北师大版高中数学必修5同步测试:习题课1
数学北师大版高中必修5北师大版 必修5第一章 第一节 数列同步练习

同步练习 数列的概念1.,则A.第六项B.第七项C.第八项D.第九项2. 数列{}n a 的前n 项积为2n ,那么当2n ≥时,{}n a 的通项公式为A.21n a n =-B.2n a n = C.22(1)n n a n += D.22(1)n n a n =- 3、若一数列的前四项依次是2,0,2,0,则下列式子中,不能作为它的通项公式的是( )。
(A )a n = 1-(-1)n (B )a n =1+(-1)n +1 (C )a n =2sin 22πn (D )a n =(1-cosn π)+(n -1)(n -2)4. 在数列{}n a 中,12n n n a a a ++=+,122,5a a ==,则6a 的值是A.3-B.11-C.5-D.195.设数列{}n a ,cnb na a n += ,其中a 、b 、c 均为正数,则此数列 A 递增 B 递减 C 先增后减 D 先减后增6. 数列31537,,,,,5211717的一个通项公式是 。
7. 数列{}n a 的前n 项和223n S n n =-,则n a = 。
8. 数列{}n a 满足212231n a a a n n +++=-+,则4510a a a +++= 。
9. 根据下列5个图形及相应点的个数的变化规律,猜测第n 个图中有___________个点. (1) (2) (3) (4) (5)10. 已知数列{}n a 的前n 项和2n S n pn =+,数列{}n b 的前n 项和232n T n n =-,(1)若1010a b =,求p 的值; (2)取数列{}n b 中的第1项, 第3项, 第5项, 构成一个新数列{}n c , 求数列{}n c 的通项公式.。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
北师大版普通高中数学必修5测试题含详细答案

高二数学必修5测试题一.选择题(每道4分,共计40分)1.由11a =,3d =确定地等差数列{}n a ,当298n a =时,序号n 等于 ( )A.99B.100C.96D.1012.ABC ∆中,若︒===60,2,1B c a ,则ABC ∆地面积为 ( ) A .21B .23 C.1 D.33.已知{}n a 等比数列,且0n a >,252645342=++a a a a a a 那么53a a += () A. 5 B. 10 C. 15 D. 20b5E2R 。
4.已知0x >,函数4y x x=+地最小值是 ( ) A .5 B .4 C .8 D .65.数列 ,1614,813,412,211前n 项地和为 ( )A .2212n n n ++B .12212+++-nn n C .2212n n n ++-D .22121nn n -+-+6.不等式20(0)ax bx c a ++<≠地解集为R ,那么 ( ) A. 0,0a <∆< B. 0,0a <∆≤ C. 0,0a >∆≥ D. 0,0a >∆>7.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+地最大值为 ( )A .5 B. 3 C. 7 D. -8 8.在ABC ∆中,80,100,45a b A ︒===,则此三角形解地情况是 ( ) A.一解 B.两解 C.一解或两解 D.无解9.在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cos C 等于 ( )2A.32B.-31C.-31D.-410.一个等比数列}{n a 地前n 项和为48,前2n 项和为60,则前3n 项和为( ) A 、63 B 、108 C 、75 D 、83p1Ean 。
二、填空题(每道4分,共计16分)11.在ABC ∆中,04345,22,3B c b ===,那么A =_____________;12.a 克糖水中含有b 克糖(0)a b >>,若在糖水中加入x 克糖,则糖水变甜了.试根据这个事实提炼出一个不等式:____________DXDiT 。
新课标最新北师大版2018-2019学年高中数学必修五《数列》同步习题课及答案解析

北师大版高中数学必修五习题课(1)课时目标 1.熟练掌握等差数列的概念、通项公式、前n 项和公式,并能综合运用这些知识解决一些问题.2.熟练掌握等差数列的性质、等差数列前n 项和的性质,并能综合运用这些性质解决相关问题.1.若S n 是数列{a n }的前n 项和,则S n =a 1+a 2+…+a n ,a n =⎩⎪⎨⎪⎧n =1,n ≥2.2.若数列{a n }为等差数列,则有: (1)通项公式:a n =__________;(2)前n 项和:S n =______________=_________________________________________. 3.等差数列的常用性质(1)若{a n }为等差数列,且m +n =p +q(m ,n ,p ,q ∈N +),则______________________. (2)若S n 表示等差数列{a n }的前n 项和,则 S k ,S 2k -S k ,____________成等差数列.一、选择题1.在等差数列{a n }中,a 1+3a 8+a 15=120,则2a 9-a 10的值为( ) A .24 B .22 C .20 D .-82.等差数列{a n }的前n 项和为S n ,若a 3+a 7+a 11=6,则S 13等于( ) A .24 B .25 C .26 D .273.设数列{a n }、{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( ) A .0 B .37 C .100 D .-374.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13等于( )A.120 B.105C.90 D.755.若{a n}为等差数列,S n为其前n项和,若a1>0,d<0,S4=S8,则S n>0成立的最大自然数n为( )A.11 B.12C.13 D.146.在等差数列{a n}中,a1=-2 008,其前n项和为S n,若S2 0082 008-S2 0062 006=2,则S2 012等于( )A.-2 012 B.2 012C.6 033 D.6 036二、填空题7.已知数列{a n}的前n项和S n=n2+n+1,则a6+a7+…+a10的值为________.8.设等差数列{a n}的前n项和为S n,若S p=S q(p,q∈N+且p≠q),则S p+q=________. 9.等差数列{a n}中,|a3|=|a9|,公差d<0,则使前n项和S n取得最大值的自然数n是______.10.已知数列{a n}中,a1=20,a n+1=a n+2n-1,n∈N+,则数列{a n}的通项公式a n=________.三、解答题11.甲、乙两物体分别从相距70 m的两处同时相向运动,甲第1分钟走2 m,以后每分钟比前1分钟多走1 m,乙每分钟走5 m.(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即返回,甲继续每分钟比前1分钟多走1 m,乙继续每分钟走5 m,那么开始运动几分钟后第二次相遇?12.已知公差大于零的等差数列{a n}的前n项和为S n,且满足:a3·a4=117,a2+a5=22.(1)求数列{a n}的通项公式a n;(2)若数列{b n}是等差数列,且b n=S nn+c,求非零常数c.能力提升13.在等差数列{a n}中,a10<0,a11>0,且|a10|<a11,S n为{a n}的前n项的和,则下列结论正确的是( )A.S1,S2,…,S10都小于零,S11,S12,…都大于零B.S1,S2,…,S5都小于零,S6,S7,…都大于零C.S1,S2,…,S20都小于零,S21,S22,…都大于零D.S1,S2,…,S19都小于零,S20,S21,…都大于零14.把自然数1,2,3,4,…按下列方式排成一个数阵.12 34 5 67 8 9 1011 12 13 14 15……………………………根据以上排列规律,数阵中第n (n ≥3)行从左至右的第3个数是______________.1.等差数列是最基本、最常见的数列,等差数列的定义是研究解决等差数列的判定和性质,推导通项公式、前n 项和公式的出发点.2.通项公式与前n 项和公式联系着五个基本量:a 1、d 、n 、a n 、S n .掌握好本部分知识的内在联系、结构,以便灵活运用.3.另外用函数观点和方法揭示等差数列的特征,在分析解决数列的综合题中有重要的意义.习题课(1) 答案知识梳理1.S 1 S n -S n -1 2.(1)a 1+(n -1)d (2)na 1+n(n -1)d 2 n(a 1+a n )2 3.(1)a m +a n =a p+a q (2)S 3k -S 2k 作业设计 1.A2.C [∵a 3+a 7+a 11=6,∴a 7=2,∴S 13=13(a 1+a 13)2=13a 7=26.]3.C [设数列{a n },{b n }的公差分别为d ,d ′,则a 2+b 2=(a 1+d)+(b 1+d ′)=(a 1+b 1)+(d +d ′)=100. 又∵a 1+b 1=100,∴d +d ′=0.∴a 37+b 37=(a 1+36d)+(b 1+36d ′)=(a 1+b 1)+36(d +d ′)=100.] 4.B [∵a 1+a 2+a 3=3a 2=15,∴a 2=5. ∵a 1=5-d ,a 3=5+d ,d>0, ∴a 1a 2a 3=(5-d)·5·(5+d)=80, ∴d =3,a 1=2.∴a 11+a 12+a 13=3a 12=3(a 1+11d)=3a 1+33d =3×2+33×3=105.] 