广东省化州市实验中学高中数学《3.2.2 随机数的产生》导学案 新人教A版必修3
人教A版高中数学必修三3.2.2《随机数的产生》导学案

《3.2.2 随机数的产生》导学案教学目标:了解随机数的概念,掌握用计算器或计算机产生随机数求随机数的方法; 能用模拟的方法估计概率。
重点与难点:重点:随机数的产生;难点:利用随机实验求概率教学过程课前热身1.要产生1~n(n∈N*)之间的随机整数,把n个____________相同的小球分别标上1,2,3,…,n,放入一个袋中,把它们充分________,然后从袋中摸出一个,这个球上的数就称为________.2.计算机或计算器产生的随机数是依照________产生的数,具有周期性(周期很长),它们具有类似随机数的性质.因此,计算机或计算器产生的并不是真正的________,称它们为________.(一)、引入情境:历史上求掷一次硬币出现正面的概率时,需要重复掷硬币,这样不断地重复试验花费的时间太多,有没有其他方法可以代替试验呢?我们可以用随机模拟试验,代替大量的重复试验,节省时间.本节主要介绍随机数的产生,目的是利用随机模拟试验代替复杂的动手试验,以便求得随机事件的频率、概率.(二)、产生随机数的方法:1.由试验(如摸球或抽签)产生随机数例:产生1-25之间的随机整数.(1)将25个大小形状相同的小球分别标1,2, …, 24, 25,放入一个袋中,充分搅拌(2)从中摸出一个球,这个球上的数就是随机数2.由计算器或计算机产生随机数由于计算器或计算机产生的随机数是根据确定的算法产生的,具有周期性(周期很长),具有类似随机数的性质,但并不是真正的随机数,而叫伪随机数由计算器或计算机模拟试验的方法为随机模拟方法或蒙特卡罗方法。
(三)、利用计算器怎样产生随机数呢?例1: 产生1到25之间的取整数值的随机数.解:具体操作如下:第一步:MODE-→MODE-→MODE-→1-→0-→第二步:25-→SHIFT-→RAN#-→+-→0.5-→=第三步:以后每次按"="都会产生一个1到25的取整数值的随机数.工作原理:第一步中连续按MODE键三次,再按1是使计算器进入确定小数位数模式,"0"表示小数位数为0,即显示的计算结果是进行四舍五入后的整数;第二步是把计算器中产生的0.000~0.999之间的一个随机数扩大25倍,使之产生0.000-24.975之间的随机数,加上"+0.5"后就得到0.5~25.475之间的随机数;再由第一步所进行的四舍五入取整,就可随机得到1到25之间的随机整数。
人教A版高中数学必修三3.2.2《(整数值)随机数的产生》word学案

四川省岳池县第一中学高中数学必修三学案:3.2.2(整数值)随机数的产生1.了解随机数的概念,掌握用计算器或计算机产生随机数求随机数的方法;一、课前准备(预习教材P130-P132,找出疑惑之处)1.要产生1~n(n∈N*)之间的随机整数,把n个____________相同的小球分别标上1,2,3,…,n,放入一个袋中,把它们充分________,然后从袋中摸出一个,这个球上的数就称为________.2.计算机或计算器产生的随机数是依照________产生的数,具有周期性(周期很长),它们具有类似随机数的性质.因此,计算机或计算器产生的并不是真正的________,称它们为________________.二、新课导学※ 探索新知思考:前面在求掷一次硬币出现正面的概率时,需要重复掷硬币,这样不断地重复试验花费的时间太多,有没有其他方法可以代替试验呢?新知:随机数的产生方法:1.由试验(如摸球或抽签)产生随机数例:产生1-25之间的随机整数.(1)将25个大小形状相同的小球分别标1,2,…, 24, 25,放入一个袋中,充分搅拌;(2)从中摸出一个球,这个球上的数就是随机数。
2.由计算器或计算机产生随机数由计算器或计算机模拟试验的方法为随机模拟方法或蒙特卡罗方法。
