2018-2019年贵阳市数学押题试卷训练试题(2套)附答案

合集下载

贵阳市三中2018-2019学年高二上学期数学期末模拟试卷含解析

贵阳市三中2018-2019学年高二上学期数学期末模拟试卷含解析

贵阳市三中2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.已知圆C:x2+y2﹣2x=1,直线l:y=k(x﹣1)+1,则l与C的位置关系是()A.一定相离 B.一定相切C.相交且一定不过圆心D.相交且可能过圆心2.已知等差数列{a n}满足2a3﹣a+2a13=0,且数列{b n} 是等比数列,若b8=a8,则b4b12=()A.2 B.4 C.8 D.163.如果执行如图所示的程序框图,那么输出的a=()A.2 B.C.﹣1 D.以上都不正确4.设为虚数单位,则()A. B. C. D.5.利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅下表来确定断言“X和Y有关系”的可信度,如果k>5.024,那么就有把握认为“X和Y有关系”的百分比为()P(K2>k)0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828A.25% B.75% C.2.5% D.97.5%6.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为()A.y=x﹣1B.y=lnx C.y=x3D.y=|x|7.设双曲线焦点在y轴上,两条渐近线为,则该双曲线离心率e=()A.5 B.C.D.8.独立性检验中,假设H0:变量X与变量Y没有关系.则在H0成立的情况下,估算概率P(K2≥6.635)≈0.01表示的意义是()A.变量X与变量Y有关系的概率为1%B.变量X与变量Y没有关系的概率为99%C.变量X与变量Y有关系的概率为99%D .变量X 与变量Y 没有关系的概率为99.9%9. 已知函数f (x )=3cos (2x ﹣),则下列结论正确的是( )A .导函数为B .函数f (x )的图象关于直线对称C .函数f (x )在区间(﹣,)上是增函数D .函数f (x )的图象可由函数y=3co s2x 的图象向右平移个单位长度得到10.记集合{}22(,)1A x y x y =+?和集合{}(,)1,0,0B x y x y x y =+3?表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( ) A .12p B .1p C .2pD .13p【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力. 11.数列{a n }的首项a 1=1,a n+1=a n +2n ,则a 5=( ) A .B .20C .21D .3112.某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( ) A .80B .40C .60D .20二、填空题13.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式1log 3)(log 33-<x x f 的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大. 14.若复数34sin (cos )i 55z αα=-+-是纯虚数,则tan α的值为 . 【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力.15.设是空间中给定的个不同的点,则使成立的点的个数有_________个.16.已知点A 的坐标为(﹣1,0),点B 是圆心为C 的圆(x ﹣1)2+y 2=16上一动点,线段AB 的垂直平分线交BC 与点M ,则动点M 的轨迹方程为 .17.图中的三个直角三角形是一个体积为20的几何体的三视图,则h =__________.18.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ .三、解答题19.在平面直角坐标系xOy 中.己知直线l 的参数方程为(t 为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是ρ=4. (1)写出直线l 的普通方程与曲线C 的直角坐标系方程; (2)直线l 与曲线C 相交于A 、B 两点,求∠AOB 的值.20. 坐标系与参数方程线l :3x+4y ﹣12=0与圆C :(θ为参数 )试判断他们的公共点个数.21.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()()3244f x x a x a b x c =+--++(),,R a b c ∈有一个零点为4,且满足()01f =.(1)求实数b 和c 的值;(2)试问:是否存在这样的定值0x ,使得当a 变化时,曲线()y f x =在点()()00,x f x 处的切线互相平行?若存在,求出0x 的值;若不存在,请说明理由; (3)讨论函数()()g x f x a =+在()0,4上的零点个数.22.在△ABC 中,cos2A ﹣3cos (B+C )﹣1=0. (1)求角A 的大小;(2)若△ABC 的外接圆半径为1,试求该三角形面积的最大值.23.已知集合A={x|a ﹣1<x <2a+1},B={x|0<x <1} (1)若a=,求A ∩B .(2)若A ∩B=∅,求实数a 的取值范围.24.如图,在三棱锥 P ABC -中,,,,E F G H 分别是,,,AB AC PC BC 的中点,且,PA PB AC BC ==.(1)证明: AB PC ⊥; (2)证明:平面 PAB 平面 FGH .贵阳市三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】【分析】将圆C方程化为标准方程,找出圆心C坐标与半径r,利用点到直线的距离公式表示出圆心到直线的距离d,与r比较大小即可得到结果.【解答】解:圆C方程化为标准方程得:(x﹣1)2+y2=2,∴圆心C(1,0),半径r=,∵≥>1,∴圆心到直线l的距离d=<=r,且圆心(1,0)不在直线l上,∴直线l与圆相交且一定不过圆心.故选C2.【答案】D【解析】解:由等差数列的性质可得a3+a13=2a8,即有a82=4a8,解得a8=4(0舍去),即有b8=a8=4,由等比数列的性质可得b4b12=b82=16.故选:D.3.【答案】B【解析】解:模拟执行程序,可得a=2,n=1执行循环体,a=,n=3满足条件n≤2016,执行循环体,a=﹣1,n=5满足条件n≤2016,执行循环体,a=2,n=7满足条件n≤2016,执行循环体,a=,n=9…由于2015=3×671+2,可得:n=2015,满足条件n≤2016,执行循环体,a=,n=2017不满足条件n≤2016,退出循环,输出a的值为.故选:B.4.【答案】C【解析】【知识点】复数乘除和乘方【试题解析】故答案为:C5.【答案】D【解析】解:∵k>5、024,而在观测值表中对应于5.024的是0.025,∴有1﹣0.025=97.5%的把握认为“X和Y有关系”,故选D.【点评】本题考查独立性检验的应用,是一个基础题,这种题目出现的机会比较小,但是一旦出现,就是我们必得分的题目.6.【答案】D【解析】解:选项A:y=在(0,+∞)上单调递减,不正确;选项B:定义域为(0,+∞),不关于原点对称,故y=lnx为非奇非偶函数,不正确;选项C:记f(x)=x3,∵f(﹣x)=(﹣x)3=﹣x3,∴f(﹣x)=﹣f(x),故f(x)是奇函数,又∵y=x3区间(0,+∞)上单调递增,符合条件,正确;选项D:记f(x)=|x|,∵f(﹣x)=|﹣x|=|x|,∴f(x)≠﹣f(x),故y=|x|不是奇函数,不正确.故选D7.【答案】C【解析】解:∵双曲线焦点在y轴上,故两条渐近线为y=±x,又已知渐近线为,∴=,b=2a,故双曲线离心率e====,故选C.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率=,是解题的关键.8.【答案】C【解析】解:∵概率P(K2≥6.635)≈0.01,∴两个变量有关系的可信度是1﹣0.01=99%,即两个变量有关系的概率是99%,故选C.【点评】本题考查实际推断原理和假设检验的应用,本题解题的关键是理解所求出的概率的意义,本题是一个基础题.9.【答案】B【解析】解:对于A,函数f′(x)=﹣3sin(2x ﹣)•2=﹣6sin(2x ﹣),A错误;对于B,当x=时,f ()=3cos(2×﹣)=﹣3取得最小值,所以函数f(x )的图象关于直线对称,B正确;对于C,当x ∈(﹣,)时,2x ﹣∈(﹣,),函数f(x)=3cos(2x ﹣)不是单调函数,C错误;对于D,函数y=3co s2x 的图象向右平移个单位长度,得到函数y=3co s2(x ﹣)=3co s(2x ﹣)的图象,这不是函数f(x)的图象,D错误.故选:B.【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.10.【答案】A【解析】画出可行域,如图所示,Ω1表示以原点为圆心,1为半径的圆及其内部,Ω2表示OABD及其内部,由几何概型得点M落在区域Ω2内的概率为112P==p2p,故选A.11.【答案】C【解析】解:由a n+1=a n +2n ,得a n+1﹣a n =2n ,又a 1=1, ∴a 5=(a 5﹣a 4)+(a 4﹣a 3)+(a 3﹣a 2)+(a 2﹣a 1)+a 1 =2(4+3+2+1)+1=21. 故选:C .【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题.12.【答案】B【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本, ∴三年级要抽取的学生是×200=40,故选:B .【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.二、填空题13.【答案】)3,0(【解析】构造函数x x f x F 3)()(-=,则03)(')('>-=x f x F ,说明)(x F 在R 上是增函数,且13)1()1(-=-=f F .又不等式1log 3)(log 33-<x x f 可化为1l o g 3)(l o g 33-<-x x f ,即)1()(l o g 3F x F <,∴1log 3<x ,解得30<<x .∴不等式1log 3)(log 33-<x x f 的解集为)3,0(.14.【答案】34-【解析】由题意知3sin 05α-=,且4cos 05α-≠,所以4cos 5α=-,则3tan 4α=-.15.【答案】1【解析】【知识点】平面向量坐标运算【试题解析】设设,则因为,所以,所以因此,存在唯一的点M,使成立。

