新人教版八年级数学下册-第十六章-二次根式单元测试题 (1)

合集下载

(必考题)初中八年级数学下册第十六章《二次根式》经典习题(含答案解析)

(必考题)初中八年级数学下册第十六章《二次根式》经典习题(含答案解析)

一、选择题1.是同类二次根式的是( )A B C D 2.下列各式中,正确的是( )A .3=B 3=±C 3=-D 3= 3.下列计算正确的是( )A =±B .=C =D 2=4. )A .1B .2C .3D .45.下列计算正确的是( )A 2=B 1=C .22=D =6.下列计算正确的是( )A . 3B .1122+=C .3=D 37. )A .3BC D8. ) A .1个 B .2个 C .3个D .4个 9.下列各式中,错误的是( )A .2(3=B .3=-C .23=D 3=- 10.设a b 0>>,2240a b ab +-=,则a b b a +-的值是( )A .2B .-3C .D .11.已知三个数2,4如果再添加一个数,使这四个数成比例,则添加的数是( ).A .B .或2C .D .2或12.下列根式是最简二次根式的是( )A B C D 13.下列二次根式中,最简二次根式是( )AB C D14.估计- )A .0到1之间B .1到2之间C .2到3之间D .3到4之间 15.已知a =,b =,则a 与b 的大小关系是( ).A .a b >B .a b <C .a b =D .无法确定二、填空题16.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:-2=※________.17.计算:2=___________.18.4y =,则y x =________.19.与-a 可以等于___________.(写出一个即可)20.23()a -=______(a≠0),2-=______,1-=______.21.已知1x =,求229x x ++=______.22.=______;23.计算:21|2|2-⎛⎫--= ⎪⎝⎭_________.24.比较大小:“>”、“<”或“=”).25.已知2160x x -=,则x 的值为________.26.20y =,则x y +=________.三、解答题27.先化简,再求值:2232()111x x x x x x +÷---,其中1x =-.28.(1)计算2011(20181978)|242-⎛⎛⎫-⨯----- ⎪ ⎝⎭⎝⎭(2)先化简,再求值:2256111x x x x -+⎛⎫-÷ ⎪--⎝⎭,x 从0,1,2,3四个数中适当选取. 29.计算(1) (2)22)-30.观察,计算,判断:(只填写符号:>,<,=)(1)①当2a =,2b =时,2a b +②当3a =,3b =时,2a b +;③当4a =,1b =时,2a b +④当5a =,3b =时,2a b +(2)写出关于2a b +______探究证明:(提示:20≥)(3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,写出镜框周长的最小值为______.。

最新人教版初中八年级数学下册第16章单元测试卷含答案解析(3套)

最新人教版初中八年级数学下册第16章单元测试卷含答案解析(3套)

第16章单元测试(1)一、选择题(本大题共10小题,每小题4分,共40分;每小题给出的四个选项中,只有一个选项是符合题意的)1.要使二次根式x-3有意义,则x的取值范围是( )A.x=3 B.x>3 C.x≤3 D.x≥32.下列二次根式中,与3不能合并的是( )A.2 3 B.12 C.18 D.273.下列式子为最简二次根式的是( )A. 5B.12C.a2D.1 a4.下列计算正确的是( )A. 53-23=2 B.22×32=62C.3+23=3 D.33÷3=35.化简28-2(2+4)的结果为( )A.-2 B.2-4 C.-4 D.82-46.若k,m,n都是整数,且135=k15,450=15m,180=6n,则下列关于k,m,n的大小关系,正确的是( )A.k<m=n B.m=n<kC.m<n<k D.m<k<n7.计算912÷5412×36的结果为( )A.312B.36C.33D.3348.已知x+y=3+2,xy=6,则x2+y2的值为( )A.5 B.3 C.2 D.19.设a=6-2,b=3-1,c=23+1,则a,b,c之间的大小关系是( )A.c>b>a B.a>c>b C. b>a>c D.a>b>c10.已知a 2a+2a2+18a=10,则a等于( )A.4 B.±2 C.2 D.±4二、填空题(本大题共4小题,每题5分,共20分;将答案直接写在横线上,不必写出解题过程) 11.如果两个最简二次根式3a-1与2a+3能合并,那么a=________.12.已知x+2+(x-y+3)2=0,则(x+y)2018=________.13.实数a在数轴上的位置如图所示,化简|a-1|+(a-2)2=________.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S15.计算:(1)3(2-3)-24-|6-3|;(2)(5-3+2)(5-3-2).16.因为12+1=2,且1<2<2,所以12+1的整数部分为1;因为22+2=6,且2<6<3,所以22+2的整数部分为2;因为32+3=12,且3<12<4,所以32+3的整数部分为3……以此类推,n 2+n (n 为正整数)的整数部分是多少?请说明理由.四、(本大题共2小题,每小题8分,满分16分) 17.已知x =3+1,求式子x 2-2x +3的值.18.已知x =2-1,y =2+1,求y x +x y的值.19.已知x ,y 为实数,y =x 2-4+4-x 2+1x -2,求3x +4y 的值.20.先化简,再求值:64⎛⎛- ⎝⎝,其中x =6+5,y =6- 5.六、(本题满分12分)21.已知长方形的长a =1232,宽b =1318.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.七、(本题满分12分)22.已知实数a ,b 满足|2017-a |+a -2018=a .(1)a 的取值范围是________,化简:|2017-a |=________;(2)小明同学求得a -20172的值为2019,你认为他的答案正确吗?为什么?八、(本题满分14分) 23.观察下列各式:1+112+122=1+11-12=32;1+122+132=1+12-13=76;1+132+142=1+13-14=1312.(1)请你根据上面三个等式提供的信息,猜想:1+142+152=__________________;(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式,并验证;(3)利用上述规律计算:5049+164.参考答案1.D2. C3. A4. D5. A6. D7. B8. A9. D 10. C 11. 4 12. 1 13. 1 14.315415.解:(1)原式=6-3-26-(3-6)=6-3-26-3+6=-6.(2)原式=(5-3)2-(2)2=5-215+3-2=6-215.16.解:n 2+n (n 为正整数)的整数部分为n .理由如下:n 2<n 2+n <(n +1)2,即n <n 2+n <n +1,故n 2+n 的整数部分为n .17.解:x 2-2x +3=(x -1)2+2.( 4分)∵x =3+1,∴原式=(3+1-1)2+2=(3)2+2=5.18.解:∵x =2-1,y =2+1,∴x +y =22,xy =1.∴y x +x y =(x +y )2-2xy xy=(22)2-2×1=6.19.解:由题意得⎩⎪⎨⎪⎧x 2-4≥0,4-x 2≥0,x -2≠0,解得x =-2,∴y =1x -2=-14,∴3x +4y =3×(-2)+4×14⎛⎫- ⎪⎝⎭=-7.20.解:∵x =6+5>0,y =6-5>0,∴原式=(6xy +3xy )-(4xy +6xy )=-xy =-(6+5)(6-5)=-1.21.解:(1)2(a +b)=2×=2×(22+2)=6 2.故长方形的周长为6 2.(2)4ab =41232×1318=422×2=4×2=8.因为62>8,所以长方形的周长大. 22.解:(1)a ≥2018 a -2017(2)她的答案不正确.理由如下:∵|2017-a |+a -2018=a ,∴a -2017+a -2018=a ,∴a -2018=2017,∴a -2018=20172,∴a -20172=2018. 23.解:(1)1+14-15=2120(2)1+1n 2+1(n +1)2=n (n +1)+1n (n +1).验证:等式左边=n 2(n +1)2+(n +1)2+n 2n 2(n +1)2=n 4+2n 2(n +1)+(n +1)2n 2(n +1)2=(n 2+n +1)2n 2(n +1)2=n 2+n +1n (n +1)=n (n +1)+1n (n +1)=等式右边. (3)原式=1+149+164=1+172+182=5756.第16章单元测试(2)(时间:45分钟 分数:100分)一、选择题(每小题2分,共20分) 1.下列式子一定是二次根式的是( )A .2--xB .xC .22+xD .22-x 2.若b b -=-3)3(2,则( )A .b>3B .b<3C .b ≥3D .b ≤3 3.若13-m 有意义,则m 能取的最小整数值是( )A .m=0B .m=1C .m=2D .m=34.若x<0,则xx x 2-的结果是( )A .0B .—2C .0或—2D .2 5.下列二次根式中属于最简二次根式的是( ) A .14 B .48 C .baD .44+a 6.如果)6(6-=-∙x x x x ,那么( )A .x ≥0B .x ≥6C .0≤x ≤6D .x 为一切实数 7.小明的作业本上有以下四题: ①24416a a =;②a a a 25105=⨯; ③a aa a a=∙=112;④a a a =-23。