5.A [S 4=S 8⇒a 5+a 6+a 7+a 8=0⇒a 6+a 7=0,又a 1>0,d<0,S 12=(a 1+a 12)·122=0,n<12时,S n >0.]6.D [S n n =a 1+(n -1)d2,∴S 2 0082 008-S 2 0062 006=a 1+2 008-12d -a 1-2 006-12d =d =2. ∴S 2 012=2 012×(-2 008)+2 012×2 0112×2=2 012×3=6 036.] 7.80解析 a 6+a 7+…+a 10=S 10-S 5=111-31=80. 8.0解析 设S n =an 2+bn ,由S p =S q . 知ap 2+bp =aq 2+bq ,∴p +q =-b a.∴S p +q =a(p +q)2+b(p +q)=a(-b a )2+b(-b a )=b 2a -b2a=0.9.5或6解析 d<0,|a 3|=|a 9|,∴a 3>0,a 9<0且a 3+a 9=0, ∴a 6=0,∴a 1>a 2>…>a 5>0,a 6=0,0>a 7>a 8>…. ∴当n =5或6时,S n 取到最大值. 10.n 2-2n +21解析 ∵a n +1-a n =2n -1, ∴a 2-a 1=1,a 3-a 2=3,…, a n -a n -1=2n -3,n ≥2.∴a n -a 1=1+3+5+…+(2n -3). ∴a n =20+(n -1)(2n -2)2=n 2-2n +21.11.解 (1)设n 分钟后第1次相遇,依题意, 有2n +n(n -1)2+5n =70,整理得n 2+13n -140=0. 解之得n =7,n =-20(舍去). 第1次相遇是在开始运动后7分钟. (2)设n 分钟后第2次相遇,依题意,有 2n +n(n -1)2+5n =3×70,整理得n 2+13n -420=0. 解之得n =15,n =-28(舍去). 第2次相遇是在开始运动后15分钟.12.解 (1)设等差数列{a n }的公差为d ,且d>0. ∵a 3+a 4=a 2+a 5=22,又a 3·a 4=117, 又公差d>0,∴a 3<a 4,∴a 3=9,a 4=13.∴⎩⎪⎨⎪⎧a 1+2d =9a 1+3d =13,∴⎩⎪⎨⎪⎧a 1=1d =4,∴a n =4n -3.(2)由(1)知,S n =n ·1+n(n -1)2·4=2n 2-n ,∴b n =S n n +c =2n 2-nn +c .∴b 1=11+c ,b 2=62+c ,b 3=153+c. ∵{b n }是等差数列,∴2b 2=b 1+b 3, ∴2c 2+c =0,∴c =-12 (c =0舍去).13.D [∵S 19=19(a 1+a 19)2=19a 10<0,S 20=20(a 1+a 20)2.而a 1+a 20=a 10+a 11,∵a 10<0,a 11>0且|a 10|<a 11, ∴a 10+a 11>0,∴S 20=20(a 1+a 20)2=10(a 10+a 11)>0.又∵d =a 11-a 10>0. ∴S n >0 (n ≥20).] 14.n 22-n 2+3解析 该数阵的第1行有1个数,第2行有2个数,…,第n 行有n 个数,则第n -1 (n ≥3)行的最后一个数为(n -1)(1+n -1)2=n 22-n 2,则第n 行从左至右的第3个数为n 22-n2+。
2020-2021学年北师大版高中数学必修五《数列》同步习题课1及答案解析

(新课标)最新北师大版高中数学必修五习题课(2)课时目标1.能由简单的递推公式求出数列的通项公式;2.掌握数列求和的几种基本方法.1.等差数列的前n项和公式:S n=______________=____________. 2.等比数列前n项和公式:①当q=1时,S n=________;②当q≠1时,S n=__________=____________.3.数列{a n}的前n项和S n=a1+a2+a3+…+a n,则a n=________________. 4.拆项成差求和经常用到下列拆项公式:(1)1n(n+1)=____________;(2)1(2n-1)(2n+1)=__________________;(3)1n+n+1=__________.一、选择题1.数列{a n }的前n 项和为S n ,若a n =1n(n +1),则S 5等于( )A .1 B.56C.16D.130 2.数列{a n }的通项公式a n =1n +n +1,若前n 项的和为10,则项数为( )A .11B .99C .120D .121 3.数列112,214,318,4116,…的前n 项和为( )A.12(n 2+n +2)-12nB.12n(n +1)+1-12n -1 C.12(n 2-n +2)-12n D.12n(n +1)+2(1-12n ) 4.已知数列{a n }的通项a n =2n +1,由b n =a 1+a 2+a 3+…+a n n 所确定的数列{b n }的前n 项之和是( )A .n(n +2) B.12n(n +4)C.12n(n +5)D.12n(n +7)5.已知S n =1-2+3-4+…+(-1)n -1n ,则S 17+S 33+S 50等于( )A .0B .1C .-1D .26.数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1是首项为1,公比为2的等比数列,那么a n 等于( )A .2n-1 B .2n -1-1C .2n +1D .4n-1二、填空题7.一个数列{a n },其中a 1=3,a 2=6,a n +2=a n +1-a n ,那么这个数列的第5项是________. 8.在数列{a n }中,a n +1=2a n 2+a n ,对所有正整数n 都成立,且a 1=2,则a n =______.9.在100内所有能被3整除但不能被7整除的正整数之和是________.10.数列{a n }中,S n 是其前n 项和,若a 1=1,a n +1=13S n (n ≥1),则a n =____________.三、解答题11.已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n . (1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N +),求数列{b n }的前n 项和T n .12.设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .能力提升13.在数列{a n }中,a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ,则a n 等于( )A .2+ln nB .2+(n -1)ln nC .2+nln nD .1+n +ln n14.已知正项数列{a n }的前n 项和S n =14(a n +1)2,求{a n }的通项公式.1.递推公式是表示数列的一种重要方法.由一些简单的递推公式可以求得数列的通项公式.其中主要学习叠加法、叠乘法以及化归为等差数列或等比数列的基本方法. 2.求数列前n 项和,一般有下列几种方法:错位相减、分组求和、拆项相消、奇偶并项等,学习时注意根据题目特点灵活选取上述方法.习题课(2) 答案知识梳理1.n(a 1+a n )2 na 1+n(n -1)2d 2.①na 1②a 1(1-q n)1-q a 1-a n q 1-q3.⎩⎨⎧S 1 n =1S n -S n -1n ≥24.(1)1n -1n +1 (2)12(12n -1-12n +1)(3)n +1-n作业设计1.B [∵a n =1n(n +1)=1n -1n +1,∴S 5=(1-12)+(12-13)+…+(15-16)=1-16=56.]2.C [∵a n =1n +n +1=n +1-n ,∴S n =n +1-1=10,∴n =120.] 3.A [112+214+318+…+(n +12n )=(1+2+…+n)+(12+14+…+12n )=n(n +1)2+12(1-12n )1-12=12(n 2+n)+1-12n =12(n 2+n +2)-12n .] 4.C [a 1+a 2+…+a n =n 2(2n +4)=n 2+2n.∴b n =n +2,∴b n 的前n 项和S n =n(n +5)2.]5.B [S 17=(1-2)+(3-4)+…+(15-16)+17=9, S 33=(1-2)+(3-4)+…+(31-32)+33=17,S 50=(1-2)+(3-4)+…+(49-50)=-25, 所以S 17+S 33+S 50=1.] 6.A [由于a n -a n -1=1×2n -1=2n -1,那么a n =a 1+(a 2-a 1)+…+(a n -a n -1)=1+2+…+2n -1=2n-1.]7.-6 8.2n解析 ∵a n +1=2a n 2+a n ,∴1a n +1=1a n +12.∴⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是等差数列且公差d =12.∴1a n =1a 1+(n -1)×12=12+n -12=n2, ∴a n =2n .9.1 473解析 100内所有能被3整除的数的和为:S 1=3+6+…+99=33×(3+99)2=1 683.100内所有能被21整除的数的和为:S 2=21+42+63+84=210.∴100内能被3整除不能被7整除的所有正整数之和为S 1-S 2=1 683-210=1 473.10.⎩⎨⎧1, n =113·⎝ ⎛⎭⎪⎫43n -2, n ≥2解析 a n +1=13S n ,a n +2=13S n +1,∴a n +2-a n +1=13(S n +1-S n )=13a n +1,∴a n +2=43a n +1 (n ≥1).∵a 2=13S 1=13,∴a n=⎩⎨⎧1, n =113·⎝ ⎛⎭⎪⎫43n -2, n ≥2.11.解 (1)设等差数列{a n }的首项为a 1,公差为d.因为a 3=7,a 5+a 7=26,所以⎩⎨⎧a 1+2d =7,2a 1+10d =26,解得⎩⎨⎧a 1=3,d =2.所以a n =3+2(n -1)=2n +1,S n =3n +n(n -1)2×2=n 2+2n.