贵州省贵阳市2018-2019学年高一数学上学期期末检测试题

贵州省贵阳市2018-2019学年高一数学上学期期末检测试题

贵州省贵阳市2018-2019学年高一数学上学期期末检测试题一、选择题1.已知2211()f x x x x -=+,则(1)f x +的解析式为( ) A.221(1)(1)(1)f x x x +=+++B.2211(1)()1()f x x x x x+=-+- C.2(1)(1)2f x x +=++D.2(1)(1)1f x x +=++2.在平面几何中有如下结论:正三角形ABC 的内切圆面积为1S ,外接圆面积为2S ,则1214S S =,推广到空间中可以得到类似结论:已知正四面体P ABC -的内切球体积为1V ,外接球体积为2V ,则为12V V =( ) A.164B.127C.19D.183.若实数,满足,则的最小值是( ) A .0B .C .-6D .-34.如图,当输入的x 值为5时,则输出的结果 ( )A.5B.4C.3D.25.与圆221:4470O x y x y ++-+=和圆222:410130O x y x y +--+=都相切的直线条数是( )A.3B.1C.2D.46.下列命题中不正确的是( )A.空间中和两条相交直线都平行的两个平面平行B.空间中和两条异面直线都平行的两个平面平行C.空间中和两条平行直线都垂直的两个平面平行D.空间中和两条平行直线都平行的两个平面平行 7.复数满足,则( )A. B. C. D.8.已知0a b >>,0c >,下列不等式中不.成立的是 A .a c b c +>+B .a c b c ->-C .ac bc >D .c ca b> 9.设()ln f x x x =,若()'3o f x =,则o x =( ) A .eB .2eC .ln 22D .ln 210.设()(),f x g x 分别是定义在R 上的奇函数和偶函数,且()()'',f x g x 分别是()(),f x g x 的导数,当0x <时,()()()()''+0fx g x f x g x >且()60g =,则不等式()()0f x g x <的解集是( )A .()()6,06,-⋃+∞B .()(),60,6-∞-⋃C .()()6,00,6-⋃D .()(),66,-∞-⋃+∞11.设集合{}0,1,2,3,4,5U =,{}{}2,3,4,3,4,5A B ==则U A C B =()A .{}2B .{}0,1C .{}0,1,2,3,4D .{}0,1,3,4,512.一个射手进行一次射击,则事件“命中环数小于6环”的对立事件是() A.命中环数为7、8、9、10环 B.命中环数为1、2、3、4、5、6环 C.命中环数至少为6环 D.命中环数至多为6环 二、填空题13.抛物线28y x =的焦点为F ,点(5,4)A ,P 为抛物线上一点,且P 不在直线AF 上,则PAF ∆周长的最小值为________.14.已知实数x ,y 满足2x y 0x y 4y 1-≥⎧⎪+≤⎨⎪≥⎩,则y x 2+的取值范围为______.15.已知P 是△ABC 所在平面内一点,,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是_____. 16.设2018220180122018(1)ax x a x a a x a -=++++,若12320182320182018a a a a a +++⋯+=()0a ≠,则实数a =________.三、解答题 17.已知函数,函数(1)若,求不等式的解集; (2)若对任意,均存在,使得成立,求实数的取值范围.18.椭圆E :的左、右焦点分别为、,过且斜率为的直线与椭圆的一个交点在x 轴上的射影恰好为.(1)求椭圆E 的标准方程; (2)设直线与椭圆E 交于A ,C 两点,与x 轴交于点H ,设AC 的中点为Q ,试问是否为定值?若是,求出定值;若不是,请说明理由.19.某种农作物可以生长在滩涂和盐碱地,它的灌溉是将海水稀释后进行灌溉.某实验基地为了研究海水浓度对亩产量(吨)的影响,通过在试验田的种植实验,测得了该农作物的亩产量与海水浓度的数据如下表: 海水浓度 亩产量(吨)残差绘制散点图发现,可以用线性回归模型拟合亩产量(吨)与海水浓度之间的相关关系,用最小二乘法计算得与之间的线性回归方程为.(1)求的值;(2)统计学中常用相关指数来刻画回归效果,越大,回归效果越好,如假设,就说明预报变量的差异有是解释变量引起的.请计算相关指数(精确到),并指出亩产量的变化多大程度上是由浇灌海水浓度引起的?(附:残差,相关指数,其中)20.经国务院批复同意,郑州成功入围国家中心城市,某校学生团针对“郑州的发展环境”对20名学生进行问卷调查打分满分100分,得到如图1所示茎叶图.(Ⅰ)分别计算男生女生打分的平均分,并用数学特征评价男女生打分的数据分布情况; (Ⅱ)如图2按照打分区间、、、、绘制的直方图中,求最高矩形的高;(Ⅲ)从打分在70分以下不含70分的同学中抽取3人,求有女生被抽中的概率.21.在平面直角坐标系xOy 中,曲线C:2260x y x +-=,直线1l :30x -=,直线2l 30x y -=以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)写出曲线C 的参数方程以及直线1l ,2l 的极坐标方程;(2)若直线1l 与曲线C 分别交于O 、A 两点,直线2l 与曲线C 交于O 、B 两点,求△AOB 的面积. 22.已知集合2{|430},{|33}P x x x Q x a x a =-+<=-<<+,若“x P ∈”是“x Q ∈”的充分条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C B C D A D A D B B C C 二、填空题13.1214.14, 55⎡⎤⎢⎥⎣⎦15.16.2三、解答题17.(1),(2)【解析】分析:(1)根据绝对值的定义分类去掉绝对值符号后解相应不等式;(2)求出的最小值,的最小值,然后再解不等式,注意分类讨论.详解:(1)依题意得当时,,或,;当时,,无解所以原不等式的解集为(2)因为所以当时,当时,所以当时,在上单调增,在上单调增,在上单调减当时,,则在上单调增,在上单调减,在上单调增当时,的上单调增,又因为所以①当时,在上单调增,②当时,又因为,结合时,的单调性,故,综上,,又因为,所以①当时,;②当时,综上得:当时,由得,故当时,由得,故当时,由得,故综上所述:的取值范围是点睛:不等式恒成立问题的等价转化:①对任意,,恒成立;②对任意,存在,使成立;③存在,对任意,使成立.18.(Ⅰ).(Ⅱ).【解析】试题分析:(Ⅰ)过且斜率为的直线方程为,令,则,可得,求出的值即可求得椭圆的标准方程;(Ⅱ)由可得,设,根据弦长公式可得的值,根据两点间距离公式可得的值,则.试题解析:(Ⅰ)过且斜率为的直线方程为,令,则由题意可得,解得,所以椭圆的标准方程.(Ⅱ)由可得,设则有,,又,为的中点,直线与轴的交点为,所以,,所以为定值.【方法点睛】本题主要考查待定待定系数法求椭圆标准方程、直线与椭圆的位置关系以及圆锥曲线的定值问题以及点在曲线上问题,属于难题. 探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.19.(1);(2).【解析】分析:(1)先求出,再代入方程即得的值;再求,最后利用残差定义求m,n.(2)直接利用相关指数公式求相关指数,并指出亩产量的变化多大程度上是由浇灌海水浓度引起的.详解:(1)因为,,所以,即,所以线性回归方程为,所以,.(2),所以相关指数,故亩产量的变化有是由海水浓度引起的.点睛:(1)本题主要考查回归方程的性质和残差,考查相关指数,意在考查学生对这些知识的掌握水平和计算能力.(2) 称为样本点的中心,回归直线过样本点的中心.20.(1)女生:78,男生:69;(2)0.045;(3) .【解析】试题分析:(1)利用茎叶图能求出女生打分的平均分和男生打分的平均分,从茎叶图来看,女生打分相对集中,男生打分相对分散.(2)20名学生中,打分区间[0,60)、[60,70)、[70,80)、[80,90)、[90,100]中的学生数分别为:2人,4人,9人,4人,1人,打分区间[70,80)的人数最多,有9人,所点频率为0.45,由此能求出最高矩形的高.(3)打分在70分以下(不含70分)的同学有6人,其中男生4人,女生2人,有女生被抽中的对立事件是抽中的3名同学都是男生,由此利用对立事件概率计算公式能求出有女生被抽中的概率.试题解析:解:(1)女生打分的平均分为:,男生打分的平均分为:,从茎叶图来看,女生打分相对集中,男生打分相对分散. (2)20名学生中,打分区间中的学生数分别为:2人,4人,9人,4人,1人, 打分区间的人数最多,有9人,所点频率为:,∴最高矩形的高.(3)打分在70分以下(不含70分)的同学有6人,其中男生4人,女生2人,从中抽取3人,基本事件总数,有女生被抽中的对立事件是抽中的3名同学都是男生, ∴有女生被抽中的概率.21.(1)1l :()6R πθρ=∈,2l :()3θρπ=∈R .(293【解析】分析:(1)直接根据圆的参数方程求出曲线C 的参数方程,利用极坐标公式求出直线1l ,2l 的极坐标方程.(2)先求出OA,OB,再利用三角形面积公式求AOB ∆的面积.详解:(1)依题意,曲线C :()2239x y -+=,故曲线C 的参数方程是333x cos y sin αα=+⎧⎨=⎩(α为参数),因为直线1l :30x y =,直线2l 30x y -=,故1l ,2l 的极坐标方程为1l :()6R πθρ=∈,2l :()3R πθρ=∈.(2)易知曲线C 的极坐标方程为6cos ρθ=, 把6πθ=代入6cos ρθ=,得133ρ=33,6A π⎛⎫⎪⎝⎭. 把3πθ=代入6cos ρθ=,得23ρ=,所以3,3B π⎛⎫⎪⎝⎭. 所以121sin 2AOB S AOB ρρ∆=∠ 193333sin 3364ππ⎛⎫=⨯-= ⎪⎝⎭. 点睛:(1)本题主要考查直角坐标方程、参数方程和极坐标的互化,考查极坐标的应用,意在考查学生对这些知识的掌握水平和计算能力.(2)第2问,化成直角坐标也可以解答,但是利用极坐标解答效率更高. 22.[]0,4 【解析】 【分析】根据一元二次不等式的解法,求出P 的等价条件,结合充分条件和必要条件定义转化为P Q ⊆,根据包含关系列不等式进行求解即可. 【详解】由2430x x -+<得()()130x x --< 解得13x <<,即()1,3P =,若“x P ∈”是“x Q ∈”的充分条件, 则P Q ⊆,即33{31?a a +≥-≤,得0{4?a a ≥≤,即04a ≤≤, 即实数a 的取值范围是[]0,4. 【点睛】本题主要考查充分条件和必要条件的应用,以及集合子集的应用,考查了转化思想的应用,属于中档题.转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将充分条件与必要条件问题转化为集合问题是解题的关键.。