人教版 八年级数学下册 第十六章 二次根式 单元测试

人教版 八年级数学下册 第十六章 二次根式 单元测试

2022年春人教版初中八年级数学下册第十六章二次根式班级:________ 姓名:________ 分数:________ 一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.下列各式一定是二次根式的是( )A.xB. 2C.-4D.352.下列二次根式中,是最简二次根式的是()A.0.1B. 3C.12 D.x33.当x=0时,二次根式4+2x的值等于( ) A.4 B.2 C. 2 D.04.下列各式中不正确的是( )A.(x-2)2=-2 B.(2)2=2C.-(-2)2=-2 D.±(-2)2=±2 5.计算18×12的结果是()A.6 B.6 2 C.6 3 D.6 66.代数式x+1x在实数范围内有意义时,x的取值范围为( )A.x>-1 B.x≥-1 C.x≥-1且x≠0 D.x≠07.如果12·x是一个正整数,那么x可取的最小正整数值为( ) A.2 B.4 C.3 D.128. 2,5,m是某三角形三边的长,则(m-3)2+(m-7)2等于( )A .2m -10B .10-2mC .10D .49. 设x ,y 为实数,且y =4+5-x +x -5,则|y -x|的值是( ) A .1 B .9 C .4 D .510. 化简二次根式1x -x 3的正确结果是( ) A.-x B.x C .-x D .--x11. 如图,从一个大正方形中裁去面积为16 cm 2和24 cm 2的两个小正方形,则余下的面积为( )A .16 6 cm2B .40 cm 2C .8 6 cm2D .(26+4)cm 212. 设a 1=1+112+122,a 2=1+122+132,a 3=1+132+142,…,a n =1+1n 2+1(n +1)2,其中n 为正整数,则a 1+a 2+a 3+…+a 2 021的值是( )A .2 0202 0192 020B .2 0202 0202 021C .2 0212 0202 021D .2 0212 0212 022 二、填空题:每小题4分,共16分.13. 若最简二次根式3a -1与2a +3可以合并,则a 的值为__ _.14.实数a 在数轴上的位置如图所示,则化简|a -2|+(a -4)2的结果是 __ __.15.(河北模拟)32+8=a b ,则ab =__ __.16.对于任意不相等且和大于0的两个实数a ,b ,定义运算※为a ※b =a +b a -b ,如3※2=3+23-2=5,那么8※12=__ __.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本题满分12分)计算:(1)⎝ ⎛⎭⎪⎪⎫27-43÷3;(2)20.75+12-|3-2|;(3)-12÷2-13×12+1224;(4)(5+3)(5-3)-(3-1)2.18.(本题满分10分)计算: (1)239a +a 4-a1a ;(2)48a2÷2a2·⎝⎛⎭⎪⎪⎫-232a.19.(本题满分10分求代数式a+1-2a+a2的值,其中a=1 007,如图是小亮和小芳的解答过程:(1)________的解法是错误的;(2)求代数式a+2a2-6a+9的值,其中a=-2 022.20.(本题满分10分)已知11-1的整数部分是a,小数部分是b,试求(11+a)(b+1)的值.21.(本题满分10分)如图,有一张边长为6 3 cm 的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为 3 cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积; (2)长方体盒子的体积.22.(本题满分10分)先化简,再求值.⎝⎛⎭⎪⎪⎫6x y x +3y xy 3-⎝ ⎛⎭⎪⎪⎫4yx y +36xy ,其中x =32,y =3.23.(本题满分12分)已知x =3+2,y =3-2,求: (1)x 2-y 2的值; (2)x y +yx 的值.24.(本题满分12分)据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t =h5(不考虑风速的影响).(1)求从40 m 高空抛物到落地时间;(2)小明说从80 m 高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由;(3)已知高空坠落物体动能=10×物体质量×高度(单位:J),质量为0.05 kg 的鸡蛋经过6 s 后落在地上,这个鸡蛋产生的动能是多少?25.(本题满分12分)(1)有理化因式:两个含有根号的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:2的有理化因式是2;1-x2+2的有理化因式是1+x2+2.(2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘分母的有理化因式,达到化去分母中根号的目的.如:11+2=1×(2-1)(2+1)(2-1)=2-1,13+2=1×(3-2)(3+2)(3-2)=3- 2. 【知识理解】(1)填空:2x的有理化因式是________;(2)直接写出下列各式分母有理化的结果:①17+6=________;②132+17=________.【启发运用】(3)计算:11+2+13+2+12+3+…+1n+1+n.参考答案一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.下列各式一定是二次根式的是( B)A.xB. 2C.-4D.352.下列二次根式中,是最简二次根式的是( B)A.0.1B. 3C.12 D.x33.当x=0时,二次根式4+2x的值等于( B) A.4 B.2 C. 2 D.04.下列各式中不正确的是( A)A.(x-2)2=-2 B.(2)2=2C.-(-2)2=-2 D.±(-2)2=±25. 计算18×12的结果是( D ) A .6 B .6 2 C .6 3 D .6 66. 代数式x +1x 在实数范围内有意义时,x 的取值范围为( C ) A .x >-1 B .x ≥-1 C .x ≥-1且x ≠0 D .x ≠07. 如果12·x 是一个正整数,那么x 可取的最小正整数值为( C ) A .2 B .4 C .3 D .128. 2,5,m 是某三角形三边的长,则(m -3)2+(m -7)2等于( D )A .2m -10B .10-2mC .10D .49. 