利用计算器怎样产生随机数呢?例: 产生1到25之间的取整数值的随机数.解:具体操作如下:第一步:MODE-→MODE-→MODE-→1-→0-→第二步:25-→SHIFT-→RAN#-→+-→0.5-→=第三步:以后每次按"="都会产生一个1到25的取整数值的随机数.工作原理:第一步中连续按MODE键三次,再按1是使计算器进入确定小数位数模式,“0”表示小数位数为0,即显示的计算结果是进行四舍五入后的整数;第二步是把计算器中产生的0.000~0.999之间的一个随机数扩大25倍,使之产生0.000-24.975之间的随机数,加上“+0.5”后就得到0.5~25.475之间的随机数;再由第一步所进行的四舍五入取整,就可随机得到1到25之间的随机整数。
3.2.2(整数值)随机数(random numbers)的产生 教案

高一数学集体备课教案课题:3.2.2 (整数值)随机数(random numbers)的产生教学目标:1.通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,了解随机数的概念;体会数学知识与现实世界的联系,培养逻辑推理能力.2.通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯.利用计算机产生随机数,并能直接统计出频数与频率.通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.教学重点:学会利用随机数实验来求简单事件的概率.教学难点:学会利用计算器、计算机求随机数的方法.教学方法:讲授法课时安排:1课时教学过程:一、导入新课:复习上一节课的内容:(1)古典概型.我们将具有①试验中所有可能出现的基本事件只有有限个;(有限性)每个基本事件出现的可能性相等.(等可能性)这样两个特点的概率模型称为古典概率概型,简称古典概型.(2)古典概型计算任何事件的概率计算公式:P(A)=基本事件的总数数所包含的基本事件的个A.本节课我们学习(整数值)随机数的产生,教师板书课题.二、新课讲解:提出问题(1)在掷一枚均匀的硬币的试验中,如果没有硬币,你会怎么办?(2)在掷一枚均匀的骰子的试验中,如果没有骰子,你会怎么办?(3)随机数的产生有几种方法,请予以说明.(4)用计算机或计算器(特别是TI图形计算器)如何产生随机数?活动:学生思考或讨论,并与同学交流活动感受,讨论可能出现的情况,师生共同最后汇总方法、结果和感受.讨论结果:(1)我们可以用0表示反面朝上,1表示正面朝上,用计算器做模拟掷硬币试验.(2)我们可以分别用数字1、2、3、4、5、6表示出现“1点”“2点”“3点”“4点”“5点”和“6点”,用计算器做模拟掷骰子试验.(3)可以由试验产生随机数,也可用计算机或计算器来产生随机数.①由试验产生的随机数:例如我们要产生1—10之间的随机数,可以把大小形状均相同的十张纸片的背后分别标上:1,2,3,…,8,9,10,然后任意地抽出其中一张,这张纸上的数就是随机数.这种产生随机数的方法比较直观,不过当随机数的量比较大时,就不方便,因为速度太慢.②用计算机或计算器(特别是图形计算器)产生随机数:利用计算机程序算法产生,具有周期性(周期很长),具有类似随机数性质,称为伪随机数.在随机模拟时利用计算机产生随机数比较方便.(4)介绍各种随机数的产生.①计算器产生随机数下面我们介绍一种如何用计算器产生你指定的两个整数之间的取整数值的随机数.例如,要产生1—25之间的取整数值的随机数,按键过程如下:以后反复按键,就可以不断产生你需要的随机数.同样地,我们可以用0表示反面朝上,1表示正面朝上,利用计算器不断地产生0,1两个随机数,以代替掷硬币的试验.按键过程如下:②利用TI图形计算器产生随机数的方法只要输入RAND(N)(其中N为任意整数,如图:RAND(20)表示1到20的随机数.)利用TI 图形计算器产生随机数的速度很快而且很方便.