2018-2019学年贵州省贵阳市八年级(下)期末数学试卷

2018-2019学年贵州省贵阳市八年级(下)期末数学试卷

2018-2019学年贵州省贵阳市八年级(下)期末数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请在答题卡相应位置作答,每小题3分,共30分.1.(3分)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.2.(3分)不等式x<1的解集是()A.x<B.x>C.x>3D.x<33.(3分)如图,在▱ABCD中,∠C=50°,∠BDC=55°,则∠ADB的度数是()A.10°B.75°C.35°D.15°4.(3分)要使分式有意义,则x的取值范围是()A.x=1B.x≠1C.x=﹣1D.x≠﹣15.(3分)把a2﹣a分解因式,正确的是()A.a(a﹣1)B.a(a+1)C.a(a2﹣1)D.a(1﹣a)6.(3分)如图,长方形ABCD的长为6,宽为4,将长方形先向上平移2个单位,再向右平移2个单位得到长方形A′B′C′D′,则阴影部分面积是()A.12B.10C.8D.67.(3分)如图,在△ABC中,分别以点A,C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD.若AB=3,BC=4,则△ABD的周长是()A.7B.8C.9D.108.(3分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2D.a2﹣b2=(a+b)(a﹣b)9.(3分)利用函数y=ax+b的图象解得ax+b<0的解集是x<﹣2,则y=ax+b的图象是()A.B.C.D.10.(3分)如图,在△ABC中,D是BC边的中点,AE是∠BAC的角平分线,AE⊥CE于点E,连接DE.若AB=7,DE=1,则AC的长度是()A.5B.4C.3D.2二、填空题:每小題4分,共16分.11.(4分)分式的值为零,则x的值是.12.(4分)如图,在四边形ABCD中,对角线AC、BD交于点O,AD∥BC,请添加一个条件:,使四边形ABCD为平行四边形(不添加任何辅助线).13.(4分)若不等式组的解集是x>2,则m的值是.14.(4分)如图,在等腰直角△ABC中,∠ACB=90°,BC=2,D是AB上一个动点,以DC为斜边作等腰直角△DCE,使点E和A位于CD两侧.点D从点A到点B的运动过程中,△DCE周长的最小值是.三、解答题:本大题7小题,共54分.15.(10分)(1)先化简,再求值:(﹣),其中a=3;(2)三个数4,1﹣a,5﹣3a在数轴上从左到右依次排列,求a的取值范围.16.(10分)如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF,连接EF,分别交AD,BC于点M,N,连接AN,CM.(1)求证:△DFM≌△BEN;(2)四边形AMCN是平行四边形吗?请说明理由.17.(6分)在平面直角坐标系中,△ABC的位置如图所示,点A,B,C的坐标分别为(﹣3,﹣3),(﹣1,﹣1),(0,﹣2),根据下面要求完成解答.(1)作△ABC关于点C成中心对称的△A1B1C1;(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2;(3)在x轴上求作一点P,使P A2+PC2的值最小,直接写出点P的坐标.18.(7分)在“626”国际禁毒日到来之际,为了普及禁毒知识,提高市民禁毒意识,某区发放了一批“关爱生命,拒绝毒品”的宣传资料.据统计,甲小区共收到宣传资料350份,乙小区共收到宣传资料100份,甲小区住户比乙小区住户的3倍多25户,若两小区每户平均收到资料的数量相同.求这两小区各有多少户住户?19.(6分)如图是两个全等的直角三角形(△ABC和△DEC)摆放成的图形,其中∠ACB =∠DCE=90°,∠A=∠D=30°,点B落在DE边上,AB与CD相交于点F.若BC =4,求这两个直角三角形重叠部分△BCF的周长.20.(8分)王大伯计划在自家的鱼塘里投放普通鱼苗和红色鱼苗,需要购买这两种鱼苗2000尾,购买这两种鱼苗的相关信息如下表:品种项目单价(元/尾)养殖费用(元/尾)普通鱼种0.51红色鱼种11设购买普通鱼苗x尾,养殖这些鱼苗的总费用为y元(1)写出y(元)与x(尾)之间的函数关系式;(2)如果购买每种鱼苗不少于600尾,在总鱼苗2000尾不变的条件下,养殖这些鱼苗的最低费用是多少?21.(7分)如图,在△ABC中,AB=AC,∠A=2α,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.(1)∠EDB=°(用含α的式子表示)(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转180°﹣2α,与AC边交于点N.①根据条件补全图形;②写出DM与DN的数量关系并证明;③用等式表示线段BM、CN与BC之间的数量关系,(用含α的锐角三角函数表示)并写出解题思路.。

贵州省贵阳市普通中学2018-2019学年度第一学期期末质量监测试卷高二数学(文科)(解析版)

贵州省贵阳市普通中学2018-2019学年度第一学期期末质量监测试卷高二数学(文科)(解析版)

贵州省贵阳市普通中学2018-2019学年度第一学期期末质量监测试卷高二数学(文科)(解析版)一、选择题(本大题共10小题,共40.0分)1.下列说法错误的是A. 在统计里,把所需考察对象的全体叫作总体B. 一组数据的平均数一定大于这组数据中的每个数据C. 平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D. 一组数据的方差越大,说明这组数据的波动越大【答案】B【解析】解:对于A:总体:考察对象的全体,故A对;对于C:在统计里,一组数据的集中趋势可以用平均数、众数与中位数,故C对.平均数不大于最大值,不小于最小值.比如:1、2、3的平均数是2,它小于故B不对;从方差角度看,方差最小,成绩较稳定故D正确.故选:B.平均数与每一个样本的数据有关,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息,但是一组数据的平均数不一定大于这组数据中的每个数据.本题主要考查统计的简单应用,统计是研究如何收集、处理、分析数据并作出结论的科学,它是分析并认识客观现象的有力工具因此,统计在日常生活中有着广泛的运用.2.下列命题中的假命题是A. ,B. ,C. ,D. ,【答案】C【解析】解:A、成立;B、成立;D、由指数函数的值域来判断.对于C选项时,,不正确.故选:C.A、B、C可通过取特殊值法来判断;D、由指数函数的值域来判断.本题考查逻辑语言与指数函数、二次函数、对数函数、正切函数的值域,属容易题.3.抛物线的焦点到准线的距离是A. 1B. 2C. 4D. 8【答案】D【解析】解:,,抛物线的焦点到准线的距离是.故选:D.由抛物线的标准方程利用抛物线的简单性质可求得答案.本题考查抛物线的标准方程与抛物线的简单性质,属于基础题.4.如图所示的程序框图中,输入,则输出的结果是A. 1B. 2C. 3D. 4【答案】B【解析】解:执行程序框图,有满足条件,输出y的值为2故选:B.执行程序框图,根据赋值语句的功能即可求出y的值.本题主要考查了程序框图和算法,考查了分支语句,属于基本知识的考查.5.与命题“若,则”等价的命题是A. 若,则B. 若,则C. 若,则D. 若,则【答案】D【解析】解:互为逆否命题的两个命题真假性相同,则原命题的等价命题为逆否命题,即若,则,故选:D.根据逆否命题的等价性进行判断即可.本题主要考查四种命题真假关系的判断,根据逆否命题的等价性是解决本题的关键.6.已知y与x之间的一组数据由表中数据得到线性回归直线方程必过点A. B. C. D.【答案】B【解析】解:由表格可得,,.由线性回归直线方程必过样本中心点可得,线性回归直线方程必过.故选:B.由表格求出,得到样本中心点,则答案可求.本题考查线性回归方程,明确线性回归直线方程必过样本中心点是关键,是基础题.7.曲线在处切线的斜率等于A. 2eB. eC. 2D. 1【答案】A【解析】解:曲线,可得,曲线在处切线的斜率:.故选:A.求出函数的导数,然后求解切线的斜率即可.本题考查导数的应用,切线的斜率的求法,考查计算能力.8.已知椭圆的中心在原点,它的一个焦点坐标为,且离心率,则此椭圆的标准方程为A. B. C. D.【答案】A【解析】解:椭圆的中心在原点,它的一个焦点坐标为,且离心率,可得,,则,所以椭圆的方程为:.故选:A.求出椭圆的半焦距与长半轴以及短半轴的长然后求解椭圆的标准方程.本题考查椭圆的简单性质的应用,是基本知识的考查.9.我国古代“伏羲八卦图”中的八卦与二进制、十进制的互化关系如表,依据表中规律,A,B处应分别填写A. 110、6B. 110、12C. 101、5D. 101、10【答案】A【解析】解:由八卦图,可得A处是110,处应填写6.故选:A.由二进制转化为十进制的方法,我们只要依次累加各位数字上的数该数位的权重,即可得到结果.二进制转换为十进制的方法是依次累加各位数字上的数该数位的权重,属于基础题.10.已知椭圆的右焦点为F,P是椭圆上一点,点,则的周长最大值等于A. 10B. 12C. 14D. 15【答案】C【解析】解:如图所示设椭圆的左焦点为,,则,,的周长,当且仅当三点A,,P共线时取等号.的周长最大值等于14.故选:C.如图所示,设椭圆的左焦点为,,,利用,即可得出.本题考查了椭圆的定义标准方程及其性质、三角形三边大小关系,考查了数形结合方法、推理能力与计算能力,属于中档题.二、填空题(本大题共5小题,共20.0分)11.某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为______.【答案】25【解析】解:根据题意得,用分层抽样在各层中的抽样比为,则应抽取的男生人数是人,故答案为:25.根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出应抽取的男生人数.本题的考点是分层抽样方法,根据样本结构和总体结构保持一致,求出抽样比,再求出在各层中抽取的个体数目.12.“”是“”的______条件.用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”填写【答案】充分不必要【解析】解:由,得或,即“”是“”的充分不必要条件,故答案为:充分不必要条件根据充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,结合方程之间的关系以及充分条件和必要条件的定义是解决本题的关键.13.如图,大正方形的面积是13,四个全等的直角三角形围成一个小正方形,直角三角形的较短边长为2,向大正方形内投一飞镖,则飞镖落在小正方形内的概率为______.【答案】【解析】解:根据题意,大正方形的面积是13,则大正方形的边长是,又直角三角形的较短边长为2,得出四个全等的直角三角直角边分别是3和2,则小正方形的边长为1,面积为1;又大正方形的面积为13;故飞镖扎在小正方形内的概率为.故答案为:.根据几何概型概率的求法,飞镖扎在小正方形内的概率为小正方形内与大正方形的面积比,根据题意,可得小正方形的面积与大正方形的面积,进而可得答案.本题考查了几何概型的概率求法;本题的概率相应的面积与总面积之比;难点是得到正方形的边长.14.双曲线的两条渐近线互相垂直,那么它的离心率为______.【答案】【解析】解:双曲线方程为,则双曲线的渐近线方程为两条渐近线互相垂直,,故答案为:.根据双曲线的标准方程,则可表示出其渐近线的方程,根据两条直线垂直,推断出其斜率之积为进而求得a 和b的关系,进而根据求得a和c的关系,则双曲线的离心率可得.本题主要考查了双曲线的简单性质考查了学生转化和化归思想和对双曲线基础知识的把握.15.如图是函数的导函数的图象,给出下列命题:是函数的极值点;是函数的最小值点;在处切线的斜率小于零;在区间上单调递增.则正确命题的序号是______.【答案】【解析】解:根据导函数图象可知当时,,在时,则函数在上单调递减,在上单调递增,故在区间上单调递增正确,即正确而在处左侧单调递减,右侧单调递增,则是函数的极小值点,故正确函数在上单调递减,在上单调递增当处函数取最小值,1不是函数的最小值点,故不正确;函数在处的导数大于0在处切线的斜率大于零,故不正确故答案为:根据导函数图象可判定导函数的符号,从而确定函数的单调性,得到极值点,以及根据导数的几何意义可知在某点处的导数即为在该点处的切线斜率.本题主要考查了导函数图象与函数的性质的关系,以及函数的单调性、极值、和切线的斜率等有关知识,属于基础题.三、解答题(本大题共5小题,共40.0分)16.甲、乙二人用4张扑克牌分别是红桃2,红桃3,红桃4,方片玩游戏,他们将扑克牌冼匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.写出甲、乙二人抽到的牌的所有情况;事件“甲抽到的牌面数字大于乙抽到的牌面数字”的概率是多少?【答案】解:甲、乙二人抽到的牌的所有情况有12种,分别为:红桃2,红桃,红桃3,红桃,红桃2,红桃,红桃4,红桃,红桃2,方片,方片4,红桃,红桃3,红桃,红桃4,红桃,红桃3,方片,方片4,红桃,红桃4,方片,方片4,红桃.基本事件总数,事件“甲抽到的牌面数字大于乙抽到的牌面数字”包含的基本事件有5个,分别为:红桃3,红桃,红桃4,红桃,方片4,红桃,红桃4,红桃,方片4,红桃,事件“甲抽到的牌面数字大于乙抽到的牌面数字”的概率是.【解析】利用列举法能写出甲、乙二人抽到的牌的所有情况.利用列举法能求出事件“甲抽到的牌面数字大于乙抽到的牌面数字”的概率.本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.17.已知,p:,q:.若p是q的充分不必要条件,求实数m的取值范围;若,“”为真命题,“”为假命题,求实数x的取值范围.【答案】解:由得,即p:,记命题p的解集为,命题q的解集为,是的充分不必要条件,是q的充分不必要条件,,,解得:.“”为真命题,“”为假命题,命题p与q一真一假,若p真q假,则或,无解,若p假q真,则或,解得:或.综上得:或.【解析】根据充分不必要条件的定义进行求解即可.根据复合命题真假关系,进行求解即可.本题主要考查充分条件和必要条件的应用以及复合命题真假关系的判断,利用定义法是解决本题的关键.18.从某市主办的科技知识竞赛的学生成绩中随机选取了40名学生的成绩作为样本,已知这些成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组;第二组;;第六组,并据此绘制了如图所示的频率分布直方图.求成绩在区间内的学生人数;估计这40名学生成绩的众数和中位数.【答案】解:由频率分布直方图得成绩在区间内的频率为:,成绩在区间内的学生人数为:.由频率分布直方图估计这40名学生成绩的众数为:,由频率分布直方图得:的频率为:,的频率为:,估计这40名学生成绩的中位数为:.【解析】由频率分布直方图能求出成绩在区间内的频率,由此能求出成绩在区间内的学生人数.由频率分布直方图能估计这40名学生成绩的众数,中位数.本题考查频数、众数、中位数的估计,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.19.已知函数,是的一个极值点.求实数a的值;若方程恰有3个不同的实数解,求实数m的取值范围.【答案】解:,由题意,解得:;由,,令,解得:或,令,解得:,故在递增,在递减,在递增,故,极小值,极大值若方程恰有3个不同的实数解,则.【解析】求出函数的导数,根据,求出a的值即可;求出函数的导数,解关于导函数的不等式,求出函数的单调区间,求出函数的极值,从而求出m的范围即可.本题考查了函数的单调性,极值问题,考查导数的应用以及转化思想,是一道常规题.20.探究与发现:为什么二次函数的图象是抛物线?我们知道,平面内与一个定点F和一条定直线l距离相等的点的轨迹是抛物线,这是抛物线的定义,也是其本质特征因此,只要说明二次函数的图象符合抛物线的本质特征,就解决了为什么二次函数的图象是抛物线的问题进一步讲,由抛物线与其方程之间的关系可知,如果能用适当的方式将转化为抛物线标准方程的形式,那么就可以判定二次函数的图象是抛物线了.下面我们就按照这个思路来展开.对二次函数式的右边配方,得.由函数图象平移一般地,设是坐标平面内的一个图形,将上所有点按照同一方向,移动同样的长度,得到图形,这一过程叫作图形的平移的知识可以知道,沿向量平移函数的图象如图,函数图象的形状、大小不发生任何变化,平移后图象对应的函数解析式为我们把它改写为的形式方程,这是顶点为坐标原点,焦点为的抛物线.这样就说明了二次函数的图象是一条抛物线.请根据以上阅读材料,回答下列问题:由函数的图象沿向量平移,得到的图象对应的函数解析式为,求的坐标;过抛物线的焦点F的一条直线交抛物线于P、Q两点若线段PF与QF的长分别是p、q,试探究是否为定值?并说明理由.【答案】解:,.由可得,故F,抛物线的准线方程为.设直线PQ的斜率为k,则直线PQ的方程为,联立方程组,消去x可得:,设,,则,,由抛物线的定义可知:,,.即为定值4.【解析】配方得出抛物线的顶点坐标,从而可得的坐标;设直线PQ方程为,联立方程组消元,利用抛物线的定义和根与系数的关系得出计算的值.本题考查了抛物线的性质,直线与抛物线的位置关系,属于中档题.。

