2019年贵阳市中考数学试卷及答案

合集下载

贵州省贵阳市2019年中考数学真题试题(含解析)

贵州省贵阳市2019年中考数学真题试题(含解析)


故选:B.
【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.
9
精品文档,欢迎下载!
3.(3 分)选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是( ) A.运用多项式乘多项式法则 B.运用平方差公式 C.运用单项式乘多项式法则 D.运用完全平方公式 【分析】直接利用平方差公式计算得出答案. 【解答】解:选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是:运用平方差公式. 故选:B. 【点评】此题主要考查了多项式乘法,正确应用公式是解题关键.
C.3×3
D.3+3
2.(3 分)如图是由 4 个相同的小立方体搭成的几何体,则它的主视图是( )
A.
B.
C.
D.
3.(3 分)选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是( )
A.运用多项式乘多项式法则
B.运用平方差公式
C.运用单项式乘多项式法则
D.运用完全平方公式
4.(3 分)如图,菱形 ABCD 的周长是 4cm,∠ABC=60°,那么这个菱形的对角线 AC 的长是
24.(12 分)如图,二次函数 y=x2+bx+c 的图象与 x 轴交于 A,B 两点,与 y 轴交于点 C, 且关于直线 x=1 对称,点 A 的坐标为(﹣1,0). (1)求二次函数的表达式; (2)连接 BC,若点 P 在 y 轴上时,BP 和 BC 的夹角为 15°,求线段 CP 的长度; (3)当 a≤x≤a+1 时,二次函数 y=x2+bx+c 的最小值为 2a,求 a 的值.
5
精品文档,欢迎下载!

2019年贵州省贵阳市中考数学试卷及答案(Word版)

2019年贵州省贵阳市中考数学试卷及答案(Word版)