设x ,y 为实数,且y =4+5-x +x -5,则|y -x|的值是( A ) A .1 B .9 C .4 D .510. 化简二次根式1x -x 3的正确结果是( D ) A.-x B.x C .-x D .--x11. 如图,从一个大正方形中裁去面积为16 cm 2和24 cm 2的两个小正方形,则余下的面积为( A )A .16 6 cm2B .40 cm 2C .8 6 cm2D .(26+4)cm 212. 设a 1=1+112+122,a 2=1+122+132,a 3=1+132+142,…,a n =1+1n 2+1(n +1)2,其中n 为正整数,则a 1+a 2+a 3+…+a 2 021的值是( D )A .2 0202 0192 020B .2 0202 0202 021C .2 0212 0202 021D .2 0212 0212 02213. 若最简二次根式3a -1与2a +3可以合并,则a 的值为__4__.14.实数a 在数轴上的位置如图所示,则化简|a -2|+(a -4)2的结果是 __2__.15. 32+8=a b ,则ab =__10__.16.对于任意不相等且和大于0的两个实数a ,b ,定义运算※为a ※b =a +b a -b ,如3※2=3+23-2=5,那么8※12=__-2_. 三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本题满分12分)计算:(1)⎝ ⎛⎭⎪⎪⎫27-43÷3;解:原式=⎝ ⎛⎭⎪⎫33-233÷3=73.(2)20.75+12-|3-2|;解:原式=3+23-(2-3)=43-2.(3)-12÷2-13×12+1224;解:原式=-6-2+6=-2.(4)(5+3)(5-3)-(3-1)2.解:原式=5-9-(3-23+1)=-8+2 3.18.(本题满分10分)计算: (1)239a +a 4-a1a ;解:原式=2a +12a - a =32 a. (2)48a 2÷2a 2·⎝ ⎛⎭⎪⎪⎫-232a .解:原式=⎝ ⎛⎭⎪⎫-4× 12× 23·8a 2·2a ·2a=-1623.19.(本题满分10分) 求代数式a +1-2a +a 2的值,其中a =1 007,如图是小亮和小芳的解答过程: (1)________的解法是错误的;(2)求代数式a +2a 2-6a +9的值,其中a =-2 022.解:(1)小亮.(2)∵a=-2 022,∴a+2a2-6a+9=a+2(a-3)2=a+2|a-3|=a+2(3-a)=-a+6,=2 022+6=2 028.20.(本题满分10分)已知11-1的整数部分是a,小数部分是b,试求(11+a)(b+1)的值.解:∵9<11<16,∴3<11<4,∴2<11-1<3,∴a=2,∴b=11-1-2=11-3,∴(11+2)(11-3+1)=(11+2)(11-2)=11-4=7.21.(本题满分10分) 如图,有一张边长为6 3 cm的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为 3 cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积;(2)长方体盒子的体积.解:(1)制作长方体盒子的纸板的面积为(63)2-4×(3)2=108-12=96(cm2).(2)长方体盒子的体积为(63-23)(63-23)×3=43×43×3=483(cm 3).22.(本题满分10分)先化简,再求值.⎝⎛⎭⎪⎪⎫6x y x +3y xy 3-⎝ ⎛⎭⎪⎪⎫4yx y +36xy ,其中x =32,y =3.解:原式=6xy +3xy -4xy -6xy =-xy ,当x =32,y =3时,原式=-32×3=-322.23.(本题满分12分) 已知x =3+2,y =3-2,求: (1)x 2-y 2的值; (2)x y +yx 的值.解:(1)∵x =3+2,y =3-2,∴x +y =(3+2)+(3-2)=23,x -y =(3+2)-(3-2)=22,∴x 2-y 2=(x +y)(x -y)=23×22=4 6. (2)xy =(3+2)(3-2)=1,则x y +y x =x 2+y 2xy =(x +y )2-2xy xy =(23)2-2×11=10. 24.(本题满分12分) 据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t =h5(不考虑风速的影响).(1)求从40 m高空抛物到落地时间;(2)小明说从80 m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由;(3)已知高空坠落物体动能=10×物体质量×高度(单位:J),质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少?解:(1)由题意知h=40 m,t=h5=405=8=22(s).(2)不正确,理由:当h2=80 m时,t2=805=16=4(s),∵4≠2×22,∴不正确.(3)当t=6 s时,6=h5,h=180 m,鸡蛋产生的动能=10×0.05×180=90(J).25.(本题满分12分)(1)有理化因式:两个含有根号的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:2的有理化因式是2;1-x2+2的有理化因式是1+x2+2.(2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘分母的有理化因式,达到化去分母中根号的目的.如:11+2=1×(2-1)(2+1)(2-1)=2-1,13+2=1×(3-2)(3+2)(3-2)=3- 2. 【知识理解】(1)填空:2x的有理化因式是________;(2)直接写出下列各式分母有理化的结果:①17+6=________;②132+17=________.【启发运用】(3)计算:11+2+13+2+12+3+…+1n+1+n.解:(1)∵2x×x=2x,∴2x的有理化因式是x.故答案为x.(2)①原式=7-6(7+6)(7-6)=7- 6.②原式=32-17(32+17)(32-17)=32-17. 故答案为①7-6;②32-17.(3)原式=2-1(1+2)(2-1)+3-2(3+2)(3-2)+2-3(2+3)(2-3)+…+n+1-n(n+1+n)(n+1-n),=2-1+3-2+2-3+…+n+1-n,=n+1-1.。

2022-2023学年人教新版八年级下册数学《第16章 二次根式》单元测试卷(有答案)

2022-2023学年人教新版八年级下册数学《第16章 二次根式》单元测试卷(有答案)