2018-2019学年贵州贵阳高二下数学月考试卷(附答案解析)

2018-2019学年贵州贵阳高二下数学月考试卷(附答案解析)
5.如图,下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度 和时间 之间的关系,其中正确的有()
A. 个B. 个C. 个D. 个
6.已知经过点 和点 的直线的斜率等于 ,则 的值为()
A. B. C. D.
7. 张奖券中有 张是有奖的,某人从中依次抽取两张.则在第一次抽到中奖券的条件下,第二次也抽到中奖券的概率是()
32.已知研究 与 之间关系的一组数据如表所示:
则 对 的回归直线方程 必过点()
A.
B.
C.
D.
33.若 ,且 ,则角 是()
A.第一象限角B.第二象限角C.第三象限角D.第四象限角
34. 中,斜边 为 ,以 中点 为圆心,作半径为 的圆,分别交 于 、 两点,则 的值为()
A. B. C. D.
此题暂无解答
10.
【答案】
【考点】
函数的单调性及单调区间
【解析】
此题暂无解析
【解答】
此题暂无解答
11.
【答案】
【考点】
直线的点斜式方程
【解析】
此题暂无解析
【解答】
此题暂无解答
12.
【答案】
【考点】
指数函数的单调性与特殊点
【解析】
此题暂无解析
【解答】
此题暂无解答
13.
【答案】
C
【考点】
分层抽样方法
【解析】
中级管理人员 人,
高级管理人员 人,
即抽取三个层次的人数分别是 , ,
故选 .
14.
【答案】
【考点】
二元一次不等式的几何意义
【解析】
此题暂无解析

贵阳市普通中学2018-2019学年度第二学期期末监测考试七年级数学试卷(带答案)

贵阳市普通中学2018-2019学年度第二学期期末监测考试七年级数学试卷(带答案)

