪⎧(m +2)2+(n -2)2=8,(m -4)2+n 2=16且m 2+n 2≠0,解得⎩⎪⎨⎪⎧m =45,n =125,故圆C 上存在满足条件的点Q ⎝ ⎛⎭⎪⎫45,125.3.直线存在型问题例3 试问是否能找到一条斜率为k (k ≠0)的直线l 与椭圆x 23+y 2=1交于两个不同的点M ,N ,且使M ,N 到点A (0,1)的距离相等,若存在,试求出k 的取值范围;若不存在,请说明理由.分析 假设满足条件的直线l 存在,由平面解析几何的相关知识求解.解 设直线l :y =kx +m 为满足条件的直线,再设P 为MN 的中点,欲满足条件,只要AP ⊥MN 即可.由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,得(1+3k 2)x 2+6mkx +3m 2-3=0.设M (x 1,y 1),N (x 2,y 2), 则x P =x 1+x 22=-3mk 1+3k 2,y P =kx P +m =m1+3k2, ∴k AP =3k 2-m +13mk .∵AP ⊥MN ,∴3k 2-m +13mk =-1k (k ≠0),故m =-3k 2+12.由Δ=36m 2k 2-4(1+3k 2)(3m 2-3)=9(1+3k 2)(1-k 2)>0,得-1<k <1,且k ≠0. 故当k ∈(-1,0)∪(0,1)时,存在满足条件的直线l .8 圆锥曲线中的易错点剖析1.求轨迹方程时,动点坐标设法不当而致误例1 长为a 的线段AB ,两端点分别在两坐标轴上移动,求线段AB 中点P 的轨迹方程.错解 如图所示,设A (0,y ),B (x ,0).由中点坐标公式可得P 点坐标为⎝ ⎛⎭⎪⎫x 2,y2,连接OP ,由直角三角形斜边上的中线性质有|OP |=12|AB |=12a .故⎝ ⎛⎭⎪⎫x 22+⎝ ⎛⎭⎪⎫y 22=⎝ ⎛⎭⎪⎫a 22, 即所求的轨迹方程为x 2+y 2=a 2.正解 设中点P (x ,y ),A (0,m ),B (n ,0), 则m 2+n 2=a 2,x =n 2,y =m2,于是所求轨迹方程为x 2+y 2=14a 2.2.忽视定义中的条件而致误例2 平面内一点M 到两定点F 1(0,-4),F 2(0,4)的距离之和为8,则点M 的轨迹为( ) A.椭圆 B.圆 C.直线 D.线段错解 根据椭圆的定义,点M 的轨迹为椭圆,故选A.121212答案 D3.忽视标准方程的特征而致误例3 设抛物线y =mx 2(m ≠0)的准线与直线y =1的距离为3,求抛物线的标准方程. 错解 抛物线y =mx 2 (m ≠0)的准线方程为y =-m4.又与直线y =1的距离为3的直线为y =-2或y =4. 故-m 4=-2或-m4=4.∴m =8或m =-16.所以抛物线的标准方程为y =8x 2或y =-16x 2.正解 由于y =mx 2 (m ≠0)可化为x 2=1my ,其准线方程为y =-14m .由题意知-14m =-2或-14m =4,解得m =18或m =-116.则所求抛物线的标准方程为x 2=8y 或x 2=-16y .4.涉及弦长问题时,忽视判别式Δ>0这一隐含条件而致误例4 正方形ABCD 的A ,B 两点在抛物线y =x 2上,另两点C ,D 在直线y =x -4上,求正方形的边长.错解 ∵AB 与直线y =x -4平行,∴设AB 的直线方程为y =x +b ,A (x 1,x 21),B (x 2,x 22),则由⎩⎪⎨⎪⎧y =x +b ,y =x 2⇒x 2-x -b =0,|AB |2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2(1+4b ). ∵AB 与直线y =x -4间的距离为d =|b +4|2,∴2(1+4b )=(b +4)22,即b 2-8b +12=0,解得b =2或b =6,∴|AB |=32或|AB |=5 2.