所以,a n =2n +1,S n =n 2+2n. (2)由(1)知a n =2n +1,所以b n =1a 2n -1=1(2n +1)2-1=14·1n(n +1)=14·⎝ ⎛⎭⎪⎫1n -1n +1, 所以T n =14·(1-12+12-13+…+1n -1n +1)=14·(1-1n +1)=n4(n +1),即数列{b n }的前n 项和T n =n4(n +1).12.解 (1)由已知,当n ≥1时,a n +1=[(a n +1-a n )+(a n -a n -1)+…+(a 2-a 1)]+a 1=3(22n-1+22n -3+…+2)+2=22(n +1)-1.而a 1=2,符合上式,所以数列{a n }的通项公式为a n =22n -1.(2)由b n =na n =n ·22n -1知S n =1·2+2·23+3·25+…+n ·22n -1,①从而22·S n =1·23+2·25+3·27+…+n ·22n +1.②①-②得(1-22)S n =2+23+25+…+22n -1-n ·22n +1,即S n =19[(3n -1)22n +1+2].13.A [∵a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ,∴a n +1-a n =ln ⎝ ⎛⎭⎪⎫1+1n =ln n +1n =ln(n +1)-ln n.又a 1=2,∴a n =a 1+(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1) =2+[ln 2-ln 1+ln 3-ln 2+ln 4-ln 3+…+ln n -ln(n -1)]=2+ln n -ln 1=2+ln n .]14.解 当n =1时,a 1=S 1,所以a 1=14(a 1+1)2,解得a 1=1.当n ≥2时,a n =S n -S n -1=14(a n +1)2-14(a n -1+1)2=14(a 2n -a 2n -1+2a n -2a n -1),∴a 2n -a 2n -1-2(a n +a n -1)=0, ∴(a n +a n -1)(a n -a n -1-2)=0. ∵a n +a n -1>0,∴a n -a n -1-2=0. ∴a n -a n -1=2.∴{a n }是首项为1,公差为2的等差数列.∴a n =1+2(n -1)=2n -1.。
(常考题)北师大版高中数学必修五第一章《数列》测试题(含答案解析)(1)

一、选择题1.设等比数列{}n a 的前n 项和为n S ,且4331S S S =-,若11a >,则( ) A .13a a <,24a a < B .13a a >,24a a < C .13a a <,24a a >D .13a a >,24a a >2.已知数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,若1234480k k k k a a a a +++++++=,则k =( )A .3B .4C .5D .63.已知等差数列{}n a 满足3434a a =,则该数列中一定为零的项为( )A .6aB .7aC .8aD .9a4.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( ) A .2B .-4C .2或-4D .45.在等差数列{}n a 中,0n a ≠,()21102n n n a a a n -+-+=≥,若2138n S -=,则n =( ).A .38B .20C .10D .96.数列{}n a 的前n 项和为()21n S n n =-(*n ∈N ),若173a a ka +=,则实数k 等于( ) A .2B .3C .269D .2597.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的底层共有灯( ) A .64盏B .128盏C .192盏D .256盏8.若{}n a 是等比数列,其公比是q ,且546,,a a a -成等差数列,则q 等于( ) A .-1或2B .1或-2C .1或2D .-1或-29.已知函数()()31f x x x =-+,数列{}n a 中各项互不相等,记()()()12n n S f a f a f a =+++,给出两个命题:①若等差数列{}n a 满足55S =,则33a =;②若正项等比数列{}n a 满足33S =,则21a <;其中( )A .①是假命题,②是真命题B .①是真命题,②是假命题C .①②都是假命题D .①②都是真命题10.设等差数列{}n a 的前n 项和为n S ,523S =,360n S =,5183n S -=,则n =( ) A .18B .19C .20D .2111.等差数列{}n a 中,10a >,310S S =,则当n S 取最大值时,n 的值为 ( ) A .6B .7C .6或7D .不存在12.已知数列{}n a 为等差数列,10a <且1231990a a a a +++⋅⋅⋅+=,设()*12n n n n b a a a n N ++=∈,当{}n b 的前n 项和n S 最小时,n 的值有( )A .5个B .4个C .3个D .2个二、填空题13.数列{}n a 中,16a =,29a =,且{}1n n a a +-是以2为公差的等差数列,则n a =______.14.数列{}n a 中,11a =,212a =,11211(2)n n n n a a a +-=+≥,则{}1n n a a +⋅的前n 项和n S =__________.15.已知公差不为0的等差数列的首项12a =,前n 项和为n S ,且________(①1a ,2a ,4a 成等比数列;②(3)2n n n S +=;③926a =任选一个条件填入上空).设3n n a b =,n n n a c b =,数列{}n c 的前n 项和为n T ,试判断n T 与13的大小. 16.已知数列{}n a 与{}n b 满足11222n n a a a ++++=-,1(1)(1)nn n n a b a a +=--,数列{}n b 的前n 项的和为n S ,若n S M ≤恒成立,则M 的最小值为_________.17.数列{}n a 满足:112a =,212n n a a a n a ++⋯+=⋅,则数列{}n a 的通项公式n a =___________.18.设无穷数列{a n }的前n 项和为S n ,下列有三个条件: ①m n m n a a a +⋅=; ②S n =a n +1+1,a 1≠0;③S n =2a n +1p(p 是与n 无关的参数).从中选出两个条件,能使数列{a n }为唯一确定的等比数列的条件是______.19.已知数列{}n a 的前n 项和为n S ,且11a =,()112n n a S n -=+≥,则4a =______. 20.我们知道,斐波那契数列是数学史上一个著名数列,在斐波那契数列{}n a 中,()*12211,1,n n n a a a a a n ++===+∈N .用n S 表示它的前n 项和,若已知2020S m =,那么2022a =_______.三、解答题21.已知各项均为正数的数列{}n a 的前n 项和满足1n S >,且()()*612,n n n S a a n =++∈N .(1)求{}n a 的通项公式: (2)设数列{}n b 满足,2n n na nb n ⎧=⎨⎩是奇数,是偶数,并记n T 为{}n b 的前n 项和,求2n T . 22.从①()*123(1)2n n n b b b b n +++++=∈N ,②{}n b 为等差数列且215227b b b =+=,,这两个条件中选择一个条件补充到问题中,并完成解答.问题:已知数列{}{},n n a b 满足2n bn a =,且___________. (1)证明:数列{}n a 为等比数列;(2)若m c 表示数列{}n b 在区间()0,m a 内的项数,求数列{}m c 前m 项的和m T . 23.已知数列{}n a 的首项为4. (1)若数列{}2nn a -是等差数列,且公差为2,求{}na 的通项公式.(2)在①3248a a -=且20a >,②364a =且40a >,③20212201716a a a =这三个条件中任选一个,补充在下面的问题中并解答. 问题,若{}n a 是等比数列,__________,求数列(){}31nn a -的前n 项和nS.24.已知数列{}n a 的前n 项和n S 满足()*224n n S a a n N =-∈,且1a ,2a ,31a-成等差数列.(1)求数列{}n a 的通项公式; (2)设()()222221log log +=n n n b a a ,{}n b 的前项和为n T ,对任意*n N ∈,23n m T >恒成立,求m 的取值范围.25.在①222n n S n a =+,②3516a a +=且3542S S +=,③2142n n S n S n +=+且756S =这三个条件中任选一个,补充在下面的问题中,并加以解答.问题:设数列{}n a 为等差数列,其前n 项和为n S ,_________.数列{}n b 为等比数列,11b a =,23b a =.求数列1n n b S ⎧⎫+⎨⎬⎩⎭的前n 项和n T . 26.若数列{}n a 对任意连续三项12,,i i i a a a ++,均有()()2210()i i i i a a a a i N *+++-->∈,则称该数列为“跳跃数列”.(1)判断下列两个数列是否是跳跃数列: ① 等差数列:1,2,3,4,5,;② 等比数列:11111,,,,24816--;(2)跳跃数列{}n a 满足对任意正整数n 均有21195nn a a +-=,求首项1a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先根据题中所给的条件4331S S S =-,11a >利用等比数列求和公式求出0q <,分情况讨论求得10q -<<,从而可以得到项之间的大小关系. 