2019贵阳市年初中毕业生学业考试试题数 学考生注意:1.本卷为数学试题卷,全卷共4页,三大题25小题,满分150分.考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效.3.可以使用科学计算器.一、选择题(以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分) 1. 3的倒数是( )(A )3- (B )3 (C )31-(D )31 2. 2019年5月在贵阳召开的“第十五届中国科协年会”中,贵州省签下总金额达790亿元的项目,790亿元用科学记数法表示为( ) (A )1079⨯亿元 (B )2109.7⨯亿元 (C )3109.7⨯亿元 (D )31079.0⨯亿元 3.如图,将直线1l 沿着AB 的方向平移得到直线2l ,若501=∠, 则2∠的度数是( )(A )40 (B )50(C ) 90 (D )1304.在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是( )(A )方差 (B )平均数 (C )中位数 (D )众数 5.一个几何体的三视图如图所示,则这个几何体的位置是( )6.某校学生小亮每天骑自行车上学时都要经过一个十字路口,设十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为31,遇到绿灯的概率为95,那么他遇到黄灯的概率为( ) (A )94 (B )31 (C )95 (D )917.如图,P 是α∠的边OA 上一点,点P 的坐标为()5,12,则αtan等于( )(A )135 (B )1312 (C )125 (D )5128.如图,M 是ABC Rt ∆的斜边BC 上异于B 、C 的一定点,过M 点作直线截ABC ∆,使截得的三角形与ABC ∆相似,这样的直线共有( )(A )1条 (B )2条 (C )3条 (D )4条9.如图,在直径为AB 的半圆O 上有一动点P 从A 点出发,按顺时针方向绕半圆匀速运动到B 点,然后再以相同的速度沿着直径回到A 点停止,线段OP 的长度d 与运动时间t 之间的函数关系用图象描述大致是( )10.在矩形ABCD 中,6=AB ,4=BC ,有一个半径为1的硬 币与边AB 、AD 相切,硬币从如图所示的位置开始,在矩形内 沿着边AB 、BC 、CD 、DA 滚动到开始的位置为止,硬币自 身滚动的圈数大约是( )(A )1圈 (B )2圈 (C )3圈 (D )4圈 二、填空题(每小题4分,共20分)11.方程713=+x 的解是 .12.在一个不透明的袋子中有10个除颜色外均相同的小球,通过 多次摸球实验后,发现摸到白球的频率约为40%,估计袋中白 球有 个. 13.如图,AD 、AC 分别是直径和弦,30=∠CAD ,B 是 AC 上一点,AD BO ⊥,垂足为O ,cm BO 5=,则CD 等于 cm .14.直线()0>+=a b ax y 与双曲线xy 3=相交于()11,y x A ,()22,y x B 两点,则 2211y x y x +的值为 .15.已知二次函数222++=mx x y ,当2>x 时,y 的值随x 值的增大而增大,则实数m的取值范围是 . 三、解答题:16.(本题满分6分)先化简,再求值:12211322++-÷⎪⎭⎫ ⎝⎛-+x x x x x x ,其中1=x . 17.(本题满分10分)现有两组相同的扑克牌,每组两张,两张牌的牌面数字分别是2和3,从每组牌中各随机摸出一张牌,称为一次试验.(1)小红与小明用一次试验做游戏,如果摸到的牌面数字相同小红获胜,否则小明获胜,请用列表法或画树状图的方法说明这个游戏是否公平?(5分)(2)小丽认为:“在一次试验中,两张牌的牌面数字和可能为4、5、6三种情况,所以出现‘和为4’的概率是31”,她的这种看法是否正确?说明理由.(5分) 18.(本题满分10分)在一次综合实践活动中,小明要测某地一座古塔AE 的高度,如图,已知塔基AB 的高为m 4,他在C 处测得塔基顶端B 的仰角为30,然后沿AC 方向走m 5到达D 点,又测得塔顶E 的仰角为50.(人的身高忽略不计)(1)求AC 的距离;(结果保留根号)(5分) (2)求塔高AE .(结果保留整数)(5分)19.(本题满分10分)贵阳市“有效学习儒家文化”课题于今年结题,在这次结题活动中,甲、乙两校师生共150人进行了汇报演出,小林将甲、乙两校参加各项演出的人数绘制成如下不完整的统计图表,根据提供的信息解答下列问题:(1)______;____,==n m (4分)(2)计算乙校的扇形统计图中“话剧”的圆心角度数;(3分) (3)哪个学校参加“话剧”的师生人数多?说明理由. (3分)20.本题满分10分)已知:如图,在菱形ABCD 中,F 是BC 上任意一点,连接AF 交对角线BD 于点E ,连接EC . (1)求证:EC AE =;(5分)(2)当 60=∠ABC , 60=∠CEF 时,点F 在线段BC 上的什 么位置?说明理由.(5分)21.(本题满分10分)2010年底某市汽车拥有量为100万辆,而截止到2019年底,该市的汽车拥有量已达到144万辆.(1)求2010年底至2019年底该市汽车拥有量的年平均增长率;(5分)(2)该市交通部门为控制汽车拥有量的增长速度,要求到2019年底全市汽车拥有量不超过...155.52万辆,预计2019年报废的汽车数量是2019年底汽车拥有量的10%,求2019年底至2019年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.(5分) 22.(本题满分10分)已知:如图,AB 是⊙O 的弦,⊙O 的半径为10,OE 、 OF 分别交AB 于点E 、F ,OF 的延长线交⊙O 于点D , 且BF AE =,60=∠EOF .(1)求证:OEF ∆是等边三角形;(5分) (2)当OE AE =时,求阴影部分的面积. (结果保留根号和π)(5分)23.(本题满分10分)已知:直线b ax y +=过抛物线322+--=x x y 的顶点P , 如图所示.(1)顶点P 的坐标是 ;(3分)(2)若直线b ax y +=经过另一点()11,0A ,求该直线 的表达式. (3分)(3)在(2)的条件下,若有一条直线n mx y +=与直 线b ax y +=关于x 轴成轴对称,求直线n mx y +=与抛物 线322+--=x x y 的交点坐标. (4分)24.(本题满分12分)在ABC ∆中,a BC =,b AC =,c AB =,设c 为最长边,当222c b a =+时,ABC ∆是直角三角形;当222c b a ≠+时,利用代数式22b a +和2c 的大小关系,探究ABC ∆的形状(按角分类).(1)当ABC ∆三边分别为6、8、9时,ABC ∆为 三角形;当ABC ∆三边分别为6、8、11时,ABC ∆为 三角形.(4分)(2)猜想,当22b a + 2c 时,ABC ∆为锐角三角形;当22b a + 2c 时,ABC ∆为钝角三角形. (4分)(3)判断当2=a ,4=b 时,ABC ∆的形状,并求出对应的c 的取值范围.(4分)25.(本题满分12分)如图,在平面直角坐标系中,有一条直线l :433+-=x y 与x 轴、y 轴分别交于点M 、N ,一个高为3的等边三角形ABC ,边BC 在x 轴上,将此三角形沿着x 轴的正方向平移.(1)在平移过程中,得到111C B A ∆,此时顶点1A 恰 落在直线l 上,写出1A 点的坐标 ;(4分) (2)继续向右平移,得到222C B A ∆,此时它的外心P 恰好落在直线l 上,求P 点的坐标;(4分)(3)在直线l 上是否存在这样的点,与(2)中的2A 、 2B 、2C 任意两点能同时构成三个等腰三角形,如果存在,求出点的坐标;如果不存在,说明理由. (4分)2019年贵阳市初中毕业生学业考试试题数学参考答案及评分标准一、选择题(每小题3分,共30分)题号 1 2 3 4 56 7 8 9 10 答案 D B B DADCCAB二、填空题(每小题4分,共20分)题 号 11 1213 14 15答 案2=x435 6 2-≥m三、解答题:16.(本题满分6分)解: 原式()()()1211122-+⨯+-=x x x x x x ……………………………………3分 21xx +=……………………………………5分 当1=x 时,原式2= ……………………………………6分17.(本题满分10分)解:(1)列表正确或画树状图正确给2分()()21==数字相同小红获胜P P ……………………………………3分 ()()21==数字不同小明获胜P P ……………………………………4分∵()=小红获胜P ()小明获胜P ∴这个游戏公平.……………………………………5分 (2)不正确. ……………………………………6分 因为“和为4”只出现了一次,由列表或树状图可知和的情况总共有4种. 故“和为4”的概率为41. ……………………………………10分 18.(本题满分10分)解:(1)在ABC Rt ∆中,30=∠ACB ,4=AB ∴ACABACB =∠tan ……………………………………2分∴)(3430tan 4tan m ACB AB AC ==∠=答:AC 的距离为m 34. ……………………………………5分(2)在ADE Rt ∆中,50=∠ADE ,345+=AD ………………………6分∴ADAEADE =∠tan ……………………………………8分 ∴())(1450tan 345tan m ADE AD AE ≈⨯+=∠⋅=答:塔高AE 约m 14. ……………………………………10分19.(本题满分10分)解:(1)=m 25 ;=n 38% . ……………………………………4分 (2)()108%10%601360=--⨯∴圆心角为108. ……………………………………7分 (3)()30%3050150=⨯-(人) ……………………………………9分 ∵2530> ∴乙校参加“话剧”的师生人数多.…………………10分 20.(本题满分10分)解:(1)证明:连接AC …………………………………1分∵BD 是菱形ABCD 的对角线,BD 垂直平分AC . ……………………3分∴EC AE = ………………………………5分 (2)答:点F 是线段BC 的中点. ………………………………6分 理由:∵菱形ABCD 中,BC AB =,又60=∠ABC∴ABC ∆是等边三角形,60=∠BAC …………………………7分 ∵EC AE =60=∠CEF ∴30=∠EAC ………………8分 ∴AF 是ABC ∆的平分线 ………………………………9分 ∵AF 交BC 于点F ,∴AF 是ABC ∆的BC 边上的中线.∴点F 是线段BC 的中点. ………………………………10分21.(本题满分10分)解(1)设2010年底至2019年底该市汽车拥有量的年平均增长率为x . ………1分 由题意得:()14411002=+x ………………………………3分解得:%202.01==x ,2.22-=x (不合题意,舍去)答:2010年底至2019年底,该市汽车拥有量的年平均增长率为20%.……5分(2)设2019年底至2019年底该市汽车拥有量的年平均增长率为y . 由题意得:()52.155%101441144≤⨯-+y ………………………………8分 解得:18.0≤y ………………………………9分答:2019年底至2019年底该市汽车拥有量的年平均增长率不超过18%才能达到要求. ………………………………10分22.(本题满分10分)(1)证明:作AB OC ⊥于点C …………………1分 ∴BC AC = …………………2分 ∵BF AE = ∴FC EC = ………………3分 ∵EF OC ⊥ ∴OF OE = ………………4分 ∵60=∠OEF ∴OEF ∆是等边三角形.…………5分(2)解:∵在等边三角形OEF 中,60=∠=∠EOF OEF ,又OE AE =∴30=∠=∠AOE A , ∴90=∠AOF ………………………………6分∵10=AO ∴3310=OF ………………………………7分 335010331021=⨯⨯=∆AOF S ………………………………8分 ππ2510360902=⨯=AOD S 扇形 ………………………………9分∴335025-=-=∆πAOF AOD S S S 扇形阴影 ………………………………10分23.(本题满分10分)解(1)()4,1-P ………………………………3分 (2)将点()4,1-P ,()11,0A 代入b ax y +=得⎩⎨⎧=+-=bba 114 …………4分解得⎩⎨⎧==117b a ………………………………5分∴这条直线的表达式为117+=x y . ………………………………6分 (3)∵直线n mx y +=与直线117+=x y 关于x 轴成轴对称.∴n mx y +=过点()4,1'--P 、()11,0'-A ……………………………7分⎩⎨⎧=-+-=-n n m 114 解得⎩⎨⎧-=-=117n m ∴117--=x y ……………8分321172+--=--x x x ………………………………9分 解得71=x 22-=x ,此时 32=y∴直线n mx y +=与抛物线322+--=x x y 的交点坐标为()60,7-,()3,2-…10分24.(本题满分12分)解(1)锐角,钝角 ………………………………4分 (2)>,< ………………………………8分 (3)∵c 为最长边 ∴64<≤x ………………………………9分① 222c b a >+,即202<c ,520<<c∴当524<≤x 时,这个三角形是锐角三角形.………………………10分②222c b a >+,202=c , 52=c∴当52=x 时,这个三角形是直角三角形. ………………………11分③222c b a <+,202>c ,52>c∴当652<<c 时,这个三角形是钝角三角形.………………………12分25.(本题满分12分) (1)()3,31A ………………………………4分(2)设()y x P ,,连接P A 2并延长交x 轴于点H ,连接P B 2 ………………………5分 在等边三角形222C B A 中,高32=H A∴3222=B A ,32=HB ………………………………6分∵点P 是等边三角形222C B A 的外心∴302=∠H PB ,∴1=PH 即1=y ………………………………7分 将1=y 代人433+-=x y ,解得:33=x ∴()1,33P ………………………………8分 (3)点P 是222C B A ∆的外心,∵22PB PA = 22PC PB = 22PA PC = 22B PA ∆,22C PB ∆,22C PA ∆是等腰三角形∴点P 满足条件,由(2)得()3,33P ………………………………9分 由(2)得:()0,342C ,点2C 满足直线l :433+-=x y 的关系式. ∴点2C 与点M 重合. ∴302=∠PMB 设点Q 满足条件,22B QA ∆,22QC B ∆,22QC A ∆能构成等腰三角形.此时22QB QA = 222C B Q B = 222C A Q A = 作x QD ⊥轴于D 点,连接2QB∵322=QB ,60222=∠=∠PMB D QB∴3=QD ,∴()3,3Q………………………………10分设点S 满足条件,22B SA ∆,S B C 22∆,S A C 22∆能构成等腰三角形. 此时22SB SA = S C B C 222= S C A C 222= 作⊥SF x 轴于F 点∵322=SC ,30222=∠=∠PMB B SC∴3=SF∴()3,334-S ………………………………11分 设点R 满足条件,22B RA ∆,R B C 22∆,R A C 22∆能构成等腰三角形. 此时22RB RA = R C B C 222= R C A C 222=作⊥RE x 轴于E 点∵322=RC ,3022=∠=∠PMB E RC∴3=ER∴()3,343-+R答:存在四个点,分别是()1,33P ,()3,3Q ,()3,334-S ,()3,343-+R………………………………………………………………12分。