贵阳市普通中学2018-2019学年度第二学期期末监测考试七年级数学试卷(带答案)疥FB 市普涌中学20州- 2□19学年度幫二学期期宋监洌粤L ⅛武瑶匕年纟 【数学ItI 学你奸! KHIRiIt 认IlleHit 以下内⅛⅛:L本雇帅It 掌⅛UhΛK4∣ 21 d<・ Λ⅛ IQO書试》T 闸帥好*t寸试ΛΛ■術¢-2,—肄冉券Ifi 卡相1⅛<±置伴善,扈认站星上务地輒力见效■ 3. ≠ft ⅛ff∣⅛-≠ιfX A I锻择聽':以下将小超均有A ,BH C. D 四牛iiMβ"其中只有一牛i ⅛壇正确■ i ⅛在書■ TtfllS 位药柞笞,tVh!SJ*h 共珂井 I E(A) a(B) aU抵图诵∙j^ Δ 尸 fJΛ⅛∕ ⅛f J(∣r ∣'⅛E^A) ⅛a ⅛的故血 tB> (C> ⅛f ⅞ Fc 的抵麼 〔0)Hi II J T 记城沐表示OoOOo60⅛的结果IEftfKfiIA) 6 09J-1 y *OJ l 6.09>: IO F 面四牛芜术爭可①看作轴时蓿图瞎的是如图.将Ξ帝板的良勵顶点⅛!t 衣直尺的一边1 S λZ2的呢数足 MLae(D;0,6" IO 60 ⅛× IO⅛⅛ Fif 的 KLV. 腹段PD*j(≡) ,如果Zl =20°i.4∙j ⅛⅛r «I 兀共 4 .19. (AiKA分& 分〉in 图■ fl 线ΛAΓι. fι W4λ干"C Cn F∙叶分:交[点5的叫“「呻丄"交晰于M那么心阳間说说你的理由・ZO (本题满分&分)用水站(吨) 水费(π)不超过IOftk 毎吨2 2元超过10吨趙过的部分按IuH 2.6元收密(1)(2)如果诊户唐民交了 35元的水费•你能帮他算算实际用了多少比水吗?21.(本題满分8分〉如图.在 AFBC 屮∙ Z^Cβ≡90o. AC≈HC. AElCE 1 E. BFL CE ∖ F.(1)△<FC与ACF"全等吗?请说明理由:(2)请说明BF. AE.矿之间的数笊关系・SiMet 供三、解答IL 車大M7小1⅛∙共54分16.(本题満分10分)(1)计 Jh ^A>∙(^X ・2刃:⑵先化简.再求值:[2(m 1√ - 2)-(mπ÷ 2)(mn - 2)]÷ •其中 W--5 17・(本题满分8分)从边长为α的大正方形内剪掉二个边长为b 的小正方形(如图①)•然片将阴彫部分沿 虑线剪开拼成右边的长方形(如图②〉・(1) 比较图①和图②的结果・ 请弓出一个乘法公式:▲—;(2) 己知 Mb ==8∙ α-Λ=4∙ 求图②屮$的面枳.18.(本题满分8分)罚球次数 20 4060 80 l∞120命中次数 15 3248 65 80 -2LJ 命中频率0.750.80.8081080.8・:J(15(2) 根搏t 农分析,如果该运动员件’次比赛中人茯得10次罚球机会(何次罚球投拠2次■仞命中 次得I 分),倍计他罚球能得多少分•诂说明理由・七年级数学MiIS <共4页)(本&満分6分)在学习■轴対称观線”内界门・∣⅛ X 帅让网学们J 找身边的轴対称图形•小勇有 (1) 小前的这二件文貝中•可以斤成紬对称图形的是一▲——(填?母代号h (2) 请用这三个图形中的购个拼成个轴対称图案,画岀Q 图(只需画出’种)・7.己G -的人小关钮 (B)b>a >c (C)QQb (D)Λ>c>o如图•△肋CIrJ 工边初.毗C 长分别足20・30, 40 Il 条 角平分线将△皿分为二个S 形.WtJ SZ : SX : WE (A) I : I : I (U) I :2:3(C) 2 : 3 : 4(D) 3 : 4 : 5 掷一枚瓶地均匀的股子•骰产停止U.出现可能性大的片(A)大J 4的点数 (B) 小I 4的点数(C) 大于'的点数 (D)小于5的点數10・如图.等边AXBC 的边长为I, D 9 E 分别足彳乩AC 上的点,将ZkJQE 沿自线DE 折霄.点彳落在点"处. 且点"在AXBC 外部•则阴影部分图形的周长是 <A)3 (B) 4(C)5 (D) 6 二、填空题:每小迪4分,共16分.11 ・(α + b)' = (α-b)° + ▲ 12.下面的表格列出了一个实验的册分统il 数据,袤示将皮球从高处落下时.弾跳高麼X 与下降高度丿的关系•能农示这种关系的成子於▲y 50 80 100 150 X2540507513.小邦制作了十张卡片,上面分別标有1-10这十个数字・从这十张卡片中Sfi 机抽取 张恰好能破5整除的槪率定一 ▲_・14.如图,点P 是ZACB 外的 点•点D ・E 分别地ZACB 門边 上的点,点P 关于C 的对称点八恰好承A 线政FD 匕、hP 关于C 的对称点尸2落仟ED 的延K 线卜•若PE=25、 PD=3, ED=4∙则线段戸凡的K 为 ______________________ 4 ------ •(A)a>b>c8・(EMial 穷)贵阳市誓通中学2018—2019学年度第二学期期r-×・孔七年级数学参考答案及评分建议UMI・予4.期入的总休讦价i£A包M -OΛ⅞H <∙. ∙⅛tt¼<A∙. -it*. 二4才《6的45讦恃・∣.*<Λ<.H**⅛<tΛΛ同»心用・〈工災僞的命令厦仪仅什・2・・火*込的空■嵐绝丹丈为A∙ B・C・DtVf・∙[2≡V-4・*∙*Λ*♦ mn99IHt*β∙**^nι: ®∣κ <*J Jf)<2)»1«IvfXKiT 35 兀釣水咐∙∙∙∙35>IU∙22.JΓ∙I5.I⅛MJΓιs⅜M∕k.≡2X <Λa «> <4⅛><2)当∙“・⅛MH.S I W-(^÷6)(a-6)■—*8*4 16 ・X *<2) 10x2x0.8 16・∙Ft∙∙∙"EF ÷ ZPFE■:・PFΛPF / GH M分》∙∙∙s计IAfftef∣6⅛ ............. (Ri>>19.《車Sg事分6分》V4∕r∕7CD.AEr/ m>ι∣κr.丈∙:EG・ΛP5>υ∣⅛Z.4∕∙Λ.<« l9βM>XVG//(6分)20 . A分*分)Ml (I) > ≡I0*2,2÷(Λ・10“2・6・2i・<41tff分■分)W I<1)Φ⅛ι存Λ∕<ιιc冲∙z><r∕r=<joβ. .β.Z∕<CΛ∙ZBCF W∖ XVW丄OT I A∖ CfIF∙Z∙CF 90化ZACE zeBF.Zv^C=^C・ 4£-C£ J £. ∙∙∙ZUQ≡AC阳;........................2)∣H <l> JUi ZUECWACfbL*tt⅛*∙⅛R* «>ft <M3 M)(4 21 am>4 ⅛)。