【详解】设等比数列{}n a 的公比为q , 由4331S S S =-可得431a S =-, 若1q =,则1113a a =-显然不成立,所以1q ≠, 所以()312111q a a q q -++=,即()232111q q a q +=-+, 因为22131024q q q ⎛⎫++=++> ⎪⎝⎭,210a >,所以30q <,所以0q <,当1q ≤-时,31q ≤-,211q q ++≥,因为11a >,则()232111q q a q +=-+不可能成立,所以10q -<<,()213110a a a q -=->,()224110a a a q q -=-<,所以13a a >,24a a <, 故选:B. 【点睛】关键点点睛:本题解题的关键是利用等比数列求和公式将已知条件化简得到()232111q q a q +=-+,结合11a >求出q 的范围.2.B解析:B 【分析】由已知,取1m =,则112n n n a a a a +=⋅=,得出数列{}n a 是以2为首项,2为公差的等比数列,根据等比数列的通项公式建立方程得可求得解. 【详解】因为数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,所以取1m =,则112n n n a a a a +=⋅=,所以数列{}n a 是以2为首项,2为公差的等比数列,所以2nn a =,又1234480k k k k a a a a +++++++=,即12344220282k k k k +++++++=,即040238k ⨯=,解得4k =, 故选:B . 【点睛】关键点点睛:解决本题的问题的关键在于令1m =,得出数列{}n a 是以2为首项,2为公差的等比数列,利用等比数列的通项公式建立方程得解.3.B解析:B 【分析】由条件可得34a d =-,进而得n a (7)n d =-,从而得解. 【详解】33a 44a =,33a ∴()33444a d a d =+=+, 34d a ∴=-n a ∴3(3)a n d =+-⋅4(3)d n d =-+- (7)n d =- 70a ∴=,故选:B 【点睛】本题主要考查了等差数列的通项公式,等差数列的性质,属于基础题.4.B解析:B 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.5.C解析:C 【分析】由2110n n n a a a -+-+=,可得2112n n n n a a a a -++==,得到2n a =,再根据等差数列的求和公式,得到2138(21)n n n S a --==,代入即可求解,得到答案. 【详解】由题意,等差数列{}n a 中,()21102n n n a a a n -+-+=≥,可得2112n n n n a a a a -++==,又0,n a ≠解得2n a =, 又由12121(21)()(2)3812n n n n a a n a S ---+==-=,即(21)823n -⨯=,解得10n =,故选C . 【点睛】本题主要考查了等差数列的性质,以及等差数列的求和公式的应用,其中解答中熟记等差数列的性质,求得2n a =和2138(21)n n n S a --==是解答本题的关键,着重考查了推理与运算能力,属于基础题.6.C解析:C 【分析】由已知结合递推公式可求n a ,然后结合等差数列的通项公式即可求解. 【详解】因为()21n S n n =-, 所以111a S ==,当2n ≥时,()()()12112343n n n a S S n n n n n -=-=----=-,111a S ==适合上式,故43n a n =-,因为173a a ka +=, ∴1259k +=, 解可得269k = 故选:C.本题主要考查了由数列前n 项和求数列的通项公式,考查来了运算能力,属于中档题.7.C解析:C 【分析】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列,利用等比数列的前n 项和公式可求得1a 的值,进而可求得塔的底层的灯的盏数7a . 【详解】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列, 由题意可知,一座7层塔所挂的灯的盏数为()71711212738112a S a -===-,解得13a =.因此,塔的底层的灯的盏数为6732192a =⨯=. 故选:C. 【点睛】本题考查等比数列及其前n 项和基本量的计算,考查推理能力与计算能力,属于中等题.8.A解析:A 【解析】分析:由546,,a a a -成等差数列可得5642a a a -+=,化简可得()()120q q +-=,解方程求得q 的值. 详解:546,,a a a -成等差数列,所以5642a a a -+=,24442a q a q a ∴-+=,220q q ∴--=,()()120q q ∴+-=,1q ∴=-或2,故选A.点睛:本题考查等差数列的性质,等比数列的通项公式基本量运算,属于简单题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用.9.A解析:A 【分析】先确定函数()f x 对称性与单调性,再结合等差数列的等距性确定3a ;结合基本不等式将等比数列性质转化到等差数列性质上,解不等式即得结果.因为()()()3311(1)1f x x x x x =-+=-+-+,而3y x x =+关于原点对称且在R 上单调递增,所以()f x 关于(1,1)对称且在R 上单调递增, 先证明下面结论:若()g x 为奇函数且在R 上单调递增,{}n a 为等差数列,123g()()()()0n a g a g a g a ++++=,则1230n a a a a ++++=.证明:若1230n a a a a ++++>,则当n 为偶数时,1211220n n n n a a a a a a -++=+==+>111()()()()+()0n n n n a a g a g a g a g a g a >-∴>-=-∴>同理21+122()()0,,()+()0n n n g a g a g a g a -+>>,即123g()()()()0n a g a g a g a ++++>与题意矛盾,当n 为奇数时,1211220n n n a a a a a -++=+==>类似可得12112()()0,()(),,()0n n n g a g a g a g a g a -++>+>,即123g()()()()0n a g a g a g a ++++>,与题意矛盾同理可证1230n a a a a ++++<也不成立,因此1230n a a a a ++++=再引申结论:若()f x 为关于(,)a b 函数且在R 上单调递增,{}n a 为等差数列,123()()()()n f a f a f a f a nb ++++=,则123n a a a a na ++++=证明过程只需令()()g x f x a b =+-,再利用上面结论即得.①若等差数列{}n a 满足55S =,即 12345()()()()()5f a f a f a f a f a ++++=,则123453555a a a a a a ++++=∴=, 31a ∴=,故①是假命题,②若正项等比数列{}n a 满足33S =, 即123()()()3f a f a f a ++= 因为数列{}n a 中各项互不相等,所以公比不为1,不妨设公比大于1,即123123()()()a a a f a f a f a <<∴<<,因为1322a a a +>=∴2()1f a <,()3222111a a a -+<∴<故②是真命题 故选:A 【点睛】本题考查函数()f x 对称性与单调性、等差数列性质、基本不等式应用,考查综合分析判断能力,属中档题.10.A解析:A 【分析】根据题意,由等差数列的前n 项和公式可得()155355232a a S a+⨯===,变形可得3235a =,又由5432125360183177n n n n n n n n S S a a a a a a ------++-=+===+-,变形可得21775n a -=,结合等差数列的性质分析可得答案. 【详解】根据题意,等差数列{}n a 中,523S =,则()155355232a a S a+⨯===,变形可得3235a =, 又由360n S =,5183n S -=,则5432125360183177n n n n n n n n S S a a a a a a ------++-=+===+-,则21775n a -=, 又由360n S =,则()()()13223177203602210n n n a a n a a n n S n -+⨯+⨯+⨯=====,解可得18n =. 故选:A. 【点睛】本题考查利用等差数列求和公式求参数,同时也考查了等差数列基本性质的应用,考查计算能力,属于中等题.11.C解析:C 【解析】设等差数列{}n a 的公差为d ∵310S S = ∴()()113319913922a d a d ⨯-⨯-+=+∴160a d += ∴70a = ∵10a >∴当n S 取最大值时,n 的值为6或7 故选C12.B解析:B 【分析】根据等差数列的性质可知1000a ,从而判断数列{}n a 是单调递增数列,即可判断当{}n b 的前n 项和n S 最小时,n 可取的值. 【详解】数列{}n a 为等差数列,119921981002a a a a a ,1231990a a a a +++⋅⋅⋅+=,则1001990a ,即1000a ,10a <,可以判断数列{}n a 是单调递增数列,991010,0a a , 12n n n n b a a a ++=,12323412nn n n S a a a a a a a a a ,当{}n b 的前n 项和n S 最小时,n 可取的值为97,98,99,100共4个. 故选:B. 【点睛】本题主要考查等差数列的性质,属于中档题.二、填空题13.