完整word版,2019年贵阳市中考数学试卷

完整word版,2019年贵阳市中考数学试卷

2019年贵阳市中考数学试卷一.选择题(以下每小题ABCD四个选项中,其中只有一个选项正确,每小题3分,共30分)1.32可表示为()A.3×2 B.2×2×2 C.3×3 D.3+32.如图是由4个相同的小立方体搭成的几何体,则它的主视图是()A.B.C.D.3.选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是()A.运用多项式乘多项式法则B.运用平方差公式C.运用单项式乘多项式法则D.运用完全平方公式4.如图,菱形ABCD的周长是4cm,∠ABC=60°,那么这个菱形的对角线AC的长是()A.1cm B.2 cm C.3cm D.4cm5.如图,在3×3的正方形网格中,有三个小正方形己经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是()A.B.C.D.6.如图,正六边形ABCDEF内接于⊙O,连接BD.则∠CBD的度数是()A.30°B.45°C.60°D.90°7.如图,下面是甲乙两位党员使用“学习强国APP”在一天中各项目学习时间的统计图,根据统计图对两人各自学习“文章”的时间占一天总学习时间的百分比作出的判断中,正确的是()A.甲比乙大B.甲比乙小C.甲和乙一样大D.甲和乙无法比较8.数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,则a的值是()A.3 B.4.5 C.6 D.189.如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是()A.2 B.3 C.D.10.在平面直角坐标系内,已知点A(﹣1,0),点B(1,1)都在直线y=x+上,若抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,则a的取值范围是()A.a≤﹣2 B.a<C.1≤a<或a≤﹣2 D.﹣2≤a<二.填空题(每小题4分,共20分)11.若分式的值为0,则x的值是.12.在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x,y 的方程组的解是.13.一个袋中装有m个红球,10个黄球,n个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m与n的关系是.14.如图,用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA =2,则四叶幸运草的周长是.15.如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是.三.解答题(本大题共10小题,共100分)16.如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.17.为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 8890 97 95 90 95 88(1)根据上述数据,将下列表格补充完整.整理、描述数据:数据分析:样本数据的平均数、众数和中位数如下表得出结论:(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为分.数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.18.如图,四边形ABCD是平行四边形,延长AD至点E,使DE=AD,连接BD.(1)求证:四边形BCED是平行四边形;(2)若DA=DB=2,cos A=,求点B到点E的距离.19.为落实立德树人的根本任务,加强思改、历史学科教师的专业化队伍建设.某校计划从前来应聘的思政专业(一名研究生,一名本科生)、历史专业(一名研究生、一名本科生)的高校毕业生中选聘教师,在政治思想审核合格的条件下,假设每位毕业生被录用的机会相等(1)若从中只录用一人,恰好选到思政专业毕业生的概率是:(2)若从中录用两人,请用列表或画树状图的方法,求恰好选到的是一名思政研究生和一名历史本科生的概率.20.某文具店最近有A,B两款毕业纪念册比较畅销,近两周的销售情况是:第一周A款销售数量是15本,B款销售数量是10本,销售总价是230元;第二周A款销售数量是20本,B款销售数量是10本,销售总价是280元.(1)求A,B两款毕业纪念册的销售单价;(2)若某班准备用不超过529元购买这两种款式的毕业纪念册共60本,求最多能够买多少本A款毕业纪念册.21.如图所示是我国古代城市用以滞洪或分洪系统的局部截面原理图,图中OP为下水管道口直径,OB为可绕转轴O自由转动的阀门.平时阀门被管道中排出的水冲开,可排出城市污水;当河水上涨时,阀门会因河水压迫而关闭,以防河水倒灌入城中.若阀门的直径OB=OP=100cm,OA为检修时阀门开启的位置,且OA=OB.(1)直接写出阀门被下水道的水冲开与被河水关闭过程中∠POB的取值范围;(2)为了观测水位,当下水道的水冲开阀门到达OB位置时,在点A处测得俯角∠CAB =67.5°,若此时点B恰好与下水道的水平面齐平,求此时下水道内水的深度.(结果保留小数点后一位)(=1.41,sin67.5°=0.92,cos67.5°=0.38,tan67.5°=2.41,sin22.5°=0.38,cos22.5°=0.92,tan22.5°=0.41)22.如图,已知一次函数y=﹣2x+8的图象与坐标轴交于A,B两点,并与反比例函数y=的图象相切于点C.(1)切点C的坐标是;(2)若点M为线段BC的中点,将一次函数y=﹣2x+8的图象向左平移m(m>0)个单位后,点C和点M平移后的对应点同时落在另一个反比例函数y=的图象上时,求k的值.23.如图,已知AB是⊙O的直径,点P是⊙O上一点,连接OP,点A关于OP的对称点C恰好落在⊙O上.(1)求证:OP∥BC;(2)过点C作⊙O的切线CD,交AP的延长线于点D.如果∠D=90°,DP=1,求⊙O 的直径.24.如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,且关于直线x=1对称,点A的坐标为(﹣1,0).(1)求二次函数的表达式;(2)连接BC,若点P在y轴上时,BP和BC的夹角为15°,求线段CP的长度;(3)当a≤x≤a+1时,二次函数y=x2+bx+c的最小值为2a,求a的值.25.(1)数学理解:如图①,△ABC是等腰直角三角形,过斜边AB的中点D作正方形DECF,分别交BC,AC于点E,F,求AB,BE,AF之间的数量关系;(2)问题解决:如图②,在任意直角△ABC内,找一点D,过点D作正方形DECF,分别交BC,AC于点E,F,若AB=BE+AF,求∠ADB的度数;(3)联系拓广:如图③,在(2)的条件下,分别延长ED,FD,交AB于点M,N,求MN,AM,BN的数量关系.2019年贵阳市中考数学试卷参考答案一.选择题(共10小题)1.C;2.B;3.B;4.A;5.D;6.A;7.A;8.C;9.D;10.C;二.填空题(共5小题)11.2;12.;13.m+n=10;14.8π;15.;三.解答题(共10小题)16.;17.5;3;90;91;18.;19.;20.;21.;22.(2,4);23.;24.;25.;。