正解 ∵AB 与直线y =x -4平行,∴设AB 的直线方程为y =x +b ,A (x 1,x 21),B (x 2,x 22),则由⎩⎪⎨⎪⎧y =x +b ,y =x 2⇒x 2-x -b =0,|AB |2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2(1+4b ). ∵AB 与直线y =x -4间的距离为d =|b +4|2,∴2(1+4b )=(b +4)22,即b 2-8b +12=0,解得b =2或b =6,∵Δ=1+4b >0,∴b >-14.∴b =2或b =6都满足Δ>0,∴b =2或b =6. ∴|AB |=32或|AB |=5 2.5.求解抛物线标准方程时,忽略对焦点位置讨论致误例5 抛物线的焦点F 在x 轴上,点A (m ,-3)在抛物线上,且|AF |=5,求抛物线的标准方程.错解一 因为抛物线的焦点F 在x 轴上,且点A (m ,-3)在抛物线上, 所以抛物线方程可设为y 2=2px (p >0). 设点A 到准线的距离为d ,则d =|AF |=p2+m ,所以⎩⎪⎨⎪⎧(-3)2=2pm ,p2+m =5,解得⎩⎪⎨⎪⎧p =1,m =92或⎩⎪⎨⎪⎧p =9,m =12.所以抛物线方程为y 2=2x 或y 2=18x .错解二 因为抛物线的焦点F 在x 轴上,且点A (m ,-3)在抛物线上, 所以当m >0时,点A 在第四象限,抛物线方程可设为y 2=2px (p >0). 设点A 到准线的距离为d ,则d =|AF |=p2+m ,所以⎩⎪⎨⎪⎧(-3)2=2pm ,p2+m =5,解得⎩⎪⎨⎪⎧p =1,m =92或⎩⎪⎨⎪⎧p =9,m =12.所以抛物线方程为y 2=2x 或y 2=18x . 当m <0时,点A 在第三象限, 抛物线方程可设为y 2=-2px (p >0),设点A 到准线的距离为d ,则d =|AF |=p2+m , 所以⎩⎪⎨⎪⎧(-3)2=-2pm ,p2+m =5,解得⎩⎪⎨⎪⎧p =5+34,m =5-342或⎩⎪⎨⎪⎧p =5-34,m =5+342(舍去).所以抛物线方程为y 2=-2(5+34)x .综上所述,抛物线方程为y 2=-2(5+34)x 或y 2=2x 或y 2=18x . 错因分析 当抛物线的焦点位置无法确定时,需分类讨论.正解 因为抛物线的焦点F 在x 轴上,且点A (m ,-3)在抛物线上,所以当m >0时,点A 在第四象限,抛物线方程可设为y 2=2px (p >0),设点A 到准线的距离为d ,则d =|AF |=p2+m ,所以⎩⎪⎨⎪⎧(-3)2=2pm ,p2+m =5,解得⎩⎪⎨⎪⎧p =1,m =p2或⎩⎪⎨⎪⎧p =9,m =12,所以抛物线方程为y 2=2x 或y 2=18x .当m <0时,点A 在第三象限,抛物线的方程可设为y 2=-2px (p >0), 设A 到准线的距离为d ,则d =|AF |=p2-m ,所以⎩⎪⎨⎪⎧(-3)2=-2pm ,p2-m =5,解得⎩⎪⎨⎪⎧p =1,m =-92或⎩⎪⎨⎪⎧p =9,m =-12.所以抛物线方程为y 2=-2x 或y 2=-18x .综上所述,抛物线方程为y 2=-2x 或y 2=-18x 或y 2=2x 或y 2=18x .9 圆锥曲线中的数学思想方法1.方程思想方程思想就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或解方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.本章中,方程思想的应用最为广泛.例1 已知直线y =-12x +2和椭圆x 2a 2+y2b 2=1(a >b >0)相交于A ,B 两点,且a =2b ,若|AB |=25,求椭圆的方程. 解 由⎩⎪⎨⎪⎧y =-12x +2,x 24b 2+y2b 2=1消去y 并整理得x 2-4x +8-2b 2=0.设A (x 1,y 1),B (x 2,y 2),则由根与系数的关系得x 1+x 2=4,x 1x 2=8-2b 2.∵|AB |=25,∴1+14·(x 1+x 2)2-4x 1x 2=25, 即52·16-4(8-2b 2)=25, 解得b 2=4,故a 2=4b 2=16.