【分析】由是以2为公差的等差数列可得:再利用累加求和方法等差数列的求和公式即可得出【详解】∵是以2为公差的等差数列∴∴故答案为:【点睛】本题考查了等差数列的通项公式与求和公式累加求和方法考查了推理能 解析:25n +【分析】由{}1n n a a +-是以2为公差的等差数列,可得:121n n a a n --=-,再利用累加求和方法、等差数列的求和公式即可得出. 【详解】∵{}1n n a a +-是以2为公差的等差数列, ∴()()1212221n n a a a a n n --=-+-=-,∴()()()12116321n n n a a a a a a n -=+-+⋯⋯+-=++⋯⋯+-()2121552n n n +-=+=+, 故答案为:25n +. 【点睛】本题考查了等差数列的通项公式与求和公式、累加求和方法,考查了推理能力与计算能力,属于中档题.14.【分析】根据利用等差中项得到是等差数列然后由利用裂项相消法求和【详解】∵∴是等差数列又∴∴∴∴故答案为:【点睛】本题主要等差中项以及裂项相消法求和还考查了运算求解的能力属于中档题 解析:1n n + 【分析】 根据11211(2)n n n n a a a +-=+≥,利用等差中项得到1n a ⎧⎫⎨⎬⎩⎭是等差数列,然后由 1111(1)1n n a n n a n n +==-++⋅,利用裂项相消法求和.【详解】 ∵11211(2)n n n n a a a +-=+≥, ∴1n a ⎧⎫⎨⎬⎩⎭是等差数列, 又11a =,212a =, ∴21111d a a =-=, ∴1nn a ,1n a n=,∴1111(1)1n n a n n a n n +==-++⋅∴11111111 (1111)1223341n nS n n n n -+-+-++--=+=+=+. 故答案为:1nn + 【点睛】本题主要等差中项以及裂项相消法求和,还考查了运算求解的能力,属于中档题.15.选①:;选②:当时;当时;当时;选③:【分析】任选一个条件求出数列公差及通项利用错位相减法求和再比较大小可得解【详解】若选①设公差为因为成等比数列所以解得或0(不合舍去)所以所以利用错位相减可得;若解析:选①:13n T <;选②:当1n =时,12193T =<;当2n =时,21133T ==;当3n ≥时,3311813n T T ≥=>;选③:13n T <.【分析】任选一个条件,求出数列{}n a 公差及n b ,n c 通项,利用错位相减法求和,再比较大小可得解. 【详解】若选①,设公差为d ,因为1a ,2a ,4a 成等比数列,所以2(2)2(23)d d +=+,解得2d =或0(不合,舍去),所以2n a n =,9n n b =所以29n n nc =,利用错位相减可得1991213232993n n n n T +=-⨯-<; 若选②,因为(3)2n n n S +=,所以公差1d =,所以1n a n =+,13n n b +=所以113n n n c ++=,利用错位相减可得11515()()24312n n T n +=--⨯+当1n =时,12193T =<; 当2n =时,21133T ==;当3n ≥时,3311813n T T ≥=>; 若选③,因为926a =,所以公差3d =,所以31n a n =-,所以31313n n n c --=, 利用错位相减可得1652346911676676273n n n T -=-⨯<. 【定睛】本题考查等差数列通项及错位相减法求和,属于基础题.16.【分析】由已知式写出为的式子相减求得检验是否相符求得用裂项相消法求得和由表达式得的范围从而得最小值【详解】∵所以时两式相减得又所以有从而显然所以的最小值为1故答案为:1【点睛】方法点睛:本题主要考查 解析:1【分析】由已知式写出n 为1n -的式子,相减求得n a ,检验1a 是否相符,求得n b ,用裂项相消法求得和n S ,由n S 表达式得M 的范围,从而得最小值. 【详解】 ∵11222n n a a a ++++=-,所以2n ≥时,12122n n a a a -+++=-,两式相减得1222n n nn a +=-=,又21222a =-=,所以*n N ∈,有2nn a =,从而11211(21)(21)2121n n n n n n b ++==-----,122231111111212121212121n n n n S b b b +⎛⎫⎛⎫⎛⎫=+++=-+-++- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭11121n +=--,显然1n S <,所以1M ≥,M 的最小值为1.故答案为:1. 【点睛】方法点睛:本题主要考查求数列的通项公式,考查裂项相消法求和,数列求和的常用方法有:(1)公式法,(2)错位相减法,(3)裂项相消法,(4)分组(并项)求和法,(5)倒序相加法.17.【分析】当时作差即可得到再利用累乘法求出数列的通项公式即可;【详解】解:因为①;当时②;①减②得即所以所以所以所以……所以所以又所以当时也成立所以故答案为:【点睛】对于递推公式为一般利用累乘法求出数 解析:21n n+ 【分析】当2n ≥时,()212111n n a a a n a --++⋯+=-⋅,作差即可得到111n n a n a n --=+,再利用累乘法求出数列的通项公式即可; 【详解】解:因为212n n a a a n a ++⋯+=⋅①;当2n ≥时,()212111n n a a a n a --++⋯+=-⋅②;①减②得()2211n n n a n a n a -=⋅-⋅-,即()()22111n n n a n a -⋅-⋅-=,所以()()()21111n n n n a n a --+=⋅-⋅,所以()()111n n n a n a -⋅-⋅+=,所以111n n a n a n --=+ 所以2113a a =,3224a a =,4335a a =,……,111n n a n a n --=+,所以324211312313451n n a a a a n a a a a n --⋅⋅⋅⨯⨯⨯=⨯+,所以()121n a a n n =+,又112a =,所以()11n a n n =+,当1n =时()11n a n n =+也成立,所以()11n a n n =+故答案为:()11n n +【点睛】对于递推公式为()1nn a f n a -=,一般利用累乘法求出数列的通项公式,对于递推公式为()1n n a a f n --=,一般利用累加法求出数列的通项公式;18.①③【分析】选①②在①中令在②中令联立方程由方程无解推出矛盾;选①③在③中由通项与前项和之间的关系求出公比在①中令在③中用表示出联立方程求出确定数列;选②③由通项与前项和之间的关系即可作出判断【详解解析:①③ 【分析】选①②,在①中令1m n ==,在②中令1n =联立方程,由方程无解推出矛盾;选①③,在③中由通项与前n 项和之间的关系求出公比,在①中令1m n ==,在③中用12,a a 表示出12,S S 联立方程,求出1,a p 确定数列{}n a ;选②③,由通项与前n 项和之间的关系即可作出判断. 【详解】在①中,令1m n ==,得221a a =;在②中,11n n S a +=+,当2n ≥时, 11n n S a -=+,两式相减,得1n n n a a a +=-,即12n n a a +=;在③中,11112,2n n n n S a S a p p++=+=+,两式相减,得 1122n n n a a a ++=-,即 12n n a a +=,若选①②,则22112,1a a a a ⎧=⎨=+⎩即 2211111,10a a a a =--+=, 2(1)41130∆=--⨯⨯=-<,方程无解,故不能选①②作为条件;若选①③,则由12n n a a +=知,数列{}n a 的公比为2,由 221111221212a a a a p a a a p ⎧⎪=⎪⎪=+⎨⎪⎪+=+⎪⎩得1212a p =⎧⎪⎨=-⎪⎩,所以数列 {}n a 是首项为2,公比为2的等比数列; 若选②③作为条件,则无法确定首项,数列{}n a 不唯一,故不能选②③作为条件. 综上所述,能使数列{}n a 为唯一确定的等比数列的条件是①③. 故答案为:①③ 【点睛】思路点睛:本题考查利用递推关系求数列中的项,涉及等比数列的判定和通项公式,遇到和与项的递推关系时,一般有两种方法:(1)消去和,得到项的递推关系;(2)消去项,得到和的递推关系.19.8【分析】根据可得两式相减可得利用递推关系即可求解【详解】①②②①得当时故答案为:8【点睛】本题主要考查了数列的项与前n 项和的关系考查了利用递推关系求数列的项属于中档题解析:8 【分析】根据()112n n a S n -=+≥可得11n n a S +=+,两式相减可得12n n a a +=(2)n ≥,利用递推关系即可求解. 【详解】()112n n a S n -=+≥①,11n n a S +∴=+②,②-①得,12n n a a +=(2)n ≥, 当2n =时,211112a S a =+=+=,3224a a ∴==, 4328a a ∴==,故答案为:8 【点睛】本题主要考查了数列的项n a 与前n 项和n S 的关系,考查了利用递推关系求数列的项,属于中档题.20.【分析】由已知利用累加法即可得到答案【详解】由已知各式相加得即又所以故答案为:【点睛】本题考查了累加求和方法斐波那契数列的性质考查了推理能力与计算能力属于中档题 解析:1m +【分析】由已知,123a a a +=,234,a a a +=202020212022a a a +=,利用累加法即可得到答案. 【详解】由已知,123a a a +=,234,a a a +=202020212022a a a +=,各式相加得1234202020222a a a a a a +++++=,即220202022a S a +=,又21a =,2020S m =,所以20221a m =+. 故答案为:1m + 【点睛】本题考查了“累加求和”方法、“斐波那契数列”的性质,考查了推理能力与计算能力,属于中档题.三、解答题21.(1)31n a n =-;(2)1224433n n T n n +-=+-.