2019年贵州省贵阳市中考数学与答案

2019年贵州省贵阳市中考数学与答案

2019年贵州省贵阳市中考数学与答案(试卷满分150分,考试时间120分钟)一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每小题3分,共30分1.32可表示为()A.3×2 B.2×2×2 C.3×3 D.3+32.如图是由4个相同的小立方体搭成的几何体,则它的主视图是()A. B.C. D.3.选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是()A.运用多项式乘多项式法则 B.运用平方差公式C.运用单项式乘多项式法则 D.运用完全平方公式4.如图,菱形ABCD的周长是4cm,∠ABC=60°,那么这个菱形的对角线AC的长是()A.1cm B.2 cm C.3cm D.4cm5.如图,在3×3的正方形网格中,有三个小正方形己经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是()A.B.C.D.6.如图,正六边形ABCDEF内接于⊙O,连接BD.则∠CBD的度数是()A.30°B.45°C.60°D.90°7.如图,下面是甲乙两位党员使用“学习强国APP”在一天中各项目学习时间的统计图,根据统计图对两人各自学习“文章”的时间占一天总学习时间的百分比作出的判断中,正确的是()A.甲比乙大 B.甲比乙小C.甲和乙一样大 D.甲和乙无法比较8.数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,则a的值是()A.3 B.4.5 C.6 D.189.如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是()A.2 B.3 C.D.10.在平面直角坐标系内,已知点A(﹣1,0),点B(1,1)都在直线y=x+上,若抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,则a的取值范围是()A.a≤﹣2 B.a< C.1≤a<或a≤﹣2 D.﹣2≤a<二、填空题:每小题4分,共20分。

贵州省贵阳市2019年中考数学真题试题

贵州省贵阳市2019年中考数学真题试题

2019贵阳市中考试卷一.选择题(每题3分,共30分)6.如图,正六边形ABCDEF内接于☉O ,连接B D,则∠CBD的度数是()(A)30°(B)45°1.32可表示为()(A)3×2 (B)2⨯2⨯2 (C)3⨯3 (D)3+3(C)60°(D)90°2.如图是由4个相同的小立方体搭成的几何体,则它的主视图是()7.如图,下列是甲乙两位党员使用“学习强国APP”在一天中各项目学习时间的统计图,根据统计图对两人各自学习“文章”的时间占一天总时间的百分比作出的判断中正确的是()(A)甲比乙大3.选择计算(-4xy2+3x2y)(4xy2+3x2y)的最佳方法是()(A)运用多项式乘多项式法则(B)运用平方差公式(C)运用单项式乘多项式法则(A)运用完全平方公式4.如图,菱形ABCD的周长是4cm,∠ABC=60︒,那么这个菱形的对角线的长是()(A)1cm (B)2cm(C)3cm (D)4cm5.如图,在3×3的正方形网格中,有三个小正方形已经涂成灰色,若在任意涂一个白色的小正方形(每个白色的小正方形被涂成灰(B)甲比乙小(C)甲和乙一样大(D)甲和乙无法比较8.数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,则a 的值是()(A)3 (B)4.5 (C)6 (D)189.如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,1色的可能性相同),使新构成灰色部分是轴对称图形的概率是()交AB于点B和点D,再分别以点B,D为圆心,大于2BD长为(A)1(B)1半径画弧,两弧相交于点M,作射线CM交AB于点E,若AE=2,BE=1,则CE的长度是()9 6 (A)2 (B)3(C) 2 (D)19 3(C)3 (D)510. 在平面直角坐标系内,已知点A(-1,0),点B(1,1)、都在直线y=1x+1上,若抛物线y=ax2-x+1(a≠0)与线段AB有三. 简答题(本大题共10 小题,共100 分)16. (本题8 分)如图是一个长为a,宽为b 的矩形,两个阴2 2影图形都是底边长为1,且底边在矩形对边上的平行四边形.两个不同的交点,则a 的取值范围是()(A)a≤2(B)1≤a<9或a≤-28(B)a<98(D)-2≤a<98(1)用含字母a,b 的代数式表示矩形中空白部分的面积.(2)当a=3,b=2时,求矩形中空白部分的面积.二.填空题(每题4 分,共20 分)217.11.若分式x-2x的值为0,则x的值是.x毒知识应知应会”测评,为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”12. 在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的的荣誉称号,为了确定一个适当的奖励目标,该校随机选取了七年级20 名学生在5 月份测评的成绩,数据如下:收集数据:13. 一个袋中装有m 个红球,10 个黄球,n 个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m 与n 的关系是.14. 如图,用登分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA=2,则四叶草的周长是.15. 如图,在矩形ABCD中,AB=4,∠DCA=30︒,点F是对掉线AC上的一个动点,连接D F,以DF为斜边作∠DFE=30︒的直角三角形D EF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是.90 91 89 96 90 98 90 97 91 9899 97 91 88 90 97 95 90 95 88(1)根据上述数据,将下表补充完整.整理、描述数据:(2)根据所给的数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评的成绩至少定为▲分;数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选改荣誉称号的最低分数,并说明理由.18. (本题10 分)如图,四边形ABCD 是平行四边形,延长AD 至点E ,使D E =A D ,连接BD .(1)求证:四边形BCED 是平行四边形;(2)若D A =D B =2,cos A =1,求点B 到E 的距离.419. (本题10分)为落实立德树人的根本任务,加强思政,历史学科教师的专业化队伍建设,某校计划从前来应聘的思政专业(一名研究生,一名本科生),历史专业(一名研究生,一名本科生)的高校毕业生中选聘教师,在政治思想审核合格的条件下,假设每位毕业生被聘用的机会相等. (1)若从中只录用一人,恰好选到思政专业毕业生的概率是▲;(2)若从中录用两人,请用列表或画树状图的方法,求恰好宣导的是一名思政专业研究生和一名历史本科生的概率.20. (本题10 分)某文具店最近有A ,B 两款毕业纪念册比较畅销,近两周的销售情况是:第一周A 款销售数量是15 本,B 款销售数量是10 本,销售总价是230 元;第二周A 款销售数量是20 本, B 款销售数量是10 本,销售总价是280 元.(1)求A ,B 两款毕业纪念册的销售单价;(2)若某班准备用不超过529元购买这两种款式的毕业纪念册共60本,求最多能购买多少本A 款毕业纪念册.21. (本题8 分)如图所示是我国古代城市用以滞汰或分洪系统的局部截面原理图,图中OP 为下水管道口直径,O B 为可绕轴O 自由转动的阀门,平时阀门被管道中排出的水冲开,可排出城市污水;当河水上涨时,阀门会因河水的压迫而关闭,以防止河水倒灌入城中,若阀门的直径OB =OP =100cm ,OA 为检修时阀门开启的位置,且OA =OB . (1)直接写出阀门被下水道的水冲开与被河水关闭过程中∠POB 的取值范围; (2)为了观测水位,当下水道的水冲开阀门到达OB 位置是,在点A 处测得俯角∠CAB =67.5°,若此时点B 恰好与下水道的水平面齐平,求此时下水道内水的深度,(结果保留小数点后一位)(2=1.41,sin67.5︒=0.92,cos 67.5︒=0.38,tan 67.5︒=2.41,) sin22.5︒=0.38,cos 22.5=0.92,tan22.5=0.4122. (本题10 分)如图,已知一次函数y =-2x +8的图像与坐标轴交于A ,B 两点,并与反比例函数y =8的图像相切于点C .x(1)切点C 的坐标是 ▲ .(2)若点M 为线段BC 的中点,将一次函数y =-2x +8的图像向左平移m (m >0)个单位后,点C 和点M 平移后的对应点同时落在另一个反比例函数y =k的图像上,求k 的值.x23. (本题10 分)如图,已知AB是☉O 的直径,点P是☉O 上一点,连接OP,点A关于OP的对称点C恰好落在☉O 上.(1)求证:OP∥BC;(2)过点C作☉O 的切线,交AP的延长线于点D,如果∠D=90°,DP=1,求☉O直径。