{3套试卷汇总}2018-2019贵州省名校中考数学第二次联考试题

{3套试卷汇总}2018-2019贵州省名校中考数学第二次联考试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为().A.50°B.40°C.30°D.25°【答案】B【解析】解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,根据平角为180°可得,∠2=90°﹣50°=40°.故选B.【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.2.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144【答案】D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.3.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-3【答案】B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B .点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键. 4.如图所示,在平面直角坐标系中,抛物线y=-x 2+23x 的顶点为A 点,且与x 轴的正半轴交于点B ,P 点为该抛物线对称轴上一点,则OP +12AP 的最小值为( ).A .3B .23C .32214+D .3232+ 【答案】A 【解析】连接AO,AB,PB,作PH ⊥OA 于H,BC ⊥AO 于C,解方程得到-x 2+23x=0得到点B,再利用配方法得到点A ,得到OA 的长度,判断△AOB 为等边三角形,然后利用∠OAP=30°得到PH=12AP,利用抛物线的性质得到PO=PB,再根据两点之间线段最短求解.【详解】连接AO,AB,PB,作PH ⊥OA 于H,BC ⊥AO 于C,如图当y=0时-x 2+3,得x 1=0,x 23所以B (3),由于y=-x 2+332+3,所以A 3,3),所以3,所以三角形AOB 为等边三角形,∠OAP=30°得到PH= 12AP,因为AP 垂直平分OB,所以PO=PB ,所以OP +12AP=PB+PH ,所以当H,P,B 共线时,PB+PH 最短,而BC=32AB=3,所以最小值为3. 故选A.【点睛】本题考查的是二次函数的综合运用,熟练掌握二次函数的性质和最短途径的解决方法是解题的关键. 512233499100+++++的整数部分是( ) A .3B .5C .9D .6 【答案】C【解析】解:∵21+21,23+3299100+=99100,∴原式2﹣1+3﹣2+…﹣99+100=﹣1+10=1.故选C.6.cos30°=()A.12B.22C.32D.3【答案】C【解析】直接根据特殊角的锐角三角函数值求解即可.【详解】3 cos30︒=故选C.【点睛】考点:特殊角的锐角三角函数点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成.7.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°【答案】D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.8.如图,在△ABC中,分别以点A和点C为圆心,大于12AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E,若AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A .16cmB .19cmC .22cmD .25cm【答案】B 【解析】根据作法可知MN 是AC 的垂直平分线,利用垂直平分线的性质进行求解即可得答案.【详解】解:根据作法可知MN 是AC 的垂直平分线,∴DE 垂直平分线段AC ,∴DA=DC ,AE=EC=6cm ,∵AB+AD+BD=13cm ,∴AB+BD+DC=13cm ,∴△ABC 的周长=AB+BD+BC+AC=13+6=19cm ,故选B .【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.9.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数k y x(x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则k 的值是( )A .92B .74C .245D .12【答案】C【解析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a ,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k.【详解】∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (4a ,b ), ∵点D ,E 在反比例函数的图象上,∴4ab =k , ∴E (a , k a ), ∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a )=9, ∴k=245, 故选:C 【点睛】考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键.10.如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP,CP 分别平分∠EDC 、∠BCD ,则∠P 的度数是( )A .60°B .65°C .55°D .50°【答案】A 【解析】试题分析:根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE 的度数,再根据角平分线的定义可得∠PDC 与∠PCD 的角度和,进一步求得∠P 的度数.解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD 、∠CDE 的平分线在五边形内相交于点O ,∴∠PDC+∠PCD=(∠BCD+∠CDE )=120°,∴∠P=180°﹣120°=60°.故选A .考点:多边形内角与外角;三角形内角和定理.二、填空题(本题包括8个小题)11.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为_____.【答案】5000x =8000600x 【解析】设甲每小时搬运x 千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg 所用时间与乙搬运8000kg 所用时间相等建立方程求出其解就可以得出结论.【详解】解:设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,由题意得:5000x=8000600+x.故答案是:5000x=8000600+x.【点睛】本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键.12.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣4x图象上的两个点,则y1与y2的大小关系为__________.【答案】y1<y1【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y1的大小,从而可以解答本题.详解:∵反比例函数y=-4x,-4<0,∴在每个象限内,y随x的增大而增大,∵A(-4,y1),B(-1,y1)是反比例函数y=-4x图象上的两个点,-4<-1,∴y1<y1,故答案为:y1<y1.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.13.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是_____.【答案】40°【解析】根据外角的概念求出∠ADC的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.【详解】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案为40°.【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.14.如图,在边长为3的菱形ABCD 中,点E 在边CD 上,点F 为BE 延长线与AD 延长线的交点.若DE=1,则DF 的长为________.【答案】1.1【解析】求出EC ,根据菱形的性质得出AD ∥BC ,得出相似三角形,根据相似三角形的性质得出比例式,代入求出即可.【详解】∵DE=1,DC=3,∴EC=3-1=2,∵四边形ABCD 是菱形,∴AD ∥BC ,∴△DEF ∽△CEB , ∴DF DE BC CE=, ∴132DF =, ∴DF=1.1,故答案为1.1.【点睛】此题主要考查了相似三角形的判定与性质,解题关键是根据菱形的性质证明△DEF ∽△CEB ,然后根据相似三角形的性质可求解.15.已知同一个反比例函数图象上的两点()111P x ,y 、()222P x ,y ,若21x x 2=+,且21111y y 2=+,则这个反比例函数的解析式为______.【答案】y=4x【解析】解:设这个反比例函数的表达式为y=k x .∵P 1(x 1,y 1),P 2(x 2,y 2)是同一个反比例函数图象上的两点,∴x 1y 1=x 2y 2=k ,∴11y =121x k y ,=2211112x k y y =+.,∴21y ﹣11y =12,∴21x x k k -=12,∴21x x k -=12,∴k=2(x 2﹣x 1).∵x 2=x 1+2,∴x 2﹣x 1=2,∴k=2×2=4,∴这个反比例函数的解析式为:y=4x.故答案为y=4x. 点睛:本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.同时考查了式子的变形.16.设[x)表示大于x的最小整数,如[3)=4,[−1.2)=−1,则下列结论中正确的是______ .(填写所有正确结论的序号)①[0)=0;②[x)−x的最小值是0;③[x)−x的最大值是0;④存在实数x,使[x)−x=0.5成立.【答案】④【解析】根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.【详解】①[0)=1,故本项错误;②[x)−x>0,但是取不到0,故本项错误;③[x)−x⩽1,即最大值为1,故本项错误;④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.故答案是:④.【点睛】此题考查运算的定义,解题关键在于理解题意的运算法则.17.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,归纳各计算结果中的个位数字规律,猜测22019﹣1的个位数字是_____.【答案】1【解析】观察给出的数,发现个位数是循环的,然后再看2019÷4的余数,即可求解.【详解】由给出的这组数21﹣1=1,22﹣1=3,23﹣1=1,24﹣1=15,25﹣1=31,…,个位数字1,3,1,5循环出现,四个一组,2019÷4=504…3,∴22019﹣1的个位数是1.故答案为1.【点睛】本题考查数的循环规律,确定循环规律,找准余数是解题的关键.18.已知图中的两个三角形全等,则∠1等于____________.【答案】58°【解析】如图,∠2=180°−50°−72°=58°,∵两个三角形全等,∴∠1=∠2=58°.故答案为58°.三、解答题(本题包括8个小题)19.某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;求销售单价为多少元时,该文具每天的销售利润最大;商场的营销部结合上述情况,提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由【答案】(1) w=-10x2+700x-10000;(2) 即销售单价为35元时,该文具每天的销售利润最大;(3) A方案利润更高.【解析】试题分析:(1)根据利润=(单价-进价)×销售量,列出函数关系式即可.(2)根据(1)式列出的函数关系式,运用配方法求最大值.(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.【详解】解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.(2)∵w=-10x2+700x-10000=-10(x-35)2+2250∴当x=35时,w有最大值2250,即销售单价为35元时,该文具每天的销售利润最大.(3)A方案利润高,理由如下:A方案中:20<x≤30,函数w=-10(x-35)2+2250随x的增大而增大,∴当x=30时,w有最大值,此时,最大值为2000元.B方案中:10x50010x2025-+≥⎧⎨-≥⎩,解得x的取值范围为:45≤x≤49.∵45≤x≤49时,函数w=-10(x-35)2+2250随x的增大而减小,∴当x=45时,w有最大值,此时,最大值为1250元.∵2000>1250,∴A方案利润更高20.知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A 地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)【答案】(20-53)千米.【解析】分析:作BD⊥AC,设AD=x,在Rt△ABD中求得BD=3x,在Rt△BCD中求得CD=433x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=BDcos DBC∠可得答案.详解:过点B作BD⊥ AC,依题可得:∠BAD=60°,∠CBE=37°,AC=13(千米),∵BD⊥AC,∴∠ABD=30°,∠CBD=53°,在Rt△ABD中,设AD=x,∴tan∠ABD=AD BD即tan30°=3 ADBD=∴3,在Rt△DCB中,∴tan∠CBD=CD BD即tan53°=43 CDBD=,∴CD=433x ∵CD+AD=AC,∴x+433x=13,解得,x=433-∴BD=12-33,在Rt△BDC中,∴cos∠CBD=tan60°=BDBC,即:BC=123320535BDcos DBC-==-∠(千米),故B、C两地的距离为(20-53)千米.点睛:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.21.已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GE•GD.求证:∠ACF=∠ABD;连接EF,求证:EF•CG=EG•CB.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)先根据CG2=GE•GD得出CG GDGE CG=,再由∠CGD=∠EGC可知△GCD∽△GEC,∠GDC=∠GCE.根据AB∥CD得出∠ABD=∠BDC,故可得出结论;(2)先根据∠ABD=∠ACF,∠BGF=∠CGE得出△BGF∽△CGE,故FG EGBG CG=.再由∠FGE=∠BGC得出△FGE∽△BGC,进而可得出结论.试题解析:(1)∵CG2=GE•GD,∴CG GDGE CG=.又∵∠CGD=∠EGC,∴△GCD∽△GEC,∴∠GDC=∠GCE.∵AB∥CD,∴∠ABD=∠BDC,∴∠ACF=∠ABD.(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE,∴FG EGBG CG=.又∵∠FGE=∠BGC,∴△FGE∽△BGC,∴FE EGBC CG=,∴FE•CG=EG•CB.考点:相似三角形的判定与性质.22.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”【答案】x=60【解析】设有x 个客人,根据题意列出方程,解出方程即可得到答案.【详解】解:设有x 个客人,则 65234x x x ++= 解得:x=60;∴有60个客人.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键. 23.为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A 书法、B 阅读,C 足球,D 器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.学生小红计划选修两门课程,请写出所有可能的选法;若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?【答案】(1)答案见解析;(2)14【解析】分析:(1)直接列举出所有可能的结果即可.(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.