【分析】(1)令1n =,结合111a S =>可得12a =,由()()612n n n S a a =++,*n ∈N 可得()()111612n n n S a a +++=++,两式相减可得13n n a a +-=即可求{}n a 的通项公式;(2)24221321()(222)nn n T a a a -=++⋅⋅⋅++++⋅⋅⋅+,利用分组并项求和,以及等差和等比数列求和公式即可求解. 【详解】 (1)由()()11111126a S a a ==++,即()()11210a a --=, 因为111a S =>,所以12a =, 由()()612n n n S a a =++,*n ∈N 可得()()111612n n n S a a +++=++,两式相减可得()()()()11161212n n n n n a a a a a +++=++-++, 得()()1130n n n n a a a a +++--=, 又0n a >,得13n n a a +-=,所以{}n a 是首项为2公差为3的等差数列, 故{}n a 的通项公式为31n a n =-.(2)24221321()(222)nn n T a a a -=++⋅⋅⋅++++⋅⋅⋅+()242(28146222)4n n ++⋅⋅⋅+=++++-+12(264)4(14)4432143n n n n n n ++---=+=+--.【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.22.条件选择见解析;(1)证明见解析;(2)122m m T m +=--.【分析】(1)选择①,可得(1)(1),22n n n n n b n +-=-=从而可得2,nn a =进而利用等比数列的定义可得结论;选择②,列出首项与公差的方程可得n b n =,从而可得2nn a =,进而利用等比数列的定义可得结论;(2)若选择①,则2nn a =,可得21m m c =-,利用分组求和法,结合等比数列的求和公式可得答案;选择②,则2nn a =,利用分组求和法,结合等比数列的求和公式可得答案; 【详解】(1)选择①,因为()*123(1)2n n n b b b b n N +++++=∈, 当1n =时,11b =, 当2n ≥时,(1)(1),122n n n n n b n n +-=-==时也成立,故n b n =. 所以1122,22n nn n n n a a a ++===, 所以数列{}n a 是以2为首项,2为公比的等比数列. 若选择②,设数列{}n b 公差为d , 由题意1112247b d b b d +=⎧⎨++=⎩,,得111b d =⎧⎨=⎩,,得n b n =,即2log n a n =,得2nn a =,所以11222n n n n a a ++==. 所以数列{}n a 是以2为首项,2为公比的等比数列.(2)若选择条件①,则2nn a =,所以1c 对应的区间为(0,2),则121c c =;对应的区间为(0,4),则23c =;3c 对应的区间为(0,8),则37c =;m c 对应的区间为()0,2m ,则21m m c =-;所以()1212122121212212m mm mT m m +-=-+-+-=-=---.若选择条件②,则2nn a =,所以1c 对应的区间为(0,2),则121c c =;对应的区间为(0,4),则23c =;3c 对应的区间为(0,8),则37c =;m c 对应的区间为()0,2m ,则21m m c =-;所以()1212122121212212m m m m T m m +-=-+-+-=-=---.【点睛】方法点睛:数列求和的常见方法:1、公式法;2、错位相减法;3、裂项相消法;4、分组求和法;5、倒序相加法. 23.(1)22nn a n =+;(2)()132483n n n S +-+=【分析】 (1)求出{}2nn a -首项,即可求出{}2n na-通项公式,得出{}n a 的通项公式;(2)设出公比,建立关系求出公比,再利用错位相减法即可求出n S . 【详解】解:(1)因为14a =,所以122a -=, 因为数列{}2nn a -是等差数列,且公差为2,所以()22212nn a n n -=+-=,则22n n a n =+.(2)选①:设公比为q ,由3248a a -=,得24448qq -=,解得4q =或3-,因为20a >,所以4q =. 故4nn a =.()22454314n n S n =⨯+⨯++-⨯, ()23142454314n n S n +=⨯+⨯++-⨯,两式相减得()()231383444314n n nS n +-=++++--,即()2114438313414n n n S n ++--=+⨯+--()12348n n +=--,故()132483n nn S +-+=. 选②:设公比为q ,由364a =,得2464q=,解得4q =±,因为20a >,所以4q =. 故4nn a =.()22454314n n S n =⨯+⨯++-⨯, ()23142454314n n S n +=⨯+⨯++-⨯,两式相减得()()231383444314n n nS n +-=++++--,即()2114438313414n n n S n ++--=+⨯+--()12348n n +=--,故()132483n nn S +-+=. 选③:设公比为q ,由20212201716a a a =,得20211201820181664a a a a ==,则364q =,所以4q =.故4nn a =.()22454314n n S n =⨯+⨯++-⨯, ()23142454314n n S n +=⨯+⨯++-⨯,两式相减得()()231383444314n n nS n +-=++++--,即()2114438313414n n n S n ++--=+⨯+--()12348n n +=--,故()132483n nn S +-+=. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 24.(1)12n n a ;(2)233m <. 【分析】(1)根据题设中的递推关系有12n n a a -=,算出1a 后可求{}n a 的通项. (2)利用裂项相消法可求n T ,求出n T 的最小值后可得m 的取值范围. 【详解】(1)因为()*224n n S a a n N=-∈,故11224n n Sa a --=-,所以1244n n n a a a -=-即12n n a a -=,其中2n ≥,所以322a a =且212a a =, 因为1a ,2a ,31a -成等差数列,故21321a a a =+-即111441a a a =+-,故11a =且10a ≠,故0n a ≠,故12nn a a -=即{}n a 为等比数列且公比为2,故12n na .(2)()()()()2222211111log log 212122121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭,所以1111111111213352121221n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 因为0n b >,故{}n T 为增数列,故()1min 13n T T ==,故1323m>即233m <. 【点睛】方法点睛:数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法. 25.见解析 【分析】根据选择的条件求出{}n a 的通项,再利用分组求和可得n T . 【详解】若选①,由222n n S n a =+可得1122a a =+,故12a =,又22422S a ⨯=+,故()222224a a =+⨯+,故24a =, 故等差数列的公差422d =-=,故()2212n a n n =+-=, 所以()()2212n n n S n n +==+, 所以12b =,26b =,所以等比数列{}n b 的公比为3q =,故123n n b -=⨯故()111111=232311n n n n b S n n n n --++⨯=-+⨯++, 故11111111131=231223341131n n n T n n n -⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-+⨯=- ⎪ ⎪ ⎪ ⎪+-+⎝⎭⎝⎭⎝⎭⎝⎭. 若选②,由题设可得11126163351042a d a d a d +=⎧⎨+++=⎩,解得122a d =⎧⎨=⎩,同①可得131nn T n =-+. 若选③,由题设可得1213S S =即212a a =,故1d a =,故1n a na =, 而74567S a ==,故48a =,故12a =,故2n a n =,同①可得131n n T n =-+. 【点睛】 方法点睛:等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题.另外求和注意根据通项的特征选择合适的求和方法.26.(1)①不是跳跃数列;②是跳跃数列;(2)()()2,23,21-. 【分析】(1)①根据定义可直接判断其不是跳跃数列;②根据定义可直接判断其是跳跃数列; (2)根据条件分1n n a a +>和1n n a a +<两种情况求出n a 的取值范围,再求出首项1a 的取值范围.【详解】(1)①等差数列:1,2,3,4,5,,不满足()()2210()i i i i a a a a i N *+++-->∈,所以不是跳跃数列;②等比数列:11111,,,,24816--,满足()()2210()i i i i a a a a i N *+++-->∈,所以是跳跃数列;(2)由()2111955n n n n a a a a +-=--,得()()22211519195125n n n n n n a a a a a a ++-=----, ()()()22123195125n n n n n n a a a a a a +-=----.若1n n a a +>,则12n n n a a a ++>>,此时2n a ⎫∈⎪⎪⎝⎭;若1n n a a +<,则12n n n a a a ++<<,此时n a ⎛∈ ⎝⎭.若2n a ⎫∈⎪⎪⎝⎭,则21195n n a a +⎛-=∈ ⎝⎭,所以()12,2a ∈-;若53,2n a ⎛+∈ ⎝⎭,则()21192,25n n a a +-=∈-,所以(1a ∈, 所以()()12,23,21a ∈-. 【点睛】 求解等差等比的综合问题,需要分析清楚条件,根据条件描述的等差数列的性质还是等比数列的性质列式,然后再根据数列{}n a 是等差或者等比数列,将式子表示为基本量1,a d 或者1,a q 进行化简计算.。