2019年贵州省贵阳市中考数学试卷答案解析版

2019年贵州省贵阳市中考数学试卷答案解析版

第 4 页,共 21 页
平均数
众数
中位数
93
______
91
得出结论: (2)根据所给数据,如果该校想确定七年级前 50%的学生为“良好”等次,你认 为“良好”等次的测评成绩至少定为______分. 数据应用: (3)根据数据分析,该校决定在七年级授予测评成绩前 30%的学生“禁毒小卫士” 荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.
90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88 (1)根据上述数据,将下列表格补充完整.
整理、描述数据:
成绩/分 88 89 90
91 95 96 97
98 99
学生人数 2
1
______ 3
2
1
______ 2
1
数据分析:样本数据的平均数、众数和中位数如下表
14. 如图,用等分圆的方法,在半径为 OA 的圆中,画出了如图所 示的四叶幸运草,若 OA=2,则四叶幸运草的周长是______.
第 3 页,共 21 页
15. 如图,在矩形 ABCD 中,AB=4,∠DCA=30°,点 F 是对角线 AC 上的一个动点,连接 DF,以 DF 为斜边作∠DFE=30°的直角 三角形 DEF,使点 E 和点 A 位于 DF 两侧,点 F 从点 A 到点 C 的运动过程中,点 E 的运动路径长是______.
A. 甲比乙大
B. 甲比乙小
C. 甲和乙一样大
D. 甲和乙无法比较
8. 数轴上点 A,B,M 表示的数分别是 a,2a,9,点 M 为线段 AB 的中点,则 a 的值
是( )
A. 3
B. 4.5

2019年贵州省贵阳市中考数学试卷含答案解析(word版)

2019年贵州省贵阳市中考数学试卷含答案解析(word版)