2022-2023学年人教新版八年级下册数学《第16章二次根式》单元测试卷一.选择题(共12小题,满分36分)1.化简(﹣)2的结果是()A.﹣5B.5C.±5D.252.下列各式中,一定是二次根式的是()A.B.C.D.3.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥5C.x≥﹣5D.x≤54.二次根式的值等于()A.﹣2B.±2C.2D.45.下列计算正确的是()A.=±3B.C.D.6.若是最简二次根式,则a的值可能是()A.﹣2B.2C.D.87.的有理化因式是()A.B.C.D.8.下列二次根式中能与合并的是()A.B.C.D.9.若是整数,则正整数n的最小值是()A.4B.5C.6D.710.如图,在数轴上所表示的x的取值范围中,有意义的二次根式是()A.B.C.D.11.已知二次根式,则下列各数中能满足条件的a的值是()A.4B.3C.2D.112.如果+有意义,那么代数式|x﹣1|+的值为()A.±8B.8C.与x的值无关D.无法确定二.填空题(共10小题,满分30分)13.化简的值是,把4化成最简二次根式是.14.计算:÷=.15.若是整数,则最小正整数n的值为.16.使得二次根式在实数范围内有意义的x的取值范围是.17.化简=.18.如果最简二次根式与是同类二次根式,那么x的值为.19.若是整数,则正整数n的最小值是.20.已知n是正整数,是整数,则n的最小值是.21.已知+=0,则+=.22.小明做数学题时,发现=;=;=;=;…;按此规律,若=(a,b为正整数),则a+b=.三.解答题(共5小题,满分54分)23.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.24.(1)通过计算下列各式的值探究问题:①=;=;=;=.探究:对于任意非负有理数a,=.②=;=;=;=.探究:对于任意负有理数a,=.综上,对于任意有理数a,=.(2)应用(1)所得的结论解决问题:有理数a,b在数轴上对应的点的位置如图所示,化简:﹣﹣+|a+b|.25.当a取什么值时,代数式取值最小?并求出这个最小值.26.阅读下面解题过程,并回答问题.化简:解:由隐含条件1﹣3x≥0,得x∴1﹣x>0∴原式=(1﹣3x)﹣(1﹣x)=1﹣3x﹣1+x=﹣2x按照上面的解法,试化简:.27.已知+2=b+8.(1)求a的值;(2)求a2﹣b2的平方根.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:(﹣)2=5.故选:B.2.解:A、x<0时,不是二次根式,故此选项错误;B、x<﹣2时,不是二次根式,故此选项错误;C、是二次根式,故此选项正确;D、当x>0时,不是二次根式,故此选项错误;故选:C.3.解:∵x﹣5≥0,∴x≥5.故选:B.4.解:原式=|﹣2|=2.故选:C.5.解:A、=3,故本选项错误;B、=,故本选项错误;C、=5,故本选项错误;D、==,故本选项正确.故选:D.6.解:∵是最简二次根式,∴a≥0,且a为整数,中不含开的尽方的因数因式,故选项中﹣2,,8都不合题意,∴a的值可能是2.故选:B.7.解:的有理数因式是,故选:A.8.解:A、,不能与合并,错误;B、,能与合并,正确;C、,不能与合并,错误;D、,不能与合并,错误;故选:B.9.解:∵=3,∴正整数n的最小值是5;故选:B.10.解:从数轴可知:x≥﹣3,A.当﹣3≤x<3时,无意义,故本选项不符合题意;B.当x≥﹣3时,有意义,故本选项符合题意;C.当﹣3≤x≤3时,无意义,故本选项不符合题意;D.当x=﹣3时,无意义,故本选项不符合题意;故选:B.11.解:由题意可知:1﹣a≥0,解得:a≤1.故选:D.12.解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.二.填空题(共10小题,满分30分)13.解:=;4=4×=.故答案是;.14.解:原式===4.故答案为:4.15.解:∵是整数,∴最小正整数n的值是:5.故答案为:5.16.解:∵二次根式在实数范围内有意义,∴x﹣2≥0,解得x≥2.故答案为:x≥2.17.解:原式===2,故答案为:2.18.解:∵最简二次根式与是同类二次根式,∴2x﹣1=5,∴x=3.故答案为:3.19.解:原式=5,则正整数n的最小值是3时,原式是整数.故答案为:3.20.解:==3,∵是整数,∴n的最小值是3,故答案为:3.21.解:由题意得,a﹣3=0,2﹣b=0,解得a=3,b=2,所以,+=+=+=.故答案为:.22.解:根据题中的规律得:a=8,b=82+1=65,则a+b=8+65=73.故答案为:73.三.解答题(共5小题,满分54分)23.解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.24.解:(1)①=4;=16;=0;=.探究:对于任意非负有理数a,=a.故答案为:4,16,0,,a;②=3;=5;=1;=2.探究:对于任意负有理数a,=﹣a.综上,对于任意有理数a,=|a|.故答案为:3,5,1,2,﹣a,|a|;(2)观察数轴可知:﹣2<a<﹣1,0<b<1,a﹣b<0,a+b<0.原式=|a|﹣|b|﹣|a﹣b|+|a+b|=﹣a﹣b+a﹣b﹣a﹣b=﹣a﹣3b.25.解:∵≥0,∴当a=﹣时,有最小值,是0.则+1的最小值是1.26.解:由隐含条件2﹣x≥0,得x≤2,则x﹣3<0,所以原式=|x﹣3|﹣(2﹣x)=﹣(x﹣3)﹣2+x=﹣x+3﹣2+x=1.27.解:(1)由题意知a﹣17≥0,17﹣a≥0,则a﹣17=0,解得:a=17;(2)由(1)可知a=17,则b+8=0,解得:b=﹣8,故a2﹣b2=172﹣(﹣8)2=225,则a2﹣b2的平方根为:±=±15.。

2023-2024人教版八年级数学下册第16章二次根式专题训练 二次根式的运算与化简求值(含答案)

2023-2024人教版八年级数学下册第16章二次根式专题训练  二次根式的运算与化简求值(含答案)