详解:(1)学生小红计划选修两门课程,她所有可能的选法有:A 书法、B 阅读;A 书法、C 足球;A 书法、D 器乐;B 阅读,C 足球;B 阅读,D 器乐;C 足球,D 器乐.共有6种等可能的结果数;(2)画树状图为:共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,所以他们两人恰好选修同一门课程的概率41.164== 点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.24.如图,在Rt △ABC 中,90ACB ∠=︒,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE.求证:CE=AD ;当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明理由;若D 为AB 中点,则当A ∠=______时,四边形BECD 是正方形.【答案】(1)详见解析;(2)菱形;(3)当∠A=45°,四边形BECD是正方形.【解析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.【详解】(1)∵DE⊥BC,∴∠DFP=90°,∵∠ACB=90°,∴∠DFB=∠ACB,∴DE//AC,∵MN//AB,∴四边形ADEC为平行四边形,∴CE=AD;(2)菱形,理由如下:在直角三角形ABC中,∵D为AB中点,∴BD=AD,∵CE=AD,∴BD=CE,∴MN//AB,∴BECD是平行四边形,∵∠ACB=90°,D是AB中点,∴BD=CD,(斜边中线等于斜边一半)∴四边形BECD是菱形;(3)若D为AB中点,则当∠A=45°时,四边形BECD是正方形,理由:∵∠A=45°,∠ACB=90°,∴∠ABC=45°,∵四边形BECD是菱形,∴DC=DB,∴∠DBC=∠DCB=45°,∴∠CDB=90°,∵四边形BECD 是菱形,∴四边形BECD 是正方形,故答案为45°.【点睛】本题考查了平行四边形的判定与性质,菱形的判定、正方形的判定,直角三角形斜边中线的性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.25.在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x ,王芳在剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点M 的坐标()x,y()1画树状图列表,写出点M 所有可能的坐标;()2求点()M x,y 在函数y x 1=+的图象上的概率.【答案】()1见解析;()124. 【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)找出点(x ,y)在函数y=x+1的图象上的情况,利用概率公式即可求得答案.【详解】()1画树状图得:共有12种等可能的结果()1,2、()1,3、()1,4、()2,1、()2,3、()2,4、()3,1、()3,2、()3,4、()4,1、()4,2、()4,3;()2在所有12种等可能结果中,在函数y x 1=+的图象上的有()1,2、()2,3、()3,4这3种结果, ∴点()M x,y 在函数y x 1=+的图象上的概率为31124=. 【点睛】 本题考查的是用列表法或树状图法求概率,一次函数图象上点的坐标特征.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.26.瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x (元),每日销售量y (件)每日的利润w (元).在试销过程中,每日销售量y (件)、每日的利润w (元)与销售单价x (元)之间存在一定的关系,其几组对应量如下表所示:(1)根据表中数据的规律,分别写出毎日销售量y(件),每日的利润w(元)关于销售单价x(元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?【答案】(1)y=﹣2x+100,w=﹣2x2+136x﹣1800;(2)当销售单价为34元时,每日能获得最大利润,最大利润是1元;(3)制造这种纪念花灯每日的最低制造成本需要648元.【解析】(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.列方程组得到y关于x的函数表达式y=﹣2x+100,根据题意得到w=﹣2x2+136x﹣1800;(2)把w=﹣2x2+136x﹣1800配方得到w=﹣2(x﹣34)2+1.根据二次函数的性质即可得到结论;(3)根据题意列方程即可得到即可.【详解】解:(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.则62196020k bk b=+⎧⎨=+⎩,解得k2b100=-⎧⎨=⎩,∴y=﹣2x+100,∴y关于x的函数表达式y=﹣2x+100,∴w=(x﹣18)•y=(x﹣18)(﹣2x+100)∴w=﹣2x2+136x﹣1800;(2)∵w=﹣2x2+136x﹣1800=﹣2(x﹣34)2+1.∴当销售单价为34元时,∴每日能获得最大利润1元;(3)当w=350时,350=﹣2x2+136x﹣1800,解得x=25或43,由题意可得25≤x≤32,则当x=32时,18(﹣2x+100)=648,∴制造这种纪念花灯每日的最低制造成本需要648元.【点睛】此题主要考查了二次函数的应用,根据已知得出函数关系式.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若正六边形的半径长为4,则它的边长等于( )A .4B .2C .D .【答案】A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1.故选A .考点:正多边形和圆.2.已知一组数据1、2、3、x 、5,它们的平均数是3,则这一组数据的方差为( )A .1B .2C .3D .4 【答案】B【解析】先由平均数是3可得x 的值,再结合方差公式计算.【详解】∵数据1、2、3、x 、5的平均数是3, ∴12355x ++++=3, 解得:x=4,则数据为1、2、3、4、5,∴方差为15×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2, 故选B .【点睛】本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义.3.已知,C 是线段AB 的黄金分割点,AC <BC ,若AB=2,则BC=( )A .3B .12)C 1D .121) 【答案】C【解析】根据黄金分割点的定义,知BC 为较长线段;则 AB ,代入数据即可得出BC 的值. 【详解】解:由于C 为线段AB=2的黄金分割点,且AC <BC ,BC 为较长线段;则..【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的 35倍,较长的线段=原线段的 512-倍. 4.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC 的大小为( )A .140°B .160°C .170°D .150°【答案】B 【解析】试题分析:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°. 考点:角度的计算5.如图,一个斜边长为10cm 的红色三角形纸片,一个斜边长为6cm 的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是( )A .60cm 2B .50cm 2C .40cm 2D .30cm 2【答案】D 【解析】标注字母,根据两直线平行,同位角相等可得∠B=∠AED ,然后求出△ADE 和△EFB 相似,根据相似三角形对应边成比例求出53DE BF =,即53EF BF =,设BF=3a ,表示出EF=5a ,再表示出BC 、AC ,利用勾股定理列出方程求出a 的值,再根据红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积计算即可得解.【详解】解:如图,∵正方形的边DE ∥CF ,∴∠B=∠AED , ∵∠ADE=∠EFB=90°,∴△ADE ∽△EFB , ∴10563DE AE BF BE ===, ∴53EF BF =, 设BF=3a ,则EF=5a ,∴BC=3a+5a=8a ,AC=8a×53=403a , 在Rt △ABC 中,AC 1+BC 1=AB 1,即(403a)1+(8a)1=(10+6)1,解得a1=18 17,红、蓝两张纸片的面积之和=12×403a×8a-(5a)1,=1603a1-15a1,=853a1,=853×1817,=30cm1.故选D.【点睛】本题考查根据相似三角形的性质求出直角三角形的两直角边,利用红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积求解是关键.6.如图,AB是⊙O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使△ADC 与△BDA相似,可以添加一个条件.下列添加的条件中错误的是( )A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD【答案】D【解析】解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A选项正确;∵AD=DE,∴AD DE,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B选项正确;∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C选项正确;∵CD•AB=AC•BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是对应夹角,故D选项错误,故选:D.考点:1.圆周角定理2.相似三角形的判定7.估算9153+÷的运算结果应在( ) A .2到3之间B .3到4之间C .4到5之间D .5到6之间【答案】D【解析】解:9153+÷=35+ ,∵2<5<3,∴35+在5到6之间.故选D .【点睛】此题主要考查了估算无理数的大小,正确进行计算是解题关键.8.如图,在正五边形ABCDE 中,连接BE ,则∠ABE 的度数为( )A .30°B .36°C .54°D .72°【答案】B 【解析】在等腰三角形△ABE 中,求出∠A 的度数即可解决问题.【详解】解:在正五边形ABCDE 中,∠A=15×(5-2)×180=108°又知△ABE 是等腰三角形,∴AB=AE ,∴∠ABE=12(180°-108°)=36°. 故选B .【点睛】本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.9.如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D .再分别以点C 、D 为圆心,大于12CD 的长为半径画弧,两弧在∠AOB 内部交于点E ,过点E 作射线OE ,连接CD .则下列说法错误的是A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称【答案】D【解析】试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE.∵在△EOC与△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意.B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意.C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线.∴C、D两点关于OE所在直线对称,正确,不符合题意.D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选D.10.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=2x(x>0)的图象上,则△OAB的面积等于()A.2 B.3 C. 4 D.6【答案】B【解析】作BD ⊥x 轴于D ,CE ⊥x 轴于E ,∴BD ∥CE , ∴CE AE AC BD AD AB==, ∵OC 是△OAB 的中线, ∴12CE AE AC BD AD AB ===, 设CE=x ,则BD=2x ,∴C 的横坐标为2x,B 的横坐标为1x , ∴OD=1x ,OE=2x, ∴DE=OE-OD=2x ﹣1x =1x, ∴AE=DE=1x, ∴OA=OE+AE=213x x x+=, ∴S △OAB =12OA•BD=12×32x x ⨯=1. 故选B.点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.二、填空题(本题包括8个小题)11.不等式组21736x x ->⎧⎨>⎩的解集是_____. 【答案】x >1【解析】首先分别求出两个不等式的解集,再根据大大取大确定不等式组的解集.【详解】解:21736x x ->⎧⎨>⎩①②, 由①得:x >1,由②得:x >2,不等式组的解集为:x >1.故答案为:x >1.【点睛】此题考查解一元一次不等式组,解题关键在于掌握解不等式的方法.12.如图,直径为1000mm 的圆柱形水管有积水(阴影部分),水面的宽度AB 为800mm ,则水的最大深度CD 是______mm .【答案】200【解析】先求出OA 的长,再由垂径定理求出AC 的长,根据勾股定理求出OC 的长,进而可得出结论.【详解】解:∵⊙O 的直径为1000mm ,∴OA=OA=500mm .∵OD ⊥AB ,AB=800mm ,∴AC=400mm ,∴22OA AC -22500400-=300mm ,∴CD=OD-OC=500-300=200(mm ).答:水的最大深度为200mm .故答案为:200【点睛】本题考查的是垂径定理的应用,根据勾股定理求出OC 的长是解答此题的关键.13.已知关于x 的一元二次方程20x mx n ++=的两个实数根分别是x 1 =-2,x 2 =4,则+m n 的值为________.【答案】-10【解析】根据根与系数的关系得出-2+4=-m ,-2×4=n ,求出即可.【详解】∵关于x 的一元二次方程20x mx n ++=的两个实数根分别为x 1 =-2,x 2 =4,∴−2+4=−m ,−2×4=n ,解得:m=−2,n=−8,∴m+n=−10,故答案为:-10【点睛】此题考查根与系数的关系,掌握运算法则是解题关键14.如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为.【答案】1.【解析】∵ABCD的周长为33,∴2(BC+CD)=33,则BC+CD=2.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=3.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD.∴OE=BC.∴△DOE的周长="OD+OE+DE=" OD +1(BC+CD)=3+9=1,即△DOE的周长为1.215.如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若∠1=30°,则∠2=_____.【答案】75°【解析】试题解析:∵直线l1∥l2,∴130.∠=∠=A,=AB AC∴∠=∠=75.ACB B∴∠=-∠-∠=ACB2180175.故答案为75.16.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是_____.【答案】-3<x<1【解析】试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为﹣3<x<1.考点:二次函数的图象.17.已知二次函数y=ax2+bx(a≠0)的最小值是﹣3,若关于x的一元二次方程ax2+bx+c=0有实数根,则c 的最大值是_____.【答案】3【解析】由一元二次方程ax2+bx+c=0有实数根,可得y=ax2+bx(a≠0)和y=-c有交点,由此即可解答. 【详解】∵一元二次方程ax2+bx+c=0有实数根,∴抛物线y=ax2+bx(a≠0)和直线y=-c有交点,∴-c≥-3,即c≤3,∴c的最大值为3.故答案为:3.【点睛】本题考查了一元二次方程与二次函数,根据一元二次方程有实数根得到抛物线y=ax2+bx(a≠0)和直线y=-c 有交点是解决问题的关键.18.如图所示,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△BDE:S四边形DECA的值为_____.【答案】1:1【解析】根据题意得到BE:EC=1:3,证明△BED∽△BCA,根据相似三角形的性质计算即可.【详解】∵S△BDE:S△CDE=1:3,∴BE:EC=1:3,∵DE∥AC,∴△BED∽△BCA,∴S△BDE:S△BCA=(BE)2=1:16,BC∴S△BDE:S四边形DECA=1:1,故答案为1:1.。