2019年贵州省贵阳市中考数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡上填涂正确选项的字母框,每小题3分,共30分.1.下面的数中,与﹣6的和为0的数是()A.6 B.﹣6 C.D.﹣2.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣13.如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°C.76°D.142°4.2019年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是()A.B.C.D.5.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.D.6.2019年6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的()A.中位数B.平均数C.最高分D.方差7.如图,在△ABC中,DE∥BC,=,BC=12,则DE的长是()A.3 B.4 C.5 D.68.小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.2cm B.4cm C.6cm D.8cm9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C.D.10.若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a的大小关系是()A.m<ab<n B.a<m<n<b C.b<n<m<a D.n<b<a<m二、填空题:每小题4分,共20分11.不等式组的解集为.12.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为.13.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.14.如图,已知⊙O的半径为6cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠OPA的值是.15.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x的取值范围为.三、解答题:本大题10小题,共100分.16.先化简,再求值:﹣÷,其中a=.17.教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.18.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.19.某校为了解该校九年级学生2019年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分﹣150分B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)(1)此次抽查的学生人数为;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.20.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?21.“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)24.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.25.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c 的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.温馨提示:在直角坐标系中,若点P,Q的坐标分别为P(x1,y1),Q(x2,y2),当PQ平行x轴时,线段PQ的长度可由公式PQ=|x1﹣x2|求出;当PQ平行y轴时,线段PQ的长度可由公式PQ=|y1﹣y2|求出.2019年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡上填涂正确选项的字母框,每小题3分,共30分.1.下面的数中,与﹣6的和为0的数是()A.6 B.﹣6 C.D.﹣【考点】相反数.【分析】根据两个互为相反数的数相加得0,即可得出答案.【解答】解:与﹣6的和为0的是﹣6的相反数6.故选A.2.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣1【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00129这个数用科学记数法可表示为1.29×10﹣3.故选:C.3.如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°C.76°D.142°【考点】平行线的性质.【分析】由平角的定义求出∠MBC的度数,再由平行线的性质得出∠2=∠MBC=52°即可.【解答】解:如图所示:∵AB⊥BC,∠1=38°,∴∠MBC=180°﹣90°﹣38°=52°,∵a∥b,∴∠2=∠MBC=52°;故选:B.4.2019年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是()A.B.C.D.【考点】概率公式.【分析】直接根据概率公式即可得出结论.【解答】解:∵共有200辆车,其中帕萨特60辆,∴随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率==.故选C.5.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上边看时,圆柱是一个矩形,中间的木棒是虚线,故选:C.6.2019年6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的()A.中位数B.平均数C.最高分D.方差【考点】统计量的选择.【分析】由于有45名同学参加全省中小学生器乐交流比赛,要取前23名获奖,故应考虑中位数的大小.【解答】解:共有45名学生参加预赛,全省中小学生器乐交流比赛,要取前23名获奖,所以某代表队已经知道了自己的成绩是否进入前23名.我们把所有同学的成绩按大小顺序排列,第23名的成绩是这组数据的中位数,此代表队知道这组数据的中位数,才能知道自己是否获奖.故选:A.7.如图,在△ABC中,DE∥BC,=,BC=12,则DE的长是()A.3 B.4 C.5 D.6【考点】相似三角形的判定与性质.【分析】根据DE∥BC,得到△ADE∽△ABC,得出对应边成比例,即可求DE的长.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==,∵BC=12,∴DE=BC=4.故选:B.8.小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.2cm B.4cm C.6cm D.8cm【考点】三角形的外接圆与外心;等边三角形的性质.【分析】作等边三角形任意两条边上的高,交点即为圆心,将等边三角形的边长用含半径的代数式表示出来,列出方程进行即可解决问题.【解答】解:过点A作BC边上的垂线交BC于点D,过点B作AC边上的垂线交AD于点O,则O为圆心.设⊙O的半径为R,由等边三角形的性质知:∠OBC=30°,OB=R.∴BD=cos∠OBC×OB=R,BC=2BD=R.∵BC=12,∴R==4.故选B.9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C.D.【考点】函数的图象.【分析】根据给定s关于t的函数图象,分析AB段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论.【解答】解:观察s关于t的函数图象,发现:在图象AB段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选B.10.若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a的大小关系是()A.m<ab<n B.a<m<n<b C.b<n<m<a D.n<b<a<m【考点】抛物线与x轴的交点.【分析】利用图象法,画出抛物线y=(x﹣a)(x﹣b)与直线y=1,即可解决问题.【解答】解:如图抛物线y=(x﹣a)(x﹣b)与x轴交于点(a,0),(b,0),抛物线与直线y=1的交点为(n,1),(m,1),由图象可知,n<b<a<m.故选D.二、填空题:每小题4分,共20分11.不等式组的解集为x<1.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<1,由②得,x<2,故不等式组的解集为:x<1.故答案为:x<1.12.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为15.【考点】利用频率估计概率.【分析】利用频率估计概率得到抽到绘有孙悟空这个人物卡片的概率为0.3,则根据概率公式可计算出这些卡片中绘有孙悟空这个人物的卡片张数,于是可估计出这些卡片中绘有孙悟空这个人物的卡片张数.【解答】解:因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,所以估计抽到绘有孙悟空这个人物卡片的概率为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15.13.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b.【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.14.如图,已知⊙O的半径为6cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠OPA的值是.【考点】垂径定理;解直角三角形.【分析】作OM⊥AB于M,由垂径定理得出AM=BM=AB=4cm,由勾股定理求出OM,再由三角函数的定义即可得出结果.【解答】解:作OM⊥AB于M,如图所示:则AM=BM=AB=4cm,∴OM===2(cm),∵PM=PB+BM=6cm,∴tan∠OPA===;故答案为:.15.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x的取值范围为x=4或x≥8.【考点】全等三角形的判定;等腰直角三角形.【分析】分析:过点B作BD⊥AC于点D,则△△ABD是等腰直角三角形;再延长AD到E点,使DE=AD,再分别讨论点C的位置即可.【解答】解:过B点作BD⊥AC于D点,则△ABD是等腰三角形;再延长AD到E,使DE=AD,①当点C和点D重合时,△ABC是等腰直角三角形,BC=4,这个三角形是唯一确定的;②当点C和点E重合时,△ABC也是等腰三角形,BC=8,这个三角形也是唯一确定的;③当点C在线段AE的延长线上时,即x大于BE,也就是x>8,这时,△ABC也是唯一确定的;综上所述,∠BAC=45°,AB=8,要使△ABC唯一确定,那么BC的长度x满足的条件是:x=4或x≥8三、解答题:本大题10小题,共100分.16.先化简,再求值:﹣÷,其中a=.【考点】分式的化简求值.【分析】原式第二项利用除法法则变形,约分后两项利用同分母分式的减法法则计算得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=﹣•=﹣=,当a=+1时,原式=.17.教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是0;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.【考点】列表法与树状图法.【分析】(1)由于控制第二排灯的开关已坏,所以所有灯都亮起为不可能事件;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯,画树状图展示所有12种等可能的结果数,再找出关掉第一排与第三排灯的结果数,然后根据概率公式求解.【解答】解:(1)因为控制第二排灯的开关已坏(闭合开关时灯也不亮,所以将4个开关都闭合时,所以教室里所有灯都亮起的概率是0;故答案为0;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯,画树状图为:共有12种等可能的结果数,其中恰好关掉第一排与第三排灯的结果数为2,所以恰好关掉第一排与第三排灯的概率==.18.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.【考点】正方形的性质;全等三角形的判定与性质;等腰直角三角形.【分析】(1)由四边形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通过角的计算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可证出△ABF≌△CBE;(2)根据△EBF是等腰直角三角形可得出∠BFE=∠FEB,通过角的计算可得出∠AFB=135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF是直角三角形.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形.19.某校为了解该校九年级学生2019年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分﹣150分B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)(1)此次抽查的学生人数为150;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据统计图可知,C等级有36人,占调查人数的24%,从而可以得到本次抽查的学生数;(2)根据(1)中求得的抽查人数可以求得A等级的学生数,B等级和D等级占的百分比,从而可以将统计图补充完整;(3)根据统计图中的数据可以估计这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.【解答】解:(1)由题意可得,此次抽查的学生有:36÷24%=150(人),故答案为:150;(2)A等级的学生数是:150×20%=30,B等级占的百分比是:69÷150×100%=46%,D等级占的百分比是:15÷150×100%=10%,故补全的条形统计图和扇形统计图如右图所示,(3)1200×(46%+20%)=792(人),即这次适应性考试中数学成绩达到120分(包含120分)以上的学生有792人.111120.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设一个足球的单价x元、一个篮球的单价为y元,根据:①1个足球费用+1个篮球费用=159元,②足球单价是篮球单价的2倍少9元,据此列方程组求解即可;(2)设买足球m个,则买蓝球(20﹣m)个,根据购买足球和篮球的总费用不超过1550元建立不等式求出其解即可.【解答】解:(1)设一个足球的单价x元、一个篮球的单价为y元,根据题意得,解得:,答:一个足球的单价103元、一个篮球的单价56元;(2)设可买足球m个,则买蓝球(20﹣m)个,根据题意得:103m+56(20﹣m)≤1550,解得:m≤9,∵m为整数,∴m最大取9答:学校最多可以买9个足球.21.“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)【考点】解直角三角形的应用-坡度坡角问题.【分析】首先过点D作DF⊥BC于点F,延长DE交AC于点M,进而表示出AM,DF的长,再利用AE=,求出答案.【解答】解:过点D作DF⊥BC于点F,延长DE交AC于点M,由题意可得:EM⊥AC,DF=MC,∠AEM=29°,在Rt△DFB中,sin80°=,则DF=BD•sin80°,AM=AC﹣CM=1790﹣1700•sin80°,在Rt△AME中,sin29°=,故AE==≈238.9(m),答:斜坡AE的长度约为238.9m.22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征;菱形的性质.【分析】(1)将点A的坐标代入到反比例函数的一般形式后求得k值即可确定函数的解析式;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,首先求得点B的坐标,然后求得直线BC的解析式,求得直线和抛物线的交点坐标即可.【解答】解:(1)∵反比例函数y=的图象经过点A,A点的坐标为(4,2),∴k=2×4=8,∴反比例函数的解析式为y=;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),∴,解得:,∴直线BC的解析式为y=x+,根据题意得方程组,解此方程组得:或∵点F在第一象限,∴点F的坐标为F(6,).23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)【考点】圆的综合题.【分析】(1)由角平分线的基本作图即可得出结果;(2)由等腰三角形的性质和圆周角定理得出∠CAD=∠B,再由角平分线得出∠CAD=∠DAB=∠B,由圆周角定理得出∠ACB=90°,得出∠CAB+∠B=90°,即可求出∠B的度数;(3)证出∠OEB=90°,在Rt△OEB中,求出OE=OB=2,由勾股定理求出BE,再由三角形的面积公式和扇形面积公式求出△OEB的面积=OE•BE=2,扇形BOD的面积═,所求图形的面积=扇形面积﹣△OEB的面积,即可得出结果.【解答】解:(1)如图1所示,AP即为所求的∠CAB的平分线;(2)如图2所示:∵AC=CD,∴∠CAD=∠ADC,又∵∠ADC=∠B,∴∠CAD=∠B,∵AD平分∠CAB,∴∠CAD=∠DAB=∠B,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°,∴3∠B=90°,∴∠B=30°;(3)由(2)得:∠CAD=∠BAD,∠DAB=30°,又∵∠DOB=2∠DAB,∴∠BOD=60°,∴∠OEB=90°,在Rt△OEB中,OB=AB=4,∴OE=OB=2,∴BE===2,∴△OEB的面积=OE•BE=×2×2=2,扇形BOD的面积==,∴线段ED,BE,所围成区域的面积=﹣2.24.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是2<AD<8;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.【考点】三角形综合题.【分析】(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.【解答】(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.25.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c 的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.温馨提示:在直角坐标系中,若点P,Q的坐标分别为P(x1,y1),Q(x2,y2),当PQ平行x轴时,线段PQ的长度可由公式PQ=|x1﹣x2|求出;当PQ平行y轴时,线段PQ的长度可由公式PQ=|y1﹣y2|求出.【考点】二次函数综合题.【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A,C两点的坐标,再根据待定系数法可求二次函数的表达式;(2)根据坐标轴上点的坐标特征由二次函数的表达式求出B点的坐标,根据待定系数法可求一次函数BC的表达式,设ND的长为d,N点的横坐标为n,则N点的纵坐标为﹣n+5,D点的坐标为D(n,﹣n2+4n+5),根据两点间的距离公式和二次函数的最值计算可求线段ND长度的最大值;(3)由题意可得二次函数的顶点坐标为H(2,9),点M的坐标为M(4,5),作点H(2,9)关于y轴的对称点H1,可得点H1的坐标,作点M(4,5)关于x轴的对称点HM1,可得点M1的坐标连结H1M1分别交x轴于点F,y轴于点E,可得H1M1+HM的长度是四边形HEFM的最小周长,再根据待定系数法可求直线H1M1解析式,根据坐标轴上点的坐标特征可求点F、E的坐标.【解答】解:(1)∵直线y=5x+5交x轴于点A,交y轴于点C,∴A(﹣1,0),C(0,5),∵二次函数y=ax2+4x+c的图象过A,C两点,∴,解得,∴二次函数的表达式为y=﹣x2+4x+5;(2)如图1,∵点B是二次函数的图象与x轴的交点,∴由二次函数的表达式为y=﹣x2+4x+5得,点B的坐标B(5,0),设直线BC解析式为y=kx+b,∵直线BC过点B(5,0),C(0,5),∴,解得,∴直线BC解析式为y=﹣x+5,设ND的长为d,N点的横坐标为n,则N点的纵坐标为﹣n+5,D点的坐标为D(n,﹣n2+4n+5),则d=|﹣n2+4n+5﹣(﹣n+5)|,由题意可知:﹣n2+4n+5>﹣n+5,。