第16章 二次根式 专题训练 二次根式的运算与化简求值类型1 二次根式的加减运算 1.计算:|2-5|+|4-5|= . 2.计算: (1)24+0.5-⎝ ⎛⎭⎪⎫18+6. (2)248-1813+318-818;(3)32-212-418+348. (4)239x +6x 4-2x 1x. (5)a 2b +ab a -b a b-ab 2. (6)-12 046+⎝⎛⎭⎫12-2-|4-12|+(π-3)0-27.类型2 二次根式的乘除运算 3.计算: (1)112×23= ;(2)(-14)×(-112)= ; (3)-0.45-0.5= ; (4)59÷127= . 4.计算:2318÷(-3)×1327.类型3 二次根式的混合运算 5.计算:12⎝ ⎛⎭⎪⎫75+313-48= . 6.计算:(1)50-(-2)+8× 2. (2)12-1+3(3-6)+8. (3)15×3520÷⎝⎛⎭⎫-13 6.(4)(-3)2+18-6×22; (5)⎝ ⎛⎭⎪⎫72-412+32÷8. (6)⎝⎛⎭⎫318+15 50-40.5÷32.类型4 巧用乘法公式计算 7.计算: (1)(5+3)2.(2)(32+12)(18-23). (3)(3+2)2-(3-2)2. (4)(2-3)2024×(2+3)2023;(5)(2+3-5)2-(2-3+5)2; (6)(3+2)2(3-2)-(3-2)2(3+2).类型5 先化简,再求值8.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5+4.9.【2023福建】先化简,再求值:÷,其中x =-1.10.先化简,再求值:(x -1-3x +1)÷x -2x 2+x ,其中x =3-2.类型6 巧用二次根式的定义和性质求值 11.若x -3-3-x =(x +y )2,求x -y 的值.12.当x 取何值时,5x -1+4的值最小?最小值是多少?类型7 巧用乘法公式求值13.已知x =2-3,求代数式(7+43)x 2+(2+3)x +3的值.类型8 巧用整体代入法求值14.已知a =3+22,b =3-22,求a 2b -ab 2的值.15.已知x +y =-7,xy =12,求yx y +x yx的值.16.已知x=1-,y=1+,求x2+y2-xy-2x+2y的值.17.【2023长沙南雅中学期末】已知x=3+,y=3-,求下列各式的值.(1)x2-y2;(2)+.参考答案类型1 二次根式的加减运算 1.计算:|2-5|+|4-5|= . 【答案】2 2.计算: (1)24+0.5-⎝⎛⎭⎪⎫18+6. 解:原式=6+14 2. (2)248-1813+318-818;解:原式=83-63+92-2 2 =23+7 2. (3)32-212-418+348. 解:原式=83+2 2. (4)239x +6x 4-2x 1x . 解:原式=3x . (5)a 2b +ab a -ba b-ab 2. 解:原式=a b -b a . (6)-12 046+⎝⎛⎭⎫12-2-|4-12|+(π-3)0-27.解:原式=-1+4-4+23+1-3 3 =- 3.类型2 二次根式的乘除运算 3.计算: (1)112×23= ;(2)(-14)×(-112)= ; (3)-0.45-0.5= ; (4)59÷127= .【答案】1 28 2 31010 15 4.计算:2318÷(-3)×1327.解:原式=⎝⎛⎭⎫-23×1318×13×27=-29×9 2 =-2 2.类型3 二次根式的混合运算 5.计算:12⎝ ⎛⎭⎪⎫75+313-48= . 【答案】12 6.计算:(1)50-(-2)+8× 2. 解:原式=1+2+4=7. (2)12-1+3(3-6)+8. 解:原式=4.(3)15×3520÷⎝⎛⎭⎫-13 6.解:原式=-9 2.(4)(-3)2+18-6×22; 解:原式=3+32-32=3. (5)⎝ ⎛⎭⎪⎫72-412+32÷8. 解:原式=(62-22+42)÷2 2 =82÷2 2 =4.(6)⎝⎛⎭⎫318+15 50-40.5÷32.解:原式=2.类型4 巧用乘法公式计算 7.计算: (1)(5+3)2. 解:原式=8+215. (2)(32+12)(18-23). 解:原式=6.(3)(3+2)2-(3-2)2. 解:原式=4 6. (4)(2-3)2024×(2+3)2023;解:原式=(2-3)2023×(2+3)2023×(2-3)=[(2-3)×(2+3)]2023×(2-3)=-1×(2-3)=-2+3.(5)(2+3-5)2-(2-3+5)2; 解:原式=(2+3-5+2-3+5)× (2+3-5-2+3-5) =22×(23-25) =46-410.(6)(3+2)2(3-2)-(3-2)2(3+2).解:原式=(3+2)(3-2)[](3+2)-(3-2) =(9-2)×2 2 =14 2.类型5 先化简,再求值8.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5+4. 解:原式=a 2-4+a -a 2 =a -4.当a =5+4时,原式=5+4-4= 5. 9.【2023福建】先化简,再求值:÷,其中x =-1.【解】原式=·=-·=-.当x =-1时,原式=-=-.10.先化简,再求值:(x -1-3x +1)÷x -2x 2+x ,其中x =3-2.解:原式=x 2-1-3x +1×x (x +1)x -2=(x +2)(x -2)x +1×x (x +1)x -2=x (x +2).把x =3-2代入,原式=(3-2)(3-2+2)=3-2 3. 类型6 巧用二次根式的定义和性质求值 11.若x -3-3-x =(x +y )2,求x -y 的值.解:∵x -3≥0,3-x ≥0, ∴x =3,∴y =-3, ∴x -y =6.12.当x 取何值时,5x -1+4的值最小?最小值是多少? 解:当x =15时,5x -1+4的最小值为4.类型7 巧用乘法公式求值13.已知x =2-3,求代数式(7+43)x 2+(2+3)x +3的值. 解:原式=(7+43)(7-43)+(2+3)(2-3)+ 3 =2+ 3.类型8 巧用整体代入法求值14.已知a =3+22,b =3-22,求a 2b -ab 2的值. 解:原式=ab (a -b ) =4 2.15.已知x +y =-7,xy =12,求y xy +xyx 的值.解:∵x +y <0,xy >0,∴x <0,y <0, ∴原式=y ·xy -y +x ·xy-x=-2xy =-4 3. 16.已知x =1-,y =1+,求x 2+y 2-xy -2x +2y 的值. 【解】∵x =1-,y =1+,∴x -y =(1-)-(1+)=-2, xy =(1-)(1+)=-1.∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-2)2-2×(-2)+(-1)=7+4.17.【2023长沙南雅中学期末】已知x =3+,y =3-,求下列各式的值.(1)x 2-y 2; 【解】∵x =3+,y =3-,∴x +y =3++3-=6, x -y =3+-(3-)=2, ∴x 2-y 2=(x +y )(x -y )=6×2=12.(2)+.【解】∵x=3+,y=3-,∴x+y=3++3-=6,xy=(3+)×(3-)=4,∴+=====7.。

人教版八年级下《第16章二次根式》单元测试题((有答案))-(数学)

人教版八年级下《第16章二次根式》单元测试题((有答案))-(数学)