2018年贵州省贵阳市高考数学二模试卷(文科)(附答案解析)

2018年贵州省贵阳市高考数学二模试卷(文科)(附答案解析)
3.
【答案】
C
【考点】
充分条件、必要条件、充要条件
【解析】
根据充分必要条件的定义以及向量的平行关系判断即可.
【解答】
若 ,
则 = ,
则 是 的充分不必要条件,
4.
【答案】
D
【考点】
几何概型计算(与长度、角度、面积、体积有关的几何概型)
【解析】
此题为几何概型求概率,先求边长为 的内接正方体的体积,再求球的体积,最后求体积比即可.
(I)由题意得,甲公司一名推销员的日工资 (单位:元)与销售件数 的关系式为:
= , .
乙公司一名推销员的日工资 (单位:元)与销售件数 的关系式为:

(2)甲公司一名推销员的日工资超过 元,则 ,解得 ,
∴甲公司一名推销员的日工资超过 元的概率 = = .
乙公司一名推销员的日工资超过 元,则 ,解得 ,
(2)由 = 可知 ,
则数列 的前 项和 = .
【考点】
数列递推式
数列的求和
【解析】
Ⅰ 利用数列的递推关系式,求数列 的通项公式.
Ⅱ 化简数列 ,利用裂项消项法求数列的和即可.
【解答】
(I)由 = ①得 = ②,
②-①得 = = 整理得 = ,
(2)由 = 可知 ,
则数列 的前 项和 = .
【答案】
已知如图 所示,在边长为 的正方形 ,中, ,且 = , = , 分别交 , 于点 , ,将该正方形沿 , ,折叠,使得 与 重合,构成如图 所示的三棱柱 ,在该三棱柱底边 上有一点 ,满足 = ;请在图 中解决下列问题:
求证:当 时, 平面 ;
若 ,求三棱锥 的体积
已知函数 = . 是常数,且
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年中考数学考前押题试卷1一、选择题(本大题共12小题,共36.0分)1.下列各数中,最小的数是A. B. C. 0 D. 12.如图所示的几何体是由五个小正方体组合而成的,箭头所指示的为主视方向,则它的俯视图是A. B. C. D.3.下列图形既是轴对称图形,又是中心对称图形的是A. B. C. D.4.地球绕太阳公转的速度约为,则110000用科学记数法可表示为A. B. C. D.5.如图,已知,则的度数是A. B. C. D.6.下列运算正确的是A. B.C. D.7.十九大以来,中央把扶贫开发工作纳入“四个全面”战略并着力持续推进,据统计2015年的某省贫困人口约484万,截止2017年底,全省贫困人口约210万,设过两年全省贫困人口的年平均下降率为x,则下列方程正确的是A. B.C. D.8.如图,在平面直角坐标系中,点P是反比例函数图象上一点,过点P作垂线,与x轴交于点Q,直线PQ交反比例函数于点M,若,则k的值为A.B.C.D.9.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有个黑子.A. 37B. 42C. 73D. 12110.二次函数的部分图象如图,图象过点,对称轴为直线,下列结论;;;当时,y的值随x值的增大而增大,其中正确的结论有A. 1个B. 2个C. 3个D. 4个11.如图,河流的两岸互相平行,河岸PQ上有一排小树,已知相邻两树CD之间的距离为50米,某人在河岸MN的A处测得,然后沿河岸走了130米到达B处,测得则河流的宽度CE为A. 80B.C.D.12.若a使关于x的不等式组至少有三个整数解,且关于x的分式方程有正整数解,a可能是A. B. 3 C. 5 D. 8二、填空题(本大题共4小题,共12.0分)13.因式分解:______.14.一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,则摸到的不是红球的概率为______15.定义新运算:对于任意有理数a、b都有,等式右边是通常的加法、减法及乘法运算比如:则,则______.16.正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分时,,则______.三、解答题(共52分)17.先化简,再求值:,其中.18.19.“共享单车,绿色出行”,现如今骑共享单车出行不但成为一种时尚,也称为共享经济的一种新形态,某校九班同学在街头随机调查了一些骑共享单车出行的市民,并将他们对各种品牌单车的选择情况绘制成如下两个不完整的统计图:摩拜单车;B:ofo单车;C:请根据图中提供的信息,解答下列问题:求出本次参与调查的市民人数;将上面的条形图补充完整;若某区有10000名市民骑共享单车出行,根据调查数据估计该区有多少名市民选择骑摩托单车出行?20.随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.设定价减少x元,预订量为y台,写出y与x的函数关系式;若每台手机的成本是1200元,求所获的利润元与元的函数关系式,并说明当定价为多少时所获利润最大;若手机加工成每天最多加工50000台,且每批手机会有的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?21.如图,在中,,以AB为直径的分别交于点D、的延长线与的切线AF交于点F.求证:;已知,求的直径22.如图1,在等腰中,,点E在AC上且不与点A、C重合,在的外部作等腰,使,连接AD,分别以为邻边作平行四边形ABFD,连接AF.求证:是等腰直角三角形;如图2,将绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:;如图3,将绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且在的下方时,若,求线段AE的长.23.如图1,二次函数的图象过点,顶点B的横坐标为1.求这个二次函数的表达式;点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;如图3,一次函数的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线,垂足为点M,且M在线段OC上不与O、C重合,过点T作直线轴交OC于点若在点T运动的过程中,为常数,试确定k的值.答案和解析【答案】1. A2. C3. D4. B5. D6. D7. C8. D9. C10. A11. C12. C13.14.15. 116. 417. 解:,当时,原式.18. 解:原式.19. 解:本次参与调查的市民人数人;品牌人数为人品牌人数为人,补全图形如下:人,答:估计该区有3000名市民选择骑摩拜单车出行.20. 解:根据题意:;设所获的利润元,则;所以当降价400元,即定价为元时,所获利润最大;根据题意每天最多接受台,此时,解得:.所以最大量接受预订时,每台定价元.21. 证明:如图,连接BD.为的直径,,.是的切线,,即..,..如图,连接AE,,设,::4,,在中,,即,..22. 解:如图四边形ABFD是平行四边形,,,,,,,是等腰直角三角形;如图2,连接交BC于K.四边形ABFD是平行四边形,,,,,,,,,,在和中,,≌,,,是等腰直角三角形,.如图3,当时,四边形ABFD是菱形,设AE交CD于H,依据,可得AE垂直平分CD,而,,中,,.23. 解:二次函数的图象过点,顶点B的横坐标为1,则有解得二次函数,由得,,,直线AB解析式为,设点以A、B、P、Q为顶点的四边形是平行四边形,当AB为对角线时,根据中点坐标公式得,则有,解得或和当AB为边时,根据中点坐标公式得解得或或.故答案为或或或.设,可以设直线TM为,则,由解得,,,时,.当时,点T运动的过程中,为常数.【解析】1. 解:,最小的数为,故选:A.根据正实数大于一切负实数,0大于负实数,两个负数绝对值大的反而小解答即可本题考查的是实数的大小比较,任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2. 解:从上边看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:C.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3. 解:A、不是轴对称图形,是中心对称图形,不合题意;B、不是轴对称图形,不是中心对称图形,不合题意;C、是轴对称图形,不是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4. 解:将110000用科学记数法表示为:.故选:B.科学记数法的表示形式为的形式,其中为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中为整数,表示时关键要正确确定a的值以及n的值.5. 解:如图,延长的边与直线b相交,,,由三角形的外角性质,可得,故选:D.延长的边与直线b相交,然后根据两直线平行,同旁内角互补求出,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并作出辅助线是解题的关键.6. 解:,故此题错误;B.,故此题错误;C.,故此题错误;D.,正确.故选:D.按照整式的加法、整式的乘法、完全平方公式和平方差公式,分别计算,再判断.此题考查整式的运算,掌握各运算法则和运算公式是关键.7. 解:设过两年全省贫困人口的年平均下降率为x,根据题意得:,故选:C.等量关系为:2015年贫困人口下降率年贫困人口,把相关数值代入计算即可.本题考查由实际问题抽象出一元二次方程;得到2年内变化情况的等量关系是解决本题的关键8. 解:如图,连接.由题意;,,故选:D.根据反比例函数系数k的几何意义即可解决问题;本题考查反比例函数k的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.9. 解:第1、2图案中黑子有1个,第3、4图案中黑子有个,第5、6图案中黑子有个,第7、8图案中黑子有个,故选:C.观察图象得到第1、2图案中黑子有1个,第3、4图案中黑子有个,第5、6图案中黑子有个,,据此规律可得.本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.10. 解:由图象可得,,,,故错误;抛物线的对称轴为直线,,即,故本结论正确;当时,,,即,故本结论错误;对称轴为直线,当时,y的值随x值的增大而增大,当时,y随x的增大而减小,故本结论错误;故选:A.由图象可得,根据抛物线的对称轴为直线,则有;观察函数图象得到当时,函数值小于0,则,即;由于对称轴为直线,根据二次函数的性质得到当时,y随x的增大而减小;本题考查了二次函数图象与系数的关系:二次函数,二次项系数a决定抛物线的开口方向和大小,当时,抛物线向上开口;当时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时即,对称轴在y轴左;当a与b异号时即,对称轴在y轴右;常数项c决定抛物线与y轴交点抛物线与y轴交于;抛物线与x轴交点个数由决定,时,抛物线与x轴有2个交点;时,抛物线与x轴有1个交点;时,抛物线与x轴没有交点.11. 解:过点C作交AB于点F.,四边形AFCD是平行四边形.,,设,,,,,解得:,,故选:C.过点C作交AB于点F,易证四边形AFCD是平行四边形再在直角中,利用三角函数求解.本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、构造合适的直角三角形是解题的关键.12. 解:,不等式组整理得:,由不等式组至少有三个整数解,得到,,分式方程去分母得:,解得:,分式方程有正整数解,且,,只有选项C符合.故选:C.将不等式组整理后,由不等式组至少有三个整数解确定出a的范围,再由分式方程有正整数解确定出满足条件a的值,进而求出之积.此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.13. 解:,,.先提取公因式y,再对余下的多项式利用平方差公式继续分解.本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14. 解:根据题意,摸到的不是红球的概率为,故答案为:.将黄球和绿球的个数除以球的总个数即可得.本题考查了概率公式:随机事件A的概率事件A可能出现的结果数除以所有可能出现的结果数.15. 解:根据题意得:,去括号得:,移项合并得:,解得:.故答案为:1.利用题中的新定义列出所求式子,解一元一次方程即可得到结果.本题考查了解一元一次方程,解决本题的关键是根据新定义得到方程.16. 解:如图,过B作于P,连接BE,交FH于N,则,四边形ABCD是正方形,,,平分,又,≌,,,,≌,,,由折叠得:,垂直平分BE,是等腰直角三角形,,,,,中,,,,故答案为:4.作辅助线,构建全等三角形,先证明,利用是等腰直角三角形,即可求得的长,中,依据勾股定理可得,根据,即可得到.本题考查翻折变换、正方形的性质、全等三角形的判定和性质、角平分线的定义、勾股定理、线段垂直平分线的性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题.17. 根据分式的除法和加法可以化简题目中的式子,然后将代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18. 直接利用负指数幂的性质和零指数幂的性质以及特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19. 根据B品牌人数及其所占百分比可得总人数;总人数分别乘以A、D所占百分比求出其人数即可补全图形;总人数乘以样本中A的百分比即可得.本题考查的是条形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据.20. 根据题意列代数式即可;根据利润单台利润预订量,列出函数表达式,根据二次函数性质解决定价为多少时所获利润最大;根据题意列式计算每天最多接受的预订量,根据每天最多接受的预订量列方程求出最大量接受预订时每台售价即可.本题主要考查了函数实际应用问题,涉及到列代数式、求函数关系式、二次函数的性质、一元一次方程应用等知识,弄清题意,找出数量关系是解决问题的关键.21. 首先连接BD,由AB为直径,可得,又由AF是的切线,易证得然后由,证得:;首先连接AE,设,由勾股定理可得方程:求得答案.本题主要考查了切线的性质、三角函数以及勾股定理,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用是解答此题关键.22. 依据,即可证明是等腰直角三角形;连接交BC于K,先证明≌,再证明是等腰直角三角形即可得出结论;当时,四边形ABFD是菱形,先求得中,,即可得到.本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.23. 利用待定系数法即可解决问题.当AB为对角线时,根据中点坐标公式,列出方程组解决问题当AB为边时,根据中点坐标公式列出方程组解决问题.设,由,可以设直线TM 为,则,求出点M、N坐标,求出OM、ON,根据列出等式,即可解决问题.本题考查二次函数综合题,平行四边形的判定和性质,中点坐标公式等知识,解题的关键是利用参数,方程组解决问题,学会转化的思想,属于中考压轴题.第21页,共21页。

相关文档
最新文档