2019年贵州省贵阳市中考数学试题

2019年贵州省贵阳市中考数学试题

2019年贵州省贵阳市中考数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分1.(3分)32可表示为()A.3×2B.2×2×2C.3×3D.3+32.(3分)如图是由4个相同的小立方体搭成的几何体,则它的主视图是()A.B.C.D.3.(3分)选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是()A.运用多项式乘多项式法则B.运用平方差公式C.运用单项式乘多项式法则D.运用完全平方公式4.(3分)如图,菱形ABCD的周长是4cm,∠ABC=60°,那么这个菱形的对角线AC的长是()A.1cm B.2 cm C.3cm D.4cm5.(3分)如图,在3×3的正方形网格中,有三个小正方形己经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是()A.B.C.D.6.(3分)如图,正六边形ABCDEF内接于⊙O,连接BD.则∠CBD的度数是()A.30°B.45°C.60°D.90°7.(3分)如图,下面是甲乙两位党员使用“学习强国APP”在一天中各项目学习时间的统计图,根据统计图对两人各自学习“文章”的时间占一天总学习时间的百分比作出的判断中,正确的是()A.甲比乙大B.甲比乙小C.甲和乙一样大D.甲和乙无法比较8.(3分)数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,则a的值是()A.3B.4.5C.6D.189.(3分)如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B 和点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是()A.2B.3C.D.10.(3分)在平面直角坐标系内,已知点A(﹣1,0),点B(1,1)都在直线y=x+上,若抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,则a的取值范围是()A.a≤﹣2B.a<C.1≤a<或a≤﹣2D.﹣2≤a<二、填空题:每小题4分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵阳市初中毕业生学业适应性考试试题卷
数 学
一、选择题(以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分)
1.计算(﹣6)×(﹣1)的结果等于 (A )1
(B )﹣1
(C )6
(D )﹣6
2.2015年1月24日,“贵广大庙会”在贵阳观山湖区正式面向市民开放。