人教版八年级下册数学《第16章二次根式》单元测试题一.选择题(共10小题)1.下列各式中,是二次根式的是()A.x+y B.C.D.2.若无意义,则x的取值范围是()A.x>0B.x≤3C.x>3D.x≥33.化简的结果是()A.B.C.D.4.下列二次根式,最简二次根式是()A.B.C.D.5.下列式子一定成立的是()A.﹣2B.+2C.D.6.若a=+、b=﹣,则a和b互为()A.倒数B.相反数C.负倒数D.有理化因式7.下列各式中,与是同类二次根式的是()A.B.C.D.8.计算的值等于()A.B.4C.5D.2+29.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=210.现将某一长方形纸片的长增加3cm,宽增加6cm,就成为一个面积为128cm2的正方形纸片,则原长方形纸片的面积为()A.18cm2B.20cm2C.36cm2D.48cm2二.填空题(共8小题)11.若a、b为实数,且b=+4,则a+b=.12.若有意义,则a的取值范围为13.已知,化简的结果是.14.计算:3﹣(﹣1)﹣1+1=.15.化简(﹣1)2017(+1)2018的结果为.16.如果最简二次根式和是同类二次根式,则a=,b=.17.二次根式:①,②,③,④中,能与合并的是(填序号).18.如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为.三.解答题(共7小题)19.计算:﹣3+2.20.计算:4×2÷.21.已知:a=+1,求代数式a2﹣2a﹣1的值.22.已知实数a,b,c在数轴上的位置如图,且|a|=|b|,化简|a|+|b|+|c|﹣﹣223.已知=b+1(1)求a的值;(2)求a2﹣b2的平方根.24.求+的值解:;设x=+,两边平方得:x2=()2+()2+2,即x2=3++3﹣+4,x2=10∴x=±.∵+>0,∴+=请利用上述方法,求+的值.25.化简求值:已知:x=,y=,求(x+3)(y+3)的值.人教版八年级下册数学《第16章二次根式》单元测试题参考答案与试题解析一.选择题(共10小题)1.下列各式中,是二次根式的是()A.x+y B.C.D.【分析】根据二次根式的定义判断即可.【解答】解:A、x+y不是二次根式,错误;B、是二次根式,正确;C、不是二次根式,错误;D、不是二次根式,错误;故选:B.【点评】本题考查了二次根式的定义:形如(a≥0)叫二次根式.2.若无意义,则x的取值范围是()A.x>0B.x≤3C.x>3D.x≥3【分析】根据二次根式的被开方数为非负数,可得出关于x的一元一次不等式,解出即可得出答案.【解答】解:∵无意义,∴3﹣x<0,解得:x>3.故选:C.【点评】此题考查了二次根式有意义的条件,关键是掌握二次根式有意义则被开方数为非负数.3.化简的结果是()A.B.C.D.【分析】本题应先判断与1的大小,再对原式进行开方.【解答】解:∵>1,∴﹣1>0,∴==﹣1.故选:B.【点评】本题考查的是二次根式的化简,解此类题目时要先讨论根号内的数的正负性,再开方.4.下列二次根式,最简二次根式是()A.B.C.D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:C.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5.下列式子一定成立的是()A.﹣2B.+2C.D.【分析】根据二次根式的性质,二次根式的乘除法法则计算,判断即可.【解答】解:=|a2﹣2|,A不一定成立;=a2+2,B一定成立;当a≥﹣1时,=•,C不一定成立;当a≥0,b>0时,=,D不一定成立;故选:B.【点评】本题考查的是二次根式的化简,二次根式的乘除法,掌握二次根式的乘除法法则是解题的关键.6.若a=+、b=﹣,则a和b互为()A.倒数B.相反数C.负倒数D.有理化因式【分析】根据二次根式的运算法则即可求出答案.【解答】解:由于a+b≠0,ab≠±1,∴a与b不是互为相反数,倒数、负倒数,故选:D.【点评】本题考查二次根式,解题的关键是正确理解倒数、相反数、负倒数的概念,本题属于基础题型.7.下列各式中,与是同类二次根式的是()A.B.C.D.【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A、=2与是同类二次根式,故本选项正确;B、=2与不是同类二次根式,故本选项错误;C、=2与不是同类二次根式,故本选项错误;D、=3与不是同类二次根式,故本选项错误;故选:A.【点评】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.8.计算的值等于()A.B.4C.5D.2+2【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=2+3=5故选:C.【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.9.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=2【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的除法法则对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.现将某一长方形纸片的长增加3cm ,宽增加6cm ,就成为一个面积为128cm 2的正方形纸片,则原长方形纸片的面积为( ) A .18cm 2B .20cm 2C .36cm 2D .48cm 2【分析】利用算术平方根求出正方形的边长,进而求出原矩形的边长,即可得出答案.【解答】解:∵一个面积为128cm 2的正方形纸片,边长为:8cm ,∴原矩形的长为:8﹣3=5(cm ),宽为:8﹣6=2(cm ),∴则原长方形纸片的面积为:5×2=20(cm 2).故选:B .【点评】此题主要考查了二次根式的应用,根据题意得出原矩形的边长是解题关键. 二.填空题(共8小题)11.若a 、b 为实数,且b =+4,则a +b = 5或3 .【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案. 【解答】解:由被开方数是非负数,得,解得a =1,或a =﹣1,b =4, 当a =1时,a +b =1+4=5, 当a =﹣1时,a +b =﹣1+4=3, 故答案为:5或3.【点评】本题考查了二次根式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.12.若有意义,则a 的取值范围为 a ≤4且a ≠﹣2【分析】二次根式的被开方数是非负数且分式的分母不等于零. 【解答】解:依题意得:4﹣a ≥0且a +2≠0, 解得a ≤4且a ≠﹣2. 故答案是:a ≤4且a ≠﹣2.【点评】考查了二次根式的意义和性质.概念:式子(a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.13.已知,化简的结果是2.【分析】由于,则=x﹣2,|x﹣4|=4﹣x,先化简,再代值计算.【解答】解:已知,则=x﹣2+4﹣x=2.【点评】根据x的取值,确定x﹣2和x﹣4的符号是解此题的关键.14.计算:3﹣(﹣1)﹣1+1=2.【分析】根据分母有理化解答即可.【解答】解:原式==,故答案为:2【点评】此题考查分母有理化,关键是根据分母有理化计算.15.化简(﹣1)2017(+1)2018的结果为+1.【分析】利用积的乘方得到原式=[(﹣1)(+1)]2017•(+1),然后利用平方差公式计算.【解答】解:原式=[(﹣1)(+1)]2017•(+1)=(2﹣1)2017•(+1)=+1.故答案为+1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16.如果最简二次根式和是同类二次根式,则a=0,b=1.【分析】根据同类二次根式的定义:被开方数相同的二次根式,列方程,即可解答.【解答】解:依题意得:,解得.故答案是:0;1.【点评】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.17.二次根式:①,②,③,④中,能与合并的是①④(填序号).【分析】与是同类二次根式即可合并.【解答】解:=2,=3,=,=3,∴、能与合并,故答案为:①④.【点评】本题考查二次根式,解题的关键是正确理解同类二次根式与最简二次根式的定义,本题属于基础题型.18.如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为3﹣3.【分析】设两个正方形的边长是x、y(x<y),得出方程x2=4,y2=9,求出x=2,y=3,代入阴影部分的面积是(y﹣x)x求出即可.【解答】解:设两个正方形的边长是x、y(x<y),则x2=3,y2=9,x=,y=3,则阴影部分的面积是(y﹣x)x=(3﹣)×=3﹣3,故答案为:3﹣3.【点评】本题考查了算术平方根性质的应用,主要考查学生的计算能力.三.解答题(共7小题)19.计算:﹣3+2.【分析】直接化简二次根式,进而合并得出答案.【解答】解:原式=4﹣3×3+2×2=﹣.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.20.计算:4×2÷.【分析】直接利用二次根式的乘除运算法则计算得出答案.【解答】解:原式=8÷=8×3 =24.【点评】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键. 21.已知:a =+1,求代数式a 2﹣2a ﹣1的值.【分析】利用完全平方公式得到原式=(a ﹣1)2﹣2,再有已知条件得到a ﹣1=,然后利用整体代入的方法计算. 【解答】解:原式=(a ﹣1)2﹣2,因为a =+1,所以a ﹣1=,所以原式=()2﹣2=5﹣2=3.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.22.已知实数a ,b ,c 在数轴上的位置如图,且|a |=|b |,化简|a |+|b |+|c |﹣﹣2【分析】根据数轴上点的位置判断出实数a ,b ,c 的符号,然后利用二次根式与绝对值的性质求解即可求得答案.【解答】解:由题意得:c <a <0<b , 又∵|a |=|b |, ∴c ﹣a <0,∴|a |+|b |+|c |﹣﹣2=﹣a +b ﹣c ﹣a +c +2c =﹣2a +b +2c .【点评】此题考查了实数与数轴,二次根式以及绝对值的性质,合并同类项,熟练掌握各自的意义是解本题的关键.23.已知=b +1(1)求a 的值;(2)求a 2﹣b 2的平方根.【分析】(1)根据二次根式的被开方数是非负数解答; (2)结合(1)求得a 、b 的值,然后开平方根即可.【解答】解:(1)∵,有意义,∴,解得:a =5;(2)由(1)知:b +1=0, 解得:b =﹣1,则a 2﹣b 2=52﹣(﹣1)2=24,则平方根是:.【点评】考查了二次根式有意义的条件,平方根.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数.24.求+的值解:;设x =+,两边平方得:x 2=()2+()2+2,即x 2=3++3﹣+4,x 2=10∴x =±.∵+>0,∴+=请利用上述方法,求+的值.【分析】根据题意给出的解法即可求出答案.【解答】解:设x =+,两边平方得:x 2=()2+()2+2,即x 2=4++4﹣+6,x 2=14∴x =±.∵+>0,∴x =【点评】本题考查二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.25.化简求值:已知:x =,y =,求(x +3)(y +3)的值.【分析】将x 和y 的值分母有理化,再代入到原式xy +3x +3y +9=xy +3(x +y )+9计算可得.【解答】解:当x ===,y ===时,原式=xy +3x +3y +9 =xy +3(x +y )+9..=×+3×(+)+9=+3×+9=+3+9=+3. 【点评】此题考查了二次根式的化简求值与分母有理化,正确选择两个二次根式,使它们的积符合平方差公式及二次根式的混合运算顺序与运算法则是解答问题的关键.。