高中数学北师大版必修5同步精练1.1.2数列的函数特性 Word版含答案

基础巩固已知数列{}是递增数列,则当∈+时,有( ).+≥.+≤.+>.+<已知数列{}的图像是上升的,则{}是( ).递增数列.递减数列.常数列.以上均有可能=-+(为常数),数列{}是递减数列,则有 ( ).>.<.≠.∈=-,则数列{}的图像是( ).一条直线.一条抛物线.一个圆.一群孤立的点求数列{-++}中的最大项.是否是数列{-++}中的一项?综合过关若数列{}的通项公式为=-+(∈+),画出它在轴上方的图像,并根据图像求出的最大值,并在同一坐标系中画出函数()=-+的图像,根据图像求出()的最大值.若用函数来求=-+的最大值,应如何处理.已知数列{}的通项公式是=(∈+),求数列{}中的最大项.能力提升一辆邮车每天从地往地运送邮件,沿途(包括、)共有站,从地出发时,装上发往后面站的邮件各一个,到达后面各站后卸下前面各站发往该站的一个邮件,同时装上该站发往下面各站的邮件各一个,试写出邮车在各站装卸完毕后剩余邮件个数所成的数列,画出该数列的图像,并判断该数列的增减性.参考答案答案:答案:答案:答案:分析:由通项公式可以看出:是的二次函数,求二次函数的最值可采用配方法,此时要注意其中自变量为正整数.解:由已知=-++=-(-)+,由于为正整数,故当取时,取到最大值为.∴数列{-++}的最大项为=.解:令-++=,解得=或=.由于∈+,则方程-++=无正整数解,所以不是数列{-++}中的一项.分析:由=()可知,的图像应该为函数=()图像上横坐标为正整数的点.求{}的最大值既可用图像来解决,也可用函数的相关知识解决.解:由-+>,可得<<.又因为∈+,所以=、、、、、,分别代入通项公式,可得=,=,=,=,=,=,图像如图所示,为个点.最大值为.函数()=-+的图像如图所示(图中曲线).()=-+=-(-)+,当=时,()=.因为<<,且离较近,所以最大值=.解:令()=(∈+).设<<≤,∈+,∈+,则()-()=-==.又<<≤,∈+,∈+,则-<,->,(+)(+)>.所以<.所以()<().所以当≤时,()是增函数.同理可证,当>时,()是减函数,所以当=时,()取最大值()=,即{}中的最大项为=.解:将、之间所有站按序编号,通过计算,上面各站剩余邮件数依次排成数列:。
北师大版高中数学必修五同步练测:1.3等比数列(含答案解析).docx

高中数学学习材料鼎尚图文*整理制作§3 等比数列(北京师大版必修5)建议用时 实际用时满分 实际得分45分钟100分一、选择题(每小题5分,共30分)1.2b ac =是c b a 、、成等比数列的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2等于 ( )A.-4B.-6C.-8D.-10 3.设4321,,,a a a a 成等比数列,其公比为2,则432122a a a a ++的值为()A .41 B .21 C .81 D .14.等比数列{}n a 中,===+q a a a a 则,8,63232()A .2B .21C .2或21D .-2或21-5.在等比数列{a n }中,S 4=1,S 8=3,则a 17+a 18+a 19+a 20的值是( )A 、14B 、16C 、18D 、20 6.已知等比数列{}n a 的首项为8,n S 是其前 项的和,某同学经计算得S 2=20,S 3=36,S 4=65,后来该同学发现其中一个数算错了,则该数为 ( ) A.S 1 B.S 2 C .S 3 D.S 4 二、填空题(每小题5分,共20分)7、已知在等比数列{}n a 中,各项均为正数,且,7,13211=++=a a a a 则数列{}n a 的通项公式是_________=n a8.在正项等比数列{}n a 中,15353225a a a a a a ++=,则35a a +=_______. 9.在等比数列{}n a 中, 若,75,393==a a 则10a __________.10.在等比数列{}n a 中, 若101,a a 是方程06232=--x x 的两根,则47a a ⋅ ___________.三、解答题(本大题共4小题,共50分) 11.(12分)在等比数列{}n a 的前n 项和中,1a 最小,且128,66121==+-n n a a a a ,前n 项和126=n S ,求n 和公比q.12、(12分)一个有穷等比数列的首项为1,项数为偶数,如果其奇数项的和为85,偶数项的和为170, 求此数列的公比和项数.13.(13分)设数列{a n }的前 项的和S n =31(a n -1) (n ).(1)求a 1,a 2; (2)求证数列{a n }为等比数列.14.(13分)设a 1 1,a 235,a n +2 35a n +1 32a n (n 1,2,…),令b n =a n +1 a n (n 1,2…).(1)求数列{b n }的通项公式;(2)求数列{na n }的前n 项的和S n .§3 等比数列(北京师大版必修5)答题纸得分:一、选择题题号 1 2 3 4 5 6答案二、填空题7. ; 8. ;9. ; 10. .三、解答题11.12.13.14.§3 等比数列(北京师大版必修5) 答案一、选择题1.B 解析:当c b a 、、有0时就不成等比数列.2.B 解析:由题意,设1232422,2,4a a a a a a =-=+=+, ∴ 2222(2)(4)(2)a a a -+=+,解得26a =-,选B . 3.A 解析:1211341122212884a a a a a a a a ++==++.4.C 解析:由题意知23,a a 为方程2680x x -+=的两根,解得23322,42,4a a a a ====或,所以公比为2或21. 5.B 解析: , , 成等比数列,根据已知关系可推得 ..6.C 解析: 显然S 1是正确的.假设后三个数均未算错,则a 1=8,a 2=12,a 3=16,a 4=29,可知a 22≠a 1a 3,故S 2、S 3中必有一个数算错了.若S 2算错了,则a 4=29=a 1q 3,3292q =,显然S 3=36≠8(1+q +q 2),矛盾.只可能是S 3算错了,此时由a 2=12得32q =,a 3=18,a 4=27,S 4=S 2+18+27=65,满足题设. 二、填空题 7.12-n 解析:由,7,13211=++=a a a a 得 ∴ (负值舍去).∴ .8.5 解析:所给式子可整理为22233553535()2()()25,5a a a a a a a a ++=+=+=. 9.3375± 解析:63310925,5,755q q a a q ==±=⋅=±. 10.2- 解析:由等比数列性质知471102a a a a ==-. 三、解答题11.解:因为{}n a 为等比数列,所以 ,所以, ,且 ,解得 , .依题意知1≠q ,21261,1261=⇒=--∴=q qqa a S n n .6,6421=∴=-n q n .12.解:设此数列的公比为 ,项数为2n ,则22222(1)1()85,170,11n na q q S S q q--====--奇偶 2221122,85,2256,28,14nn S a q n S a -======-偶奇 ∴,2=q 项数为8 .13.解: (1)由)1(3111-=a S ,得)1(3111-=a a , ∴=1a 21-.又)1(3122-=a S ,即)1(31221-=+a a a ,得412=a .(2)当n >1时,),1(31)1(3111---=-=--n n n n n a a S S a 得,211-=-n n a a 所以{}n a 是首项为21-,公比为21-的等比数列. 14.解:(1)因为121+++-=n n n a a b 1115222()3333n n n n n n a a a a a b +++=--=-=, 故{ }是公比为32的等比数列,且故,32121=-=a a b ),2,1()32( ==n b nn .(2)由得nn n n a a b )32(1=-=+)()()(121111a a a a a a a a n n n n n -++-+-=--++])32(1[232)32()32()32(21n n n -=++++=- , 注意到,11=a 可得),2,1(3231 =-=-n a n nn .记数列}32{11--n n n 的前 项和为T n ,则1222222212(),2()()333333n n n n T n T n -=+⋅++⋅=+⋅++⋅,2112222221()()()3[1()](),3333333n n n n n T n n -=++++-=--两式相减得 1112122(3)29[1()]3()93333(3)223(12)2(1)1823nn n n n n n n n n n T n n S a a na n T n n -+-+=--=-+=+++=+++-=++-故从而.。
2020-2021学年高二数学北师大版必修5习题课1-2 等比数列 Word版含解析