第一天就有近4106.5⨯人到场
购置年货,4106.5⨯表示这一天到场人数为
(A )56人 (B )560人 (C )5600人 (D )56000人
3.如图,直线c 与直线a ,b 交于点A ,B ,且a ∥b ,线段AC 垂直于直线b , 垂足为点C ,若∠1=55°,则∠2的度数是
(A )25° (B )35° (C )45° (D )55°
4.在一个不透明的盒子里,装有5个黑球和若干个白球,这些球除颜色外都相同,将其摇匀后从中随机摸出一个球,记下颜色后再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,请估计盒子中白球的个数是
(A )10个 (B )15个 (C )20个 (D )25个 5.如图的几何体是由一个正方体切去一个小正方体形成的,它的左视图是
6.下列分式是最简分式的是
(A )21x x x -- (B )11x x -+ (C )21
1
x x -- (D )2a bc ab
7.在边长为1的正方形网格中标有A 、B 、C 、D 、E 、F 六个格点,
根据图中标示的各点位置,与△ABC 全等的是 (A )△ACF (B )△ACE
F
E
D
C
B
A
(第3题图)
21C B A c
b a
(第5题图)
(A ) (B ) (C ) (D )
(第9题
s /km
t /min
3016
108
1
O
(C )△ABD (D )△CEF
8.小亮从家步行到公交车站台,等公交车去学校. 图中的折线表示 小亮的行程s (km)与所花时间t (min)之间的关系. 则小亮步行的速度和乘公交车的速度分别是
(A )100m/min ,266 m/min (B )62.5 m/min ,500 m/min (C )62.5 m/min ,437.5 m/min (D )100 m/min ,500 m/min 9.小明根据去年1~8月本班同学参加学校组织的 “书香校园”活动中 全班同学的课外阅读书籍的数量(单位:本),绘制了如图所示折线 统计图,下列说法正确的是 (A )阅读数量的平均数是57 (B )阅读数量的众数是42 (C )阅读数量的中位数是58 (D )有4个月的阅读数量超过60本
10.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,∠CDB =30°,过点C 作⊙O 的切线交AB 的延长线于E ,则sin ∠E 的值为 (A )
21
(B )22
(C )
2
3
(D )
3
3 二、填空题(每小题4分,共20分)
11.若代数式8x -的值大于0,则x 的取值范围为 ▲ . 12.已知点A (x 1,y 1)、B (x 2,y 2)在二次函数1)2(2
+-=x y 的图象上, 若x 1> x 2> 2,则y 1 ▲ y 2,(填“>”或“<”或“=”)
13.将一个边长为1的正六边形补成如图所示的矩形,则矩形的周长
等于 ▲ .(结果保留根号)
14.如图,正方形ABCD 是一块绿化带,其中阴影部分EFGH 是正方形花圃. 一只小鸟随机落在绿化带区域内,则它停留在花圃上的概率是 ▲ .
15.如图△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…,△P 2015A 2014A 2015是 等腰直角三角形,点P 1,P 2,P 3,…都在函数4
y x
=
(x >0) 的图象上,斜边OA 1,A 1A 2,A 2A 3,…A 2014A 2015都在x 轴上,
(第10题图)
(第13题图)
(第8题图)
(第14题图)
H G
F
E
D C B
A
则A 2015的坐标为 ▲ .
三、解答题
16.(本题满分8分)化简求值:3
2
2
)1)(1()1(x x x x --+++,其中22=x
17.(本题满分10分)某校为了解“阳光体育”活动的开展情况,从全校1800名学生中随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)被调查的学生共有 ▲ 人,并补全条形统计图;(4分)
(2)在扇形统计图中,m = ▲ ,n = ▲ ,表示区域C 的圆心角为 ▲ 度;(4分) (3)全校学生中喜欢篮球的人数大约有多少?(2分)
18.(本题满分10分)某小区在绿化改造项目中,要将一棵已经枯萎的树砍伐掉. 在操作过程中,李师傅想直接从根部把树放倒,张师傅不同意,他担心这样会损坏 这棵树周围10米处的花园和雕塑.通过测量知道图中∠BCD =30°,∠DCA =35°, BD =3米,根据计算说明张师傅的担心是否有必要?(结果精确到0.1位)
19.(本题满分10分)在课外活动时间,小王、小丽、小华做“互相踢毽子”游戏,毽子从一人传到另一人就记为踢一次.
(1)若从小丽开始,经过两次踢毽后,利用画树状图或列表的方法,求毽子踢到小华处的概率。

(5分) (2)请确定应该从谁开始踢,经过三次踢毽后,毽子踢到小王处的可能性最小,并说明理由.(5分) 20.(本题满分10分)如图,E ,F 是菱形ABCD 对角线上的两点,且AE =CF . (1)求证:四边形BEDF 是菱形;(5分) (2)若o
60=∠DAB ,6=AD ,DE AE =, 求菱形BEDF 的周长。

(5分)
21.(本题满分8分)某一工程, 甲队单独施工,刚好如期完成;乙队单独施工要比规定日期多用6天;若
甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.求甲、乙两队单独完成这项工程各需要多少天?
(第17题图)
(第18题图) F
E
D
C
B
A
(第20题图)
22.(本题满分10分)如图,一次函数5+=kx y (k 为常数,k ≠0) 的图象与反比例函数8
y x
=
的图象相交于A (2,b ) ,B 两点. (1)求一次函数的表达式;(4分)
(2)若将直线AB 向下平移m (m >0)个单位长度后与反比例函数 的图象只有一个公共交点,求m 的值.(6分)
23.(本题满分10分)如图,BD 为⊙O 的直径,AB =AC , AD 交BC 于点E ,AE =2,ED =4.
(1)判断△ABE 与△ADB 是否相似,并说明理由;(5分) (2)求C ∠的度数;(5分)
24.(本题满分12分)如图,抛物线y =333
2
332+--
x x 的图象 交x 轴于A ,B 两点,交y 轴于点C ,顶点为D . (1)求A ,B ,C 三点的坐标;(4分)
(2)把△ABC 绕AB 的中点M 旋转180°,得到四边形AEBC , 求出四边形AEBC 的面积;(4分)
(3)试探索:在直线BC 上是否存在一点P ,使得△P AD 的周长最小, 若存在,请求出P 点的坐标;若不存在,请说明理由?(4分)
25. (本题满分12分) 如图,矩形ABCD 中,6=AB ,8=BC ,点E 是射线CB 上的一个动点,把DCE ∆沿DE 折叠,点C 的对应点为C '
(1)若点C '刚好落在对角线BD 上时,='C B ▲ ;(4分) (2)若点C '刚好落在线段AB 的垂直平分线上时,求CE 的长,(4分) (3)若点C '刚好落在线段AD 的垂直平分线上时,求CE 的长。

(4分)
C /
E
D
C
B
A。

相关文档
最新文档