人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)

人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)

人教版数学八年级下册第十六章二次根式单元测试卷(含答案解析)一、单选题(共12小题,每小题4分,共计48分)1A.4b B.CD2.下列各数中,与的积不含二次根式的是A.B.CD3m为()A.-10B.-40C.-90D.-1604.若a,b-5,则a,b的关系为A.互为相反数B.互为倒数C.积为-1D.绝对值相等5.下列计算正确的是3==6=3=;a b=-.A.1个B.2个C.3个D.4个6合并的是()A B C D7.若6的整数部分为x,小数部分为y,则(2x)y的值是() A.5-B.3C.-5D.-38.如图,a,b,c的结果是()a c+A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b9.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间 D.8和9之间10有意义,那么直角坐标系中点A(a,b)在() A .第一象限 B .第二象限 C .第三象限D .第四象限11.下列计算正确的是AB . CD12.如果,,那么各式:,,,其中正确的是()A .①②③B .①③C .②③D .①②二、填空题(共5小题,每小题4分,共计20分)13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a﹣的结果是_____.14.已知a 、b满足(a ﹣1)2=0,则a+b=_____.15有意义,则实数x 的取值范围是_____.16.若a ,b 都是实数,b﹣2,则a b 的值为_____. 17.已知实数,互为倒数,其中__________. ()=3=2==0ab > 0a b +<=1=b =-a b a 2=+三、解答题(共4小题,每小题8分,共计32分)18=b+8.(1)求a 的值;(2)求a 2-b 2的平方根.19.已知实数a 满足|300﹣a =a ,求a ﹣3002的值.20.已知点A(5,a)与点B(5,-3)关于x 轴对称,b 为求(1)的值。

初中八年级数学下册第十六章二次根式单元考试习题(含答案) (68)

初中八年级数学下册第十六章二次根式单元考试习题(含答案) (68)