∴所求椭圆的方程为x 216+y 24=1.2.函数思想很多与圆锥曲线有关的问题中的各个数量在运动变化时,都是相互联系、相互制约的,它们之间构成函数关系.这类问题若用函数思想来分析、寻找解题思路,会有很好的效果.一些最值问题常用函数思想,运用根与系数的关系求弦的中点和弦长问题,是经常使用的方法.例2 若点(x ,y )在x 24+y 2b 2=1(b >0)上运动,求x 2+2y 的最大值.解 ∵x 24+y 2b 2=1(b >0),∴x 2=4⎝ ⎛⎭⎪⎫1-y 2b 2≥0,即-b ≤y ≤b .∴x 2+2y =4⎝ ⎛⎭⎪⎫1-y 2b 2+2y =-4y 2b 2+2y +4=-4b 2⎝ ⎛⎭⎪⎫y -b 242+4+b 24.当b 24≤b ,即0<b ≤4时,若y =b 24,则x 2+2y 取得最大值,其最大值为4+b 24;当b 24>b ,即b >4时,若y =b ,则x 2+2y 取得最大值,其最大值为2b . 综上所述,x 2+2y 的最大值为⎩⎪⎨⎪⎧4+b 24, 0<b ≤4,2b , b >4.3.转化和化归思想在解决圆锥曲线的综合问题时,经常利用转化和化归思想.转化题中的已知条件和所求,真正化归为直线和圆锥曲线的基本问题.这里的转化和化归非常关键,没有转化和化归,就很难找到解决问题的途径和方法. 例3 如图所示,已知椭圆x 224+y 216=1,直线l :x =12,P 是l 上任意一点,射线OP 交椭圆于点R ,又点Q 在线段OP 上,且满足|OQ |·|OP |=|OR |2,当点P 在l 上运动时,求点Q 的轨迹方程.解 设P (12,y P ),R (x R ,y R ),Q (x ,y ),∠POx =α. ∵|OR |2=|OQ |·|OP |,∴⎝⎛⎭⎪⎫|OR |cos α2=|OQ |cos α·|OP |cos α.由题意知x R >0,x >0,∴x 2R =x ·12.①又∵O ,Q ,R 三点共线,∴k OQ =k OR ,即y x =y Rx R. ② 由①②得y 2R =12y2x.③ ∵点R (x R ,y R )在椭圆x 224+y 216=1上,∴x 2R 24+y 2R16=1.④由①③④得2(x -1)2+3y 2=2(x >0), ∴点Q 的轨迹方程是2(x -1)2+3y 2=2(x >0). 4.分类讨论思想本章中,涉及的字母参数较多,同时圆锥曲线的焦点可能在x 轴上,也可能在y 轴上,所以必须要注意分类讨论.例4 求与双曲线x 24-y 2=1有共同的渐近线且焦距为10的双曲线的方程. 分析 由题意可设所求双曲线的方程为x 24-y 2=λ(λ≠0),将λ分为λ>0,λ<0两种情况进行讨论.解 由题意可设所求双曲线的方程为x 24-y 2=λ(λ≠0),即x 24λ-y 2λ=1(λ≠0). 当λ>0时,c 2=4λ+λ=5λ=25,即λ=5, ∴所求双曲线的方程为x 220-y 25=1.当λ<0时,c 2=(-4λ)+(-λ)=-5λ=25,即λ=-5, ∴所求双曲线的方程为y 25-x 220=1.综上所述,所求双曲线的方程为x 220-y 25=1或y 25-x 220=1.5.数形结合思想利用数形结合思想,可以解决某些最值、轨迹、参数范围等问题.例5 在△ABC 中,BC 边固定,顶点A 在移动,设|BC |=m ,当三个角满足条件|sin C -sinB |=12|sin A |时,求顶点A 的轨迹方程.解 以BC 所在直线为x 轴,线段BC 的中垂线为y 轴,建立直角坐标系,如图所示.则B ⎝ ⎛⎭⎪⎫-m 2,0,C ⎝ ⎛⎭⎪⎫m2,0. 设点A 坐标(x ,y ),由题设, 得|sin C -sin B |=12|sin A |.根据正弦定理,得||AB |-|AC ||=m2.可知点A 在以B 、C 为焦点的双曲线上. 2a =m 2,∴a =m4.又c =m 2,∴b 2=c 2-a 2=m 24-m 216=316m 2.故所求点A 的轨迹方程为16x 2m -16y23m=1(y ≠0).。