习题课(2)一、选择题(本大题共8小题,每小题5分,共40分) 1.等比数列{a n }中,a 4=4,则a 2·a 6等于( C ) A .4 B .8 C .16D .32解析:a 2·a 6=a 24=16,选C.2.已知等比数列{a n }的公比为正数,且a 3·a 9=2a 25,a 2=1,则a 1=( B ) A.12 B.22 C. 2D .2解析:设等比数列{a n }的公比为q ,由已知得a 1q 2·a 1q 8=2(a 1q 4)2,即q 2=2.又等比数列{a n }的公比为正数,所以q =2,故a 1=a 2q =12=22.3.首项为a 的数列{a n }既是等差数列,又是等比数列,则这个数列的前n 项和S n 为( D )A .an -1B .a nC .(n -1)aD .na解析:由题意得数列{a n }是非零常数列,∴S n =na .4.设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( D ) A .S n =2a n -1 B .S n =3a n -2 C .S n =4-3a nD .S n =3-2a n解析:因为a 1=1,公比q =23,所以a n =⎝ ⎛⎭⎪⎫23n -1,S n =a 1(1-q n)1-q=3⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n =3-2⎝ ⎛⎭⎪⎫23n -1=3-2a n ,故选D. 5.在等比数列{a n }中,|a 1|=1,a 5=-8a 2,a 5>a 2,则a n 等于( A )A .(-2)n -1B .-(-2)n -1C .(-2)nD .-(-2)n解析:由a 5=-8a 2,得公比q =-2.又a 5>a 2,知a 5>0,∴a 1>0,∴a 1=1,∴a n=a 1q n -1=(-2)n -1.6.设等比数列{a n }的前n 项和为S n ,若S 8S 4=3,则S 12S 8等于( B )A .2 B.73 C.83D .3解析:因为S 4,S 8-S 4,S 12-S 8也成等比数列,所以(S 8-S 4)2=S 4(S 12-S 8),又S 4=13S 8,∴⎝⎛⎭⎪⎫S 8-13S 82=13S 8(S 12-S 8),∴S 12=73S 8,即S 12S 8=73.故选B.7.等差数列{a n }的前n 项和为S n ,S 5=15,S 9=18,在等比数列{b n }中,b 3=a 3,b 5=a 5,则b 7的值为( B )A.23B.43 C .2D .3解析:在等差数列{a n }中,由⎩⎨⎧5a 1+10d =15,9a 1+36d =18,得a 3=3,a 5=2.于是b 3=3,b 5=2,所以b 7=b 25b 3=43.8.已知等比数列{a n }的各项都为正数,且当n ≥3时,a 4a 2n -4=102n ,则数列lg a 1,2lg a 2,22lg a 3,23lg a 4,…,2n -1lg a n ,…的前n 项和S n 等于( C )A .n ·2nB .(n -1)·2n -1-1C .(n -1)·2n +1D .2n +1解析:∵等比数列{a n }的各项都为正数,且当n ≥3时,a 4a 2n -4=102n ,∴a 2n =102n ,即a n =10n ,∴2n -1lg a n =2n -1lg10n =n ·2n -1,∴S n =1+2×2+3×22+…+n ·2n-1,①。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题课数列的综合应用
课后篇巩固探究
1.设等差数列{a n}的前n项和为S n,若a1=-11,a4+a6=-6,则当S n取最小值时,n等于()
A.6
B.7
C.8
D.9
答案:A
2.各项均为正数的等比数列{a n}的前n项和为S n,若S n=2,S3n=14,则S4n等于()
A.80
B.30
C.26
D.16
解析:设S2n=a,S4n=b,由等比数列的性质知2(14-a)=(a-2)2,解得a=6或a=-4(舍去),同理(6-2)(b-
14)=(14-6)2,所以b=S4n=30.
答案:B
3.(2017全国3高考)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()
A.-24
B.-3
C.3
D.8
解析:设等差数列的公差为d,则d≠0,=a2·a6,即(1+2d)2=(1+d)(1+5d),解得d=-2,所以S6=6×1+×(-2)=-24,故选A.
答案:A
4.设数列{2n-1}按第n组有n个数(n是正整数)的规则分组如下:(1),(2,4),(8,16,32),…,则第101组中的第一个数为()
A.24 951
B.24 950
C.25 051
D.25 050
解析:前100组共有1+2+3+…+100=5 050个数,则第101组中的第一个数为数列{2n-1}的第5 051项,该数为25 050.
答案:D
5.已知函数f(x)是定义在(0,+∞)上的单调函数,且对任意的正数x,y都有f(x·y)=f(x)+f(y),若数列{a n}的前n项和为S n,且满足f(S n+2)-f(a n)=f(3)(n∈N+),则a n等于()
A.2n-1
B.n
C.2n-1
D.
-
解析:由题意知f(S n+2)=f(a n)+f(3)(n∈N+),
∴S n+2=3a n,S n-1+2=3a n-1(n≥2),两式相减得2a n=3a n-1(n≥2),又n=1时,S1+2=3a1=a1+2,
∴a1=1,∴数列{a n}是首项为1,公比为的等比数列,∴a n=-.
答案:D
6.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n年的产量为f(n)=n(n+1)(2n+1)吨,但如果年产量超过150吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是()
A.5年
B.6年
C.7年
D.8年
解析:由题意可知第一年的产量为a1=×1×2×3=3;以后各年的产量分别为a n=f(n)-f(n-1) =n(n+1)(2n+1)-(n-1)·n·(2n-1)=3n2.
令3n2≤150,∴1≤n≤5.
又n∈N+,
∴1≤n≤7,即生产期限最长为7年.
答案:C
7.已知两个数列{a n},{b n}满足b n=3n a n,且数列{b n}的前n项和为S n=3n-2,则数列{a n}的通项公式
为.
解析:由题意可知3a1+32a2+…+3n a n=3n-2.①当n=1时,a1=;
当n≥2时,3a1+32a2+…+3n-1a n-1=3(n-1)-2,②
①-②,得3n a n=3,a n=
,
-
此时,令n=1,有a1=1,与a1=相矛盾.
,,
故a n=
,
-
,,
答案:a n=
,
-
8.已知正项等比数列{a n}中,a1=3,a3=243,若数列{b n}满足b n=log3a n,则数列的前n项和
S n=.
解析:设数列{a n}的公比为q(q>0),
因为a3=a1q2,解得q=9,
所以a n=a1q n-1=3×9n-1=32n-1.
所以b n=log3a n=log332n-1=2n-1,
所以
(-)()
-,
=
-
所以数列的前n项和S n=+…+
-
=--…
-
=-.
答案:
9.定义运算:=ad-bc,若数列{a n}满足=1,且=12(n∈N+),则a3=,数列{a n}的通项公式为a n=.
解析:由题意得a1-1=1,3a n+1-3a n=12,即a1=2,a n+1-a n=4.
∴{a n}是以2为首项,4为公差的等差数列.
∴a n=2+4(n-1)=4n-2,a3=4×3-2=10.
答案:104n-2
10.若数列{a n}满足=d(n∈N+,d为常数),则称数列{a n}为调和数列,已知数列为调和数列,且x1+x2+…+x20=200,则x5+x16=.
解析:由题意知,若{a n}为调和数列,则为等差数列,∴由为调和数列,可得数列{x n}为等差数列.
由等差数列的性质知,x5+x16=x1+x20=x2+x19=…=x10+x11==20.
答案:20
11.已知等差数列{a n}的前n项和为S n,n∈N+,a3=5,S10=100.
(1)求数列{a n}的通项公式;
(2)设b n=+2n,求数列{b n}的前n项和T n.
解(1)设等差数列{a n}的公差为d,
由题意,得,
,
解得
,
所以a n=2n-1.
(2)因为b n=+2n=×4n+2n,
所以T n=b1+b2+…+b n
=(4+42+…+4n)+2(1+2+…+n)
=-+n2+n
=×4n+n2+n-.
12.已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.
(1)求数列{a n}的通项公式;
(2){b n}为各项非零的等差数列,其前n项和为S n.已知S2n+1=b n b n+1,求数列的前n项和T n.解(1)设{a n}的公比为q,由题意知:a1(1+q)=6,q=a1q2,
又a n>0,解得:a1=2,q=2,所以a n=2n.
(2)由题意知:S2n+1=()()
=(2n+1)b n+1,
又S2n+1=b n b n+1,b n+1≠0,所以b n=2n+1.
令c n=,则c n=,
因此T n=c1+c2+…+c n
=+…+-
-
.
又T n=+…+-,
两式相减得T n=…
-
,所以T n=5-.
13.已知数列{a n}满足a n=2a n-1+2n-1(n∈N+,n≥2),且a4=81.
(1)求数列{a n}的前三项.
(2)是否存在一个实数λ,使得数列为等差数列?若存在,求出λ的值;若不存在,说明理由.
(3)求数列{a n}的前n项和S n.
解(1)由a n=2a n-1+2n-1(n∈N+,n≥2)得,
a4=2a3+24-1=81,∴a3=33;
同理可得,a2=13,a1=5.
(2)假设存在实数λ,使得数列为等差数列,-
------
=1-.
则1-为常数,
∴=0,λ=-1.
即存在实数λ=-1,使得数列为等差数列.
(3)由(2)可知,等差数列-的公差d=1,
则--+(n-1)×1=n+1,
∴a n=(n+1)2n+1.
S n=2×2+3×22+4×23+…+(n+1)×2n+n.
记T n=2×2+3×22+4×23+…+(n+1)×2n,
有2T n=2×22+3×23+…+n×2n+(n+1)×2n+1,
两式错位相减得,T n=n·2n+1.
∴S n=n·2n+1+n=n(2n+1+1).。