初中八年级数学下册第十六章二次根式单元考试习题(含答案)阅读下面的材料:我们可以用配方法求一个二次三项式的最大值或最小值,例如:求代数式225a a -+的最小值.方法如下:∵()2222521414a a a a a -+=-++=-+,由()210a -≥,得()2144a -+≥; ∴代数式225a a -+的最小值是4.(1)仿照上述方法求代数式2107x x ++的最小值.(2)代数式2816a a --+有最大值还是最小值?请用配方法求出这个最值.【答案】(1)18-;(2)有最大值,最大值为32.【解析】【分析】(1)仿照阅读材料、利用配方法把原式化为完全平方式与一个数的和的形式,根据偶次方的非负性解答;(2)利用配方法把原式进行变形,根据偶次方的非负性解答即可.【详解】解:(1)∵()222107102518518x x x x x ++=++-=+-,由()250x +≥, 得 ()251818x +-≥-; ∵代数式2107x x ++的最小值是18-;(2)()22281681632432a a a a a --+=---+=-++, ∵()240a -+≤,∵()243232a -++≤,∵代数式2816--+有最大值,最大值为32.a a【点睛】本题考查的是配方法的应用和偶次方的非负性,掌握配方法的一般步骤、偶次方的非负性是解题的关键.102.计算:(1)-|1|(2)4(2x-1)2=16【答案】(1)-4;(2)x=-0.5,x=1.5【解析】【分析】(1)分别计算立方根、绝对值,再合并即可.(2)先变形为(2x-1)2=4,再利用平方根的定义求出x;【详解】(1) 1-1(2) 4(2x-1)2=16∴(2x-1)2=4∴2x-1是4的平方根∴2x-1=2或2x-1=-2∴x=1.5或x=-0.5【点睛】(1)本题考查了二次根式的化简、立方根的性质、绝对值的性质,正确掌握相关性质是解题的关键.(2)本题考查用平方根的定义,熟知若x 2=a,则x 是a 的平方根是解题的关键.103.观察下列各式:1121==-==等于什么? 你能得到什么样的规律?利用你得到的规律计算下面的题目:.......+++(n 为正整数)=1.【解析】【分析】 观察题目中已知算式特点:分子都是1,分母都是相邻两个自然数的算术平方根的和,结果是大数的算术平方根减去小数的算术平方根,即可得到规律,先【详解】1121==-====, 以此类推, 可得到的规律是:第n=;.......+++(n 为正整数) 1.......+1.=1. 【点睛】本题考查分母有理化,规律型:数字的变化类.104.(本题6分)计算:【答案】2【解析】试题分析:首先根据幂的计算法则、二次根式和三角函数的计算法则得出各式的值,然后进行计算.试题解析:原式=4﹣2+1﹣√3×√33=4﹣2+1﹣1=2考点:实数的计算.105.甲同学用如图方法作出C 点,表示数在△OAB 中,∠OAB=90°,OA=2,AB=3,且点 O ,A ,C 在同一数轴上,OB=OC ,(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如图所给数轴上描出表示F.【答案】(1)点C (2)点A 表示的数为【解析】【详解】(1)在Rt△AOB 中,,∵OB=OC,∴∴点 C(2)如图所示:取OB=5,作BC⊥OB,取BC=2.由勾股定理可知:OC=∵∴点 A表示的数为.【点睛】本题主要考查的是实数与数轴、勾股定理的应用,掌握勾股定理是解题的关键.106.已知实数m,n满足n【答案】0【解析】【分析】根据二次根式有意义的条件即可求出答案.【详解】解:由题意可知:2240 4020 mmm⎧-≥⎪-≥⎨⎪-≠⎩∴m=﹣2,∴n=00 22 + --=0【点睛】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.107.计算:(1(2(30(1+ (4)2+【答案】(1);(2(3)6;(4)0 【解析】(1==(23==+=(3(01151 6.=+=+= (4)22225720.+=-+=-+=108.如图,五边形ABCDE 中,,,90AB a BC b B ︒==∠=.且236b =+.(1)求-a b 的平方根;(2)请在CD 的延长线上找一点G ,使得四边形ABCG 的面积与五边形ABCDE 的面积相等;(说明找到G 点的方法)(3)已知点F 在AC 上,//FH AB 交BC 于H ,若6FH =,则BH = .【答案】(1)-a b 的平方根为;(2)见解析;(3)32BH =【解析】【分析】(1)根据已知条件即可求a −b 的平方根;(2)连接AD ,过点E 作//EG AD 交CD 延长线于G 点,即为所求;(3)根据等面积法即可求线段BH 的长.【详解】()1由题知:22640640a a ⎧-≥⎨-≥⎩226464a a ⎧≥∴⎨≤⎩264a ∴=8a ∴=±80a +≠8a ∴≠-8a ∴=236b ∴=6b ∴=±0b BC =>6b ∴=∴a-b=2∵a-b 的平方根是()2如图∵连接AD∵过点E 作//EG AD 交CD 延长线于G 点理由:连接AG 交ED 于点O//AD EGAED AGD S S ∆∆∴=AOE GOD S S ∆∆∴=ABCDE AOE ABCDO GOD ABCDO S S S S S ∆∆∴=+=+ABCG S =∴所以四边形ABCG 的面积与五边形ABCDE 的面积相等;(3)连接FB ,FH ∥AB过点F 作FQ ⊥AB 于点Q ,则四边形FQBH 是矩形,∴FQ =BH ,ABC ABF FBC S S S ∆∆∆=+111222AB BC AB h BC FH ∴=+ 86866h ∴⨯=⨯+⨯32h ∴= 32BH h ∴== 故答案为:32.【点睛】本题考查了作图−应用与设计作图,综合运用平方根、二次根式有意义的条件、平行线的性质、三角形的面积等知识解决问题,解题关键是利用等面积法.109.已知:,+2,分别求下列代数式的值:(1)a2b-ab2(2)a2+ab+b2【答案】(1)4 (2)13【解析】试题分析:(1)由a、b的值先计算出ab、a﹣b,再代入原式=ab(a﹣b)可得答案;(2)将a﹣b、ab代入原式(a﹣b)2+3ab计算可得.试题解析:解:(1)∵a2,b,∴ab=﹣2))=3﹣4=﹣1,a﹣b﹣22=﹣4,则a2b﹣ab2=ab(a﹣b)=4;(2)原式=(a﹣b)2+3ab=16﹣3=13点睛:本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和法则.110.计算(1)-(2)2+--(71)(3(4)×【答案】(1)2-2)45-+3(4)+6【解析】分析:(1)先将二次根式化为最简,然后再进行二次根式的除法及减法运算.(2) 运用平方差及完全平方式解答即可.(3) 将二次根式化为最简,然后再进行同类二次根式的合并即可.(4) 先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)原式=2-(2)原式=45-+(3)原式=2﹣2+﹣=﹣;(4)(+3﹣2)×2=(+)×2=6+6.点睛:本题考查了二次根式的计算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级第二学期第一次月考试题
班级: 姓名: 分数:
一、选择题(每题2分,共20分)
1. 下列各式中一定是二次根式的是 ( )
A. 7-
B. 32m
C. 12+x
D. 3a b
2. 如果52x -是二次根式,那么x 应满足的条件是( )
A. 5
2x = B. 5
2x < C. x ≥52 D. x ≤5
2
3. 正方形的面积是4,则它的对角线长是 ( )
A 、2
B 、2
C 、22
D 、4
4. 化简二次根式2(3)6-⨯得 ( )
A. 36-
B. 36
C. 18
D. 6
5. 等式(1)(1)11a a a a +-=+∙-成立的条件是 ( )
A. 1a ≥-
B. 1a ≤
C. 1<1a -≤
D. 11a -≤≤
6. 下列各式计算正确的是 ( )
A. 8323163∙=
B. 535256∙=
C. 432286∙=
D. 432285∙=
7. 如图,在△ABC 中,AD ⊥BC 于D ,AB=3,BD=2,DC=1,则AC=( )
A 、6
B 、6
C 、5
D 、4
8.一直角三角形的三边分别为2、3、x ,那么以x 为边长的正方形的面积为( )
A 、13
B 、5
C 、13或5
D 、无法确定
9. 等式11x x
x x =--成立的条件是 ( )
A. 0x ≥
B. <1x
C. 0<1x ≤
D. 0x ≥且1x ≠
10. 当3a <-时,化简22(21)(3)a a -++的结果是( )
A. 32a +
B. 32a --
C. 4a -
D. 4a -
二、填空题(每题2分,共20分)
11. 如果11x
-是二次根式,则x 的取值范围是 。

12. 若<0n ,则代数式3227m n = 。

13.有两棵树,一棵高6米,另一棵高2米,两树相距4米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米.
14. 化简7581= , 55= 。

15.. 计算1275434827-+= 。

16.如图,AC ⊥CE ,AD=BE=13,BC=5,DE=7,那么AC= ;
17.已知1812261884
a a a -+=,则a = 。

18.若26m +与234m +是同类二次根式,则m = 。

2(2)2a a -=-成立的条件是 。

19.如图,字母B 所代表的正方形的面积是 ;
20.若<n m ,则222m mn n -+= 。

三、解答题(共60分)
19. 分别指出x 取哪些实数时,式子有意义。

(每小题3分,共6分)
(1)
12x -; (2)21
x x --;
20. 计算(每小题4分,共16分) (1)14510811253++-; (2)3263117(36)2352610
-++
A B
C
D E (第16
B
169
25
(第19题)
(3)32(4)(39)a b b
a b a ab b a a +-+ (4)22111(>)m n m n m n m n
⨯÷+--
21. 已知5x y +=,3x y ∙=,计算
y x x y
+的值。

(5分)
22.公路旁有一棵大树高为5.4米,在刮风时被吹断,断裂处距地面1.5米,请你通过计算说明在距离该大树多大范围内将受到影响。

(5分)
22. 已知实数,,a b c 满足21|1|440a b c c -+++-+=,求1001003a b c ++的值。

(5分)
23.如图,一个圆柱形纸筒的底面周长是40cm,高是30cm,一只小蚂蚁在圆筒底的A处,它想吃到上底与下底面中间与A点相对的B点处的蜜糖,试问蚂蚁爬行的最短的路程是多少?(6分)
23. 若521
a b
-=-,2
ab=,求代数式(1)(1)
a b
+-的值。

(5分)
24. 已知
11
,,
322322
A B
==
+-

11
11
A B
+
--
的值。

(6分)
25. 已知
1
110
a
a
+=-+,求2
2
1
a
a
+的值。

(6分)。

相关文档
最新文档