③介绍利用计算机产生随机数(主要利用Excel软件)先让学生熟悉Excel软件特别是产生随机数的函数,画统计图的功能,以及了解Excel 软件对统计数据进行处理的功能.我们也可以用计算机产生随机数,而且可以直接统计出频数和频率.下面以掷硬币为例给出计算机产生随机数的方法.每个具有统计功能的软件都有随机函数.以Excel软件为例,打开Excel软件,执行下面的步骤:(见教材131页)同时可以画频率折线图,它更直观地告诉我们:频率在概率附近波动.上面我们用计算机或计算器模拟了掷硬币的试验,我们称用计算机或计算器模拟试验的方法为随机模拟方法或蒙特卡罗(Monte Carlo)方法.三、例题讲解:(注:例1,变式训练选讲)例1 利用计算器产生10个1—100之间的取整数值的随机数.解:具体操作如下:键入反复操作10次即可得之.点评:利用计算器产生随机数,可以做随机模拟试验,在日常生活中有着广泛的应用.变式训练利用计算器生产10个1到20之间的取整数值的随机数.解:具体操作如下:键入反复按键10次即可得到.例2:天气预报说,在今后的三天中,每一天下雨的概率均为40%,这三天中恰有两天下雨的概率是多少?活动:这里试验出现的可能结果是有限个,但是每个结果的出现不是等可能的,所以不能用古典概型求概率的公式.用计算器或计算机做模拟试验可以模拟下雨出现的概率是40%.解:(略)本例题的目的是要让学生体会如何利用模拟的方法估算概率.解决步骤:(1)建立概率模型:模拟每一天下雨的概率为40%,有很多方法,例如用计算机产生0—9的随机数,可用0,1,2,3表示下雨,其余表示不下雨(当然,也可以用5,6,7,9表示下雨,其余表示不下雨),这样可以体现下雨的概率为40%.(2)进行模拟实验,可以用Excel软件模拟的结果(模拟20个):可用函数“RANDBETWEEN (1,20)”.(3)验证统计结果(略).注意:用随机数模拟的方法得到的仅仅是20次的模拟结果,是概率的近似值,而不是概率.随着模拟的数量不断地增加(相当于增加样本的容量),模拟的结果就越接近概率.关于例2的实际操作,有条件的可以让学生自己上机动手或利用计数器来演算.点评:掌握产生随机数的方法,特别是用计算机模拟的方法,还要建立适当的模型.四、课堂练习:教材133页练习:1、2、3、4五、课堂小结随机数具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验,比如现在很多城市的中考中都采用产生随机数的方法把考生分配到各个考场中.六、课后作业习题3.2A组5、6,B组1、2、3.板书设计3.2.2 (整数值)随机数(random numbers)的产生1、由试验产生的随机数2、用计算机或计算器(特别是图形计算器)产生随机数课后反思:备课资料1.蒙特卡罗方法(Monte Carlo method)蒙特卡罗(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法.这一方法源于美国在第一次世界大战研制原子弹的“曼哈顿计划”.该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城——摩纳哥的Monte Carlo——来命名这种方法,为它蒙上了一层神秘色彩.Monte Carlo方法的基本思想很早以前就被人们所发现和利用.早在17世纪,人们就知道用事件发生的“频率”来决定事件的“概率”.19世纪人们用投针试验的方法来决定圆周率π.本世纪40年代电子计算机的出现,特别是近年来高速电子计算机的出现,使得用数学方法在计算机上大量、快速地模拟这样的试验成为可能.考虑平面上的一个边长为1的正方形及其内部的一个形状不规则的“图形”,如何求出这个“图形”的面积呢?Monte Carlo方法是这样一种“随机化”的方法:向该正方形“随机地”投掷N个点落于“图形”内,则该“图形”的面积近似为M/N.可用民意测验来作一个不严格的比喻.民意测验的人不是征询每一个登记选民的意见,而是通过对选民进行小规模的抽样调查来确定可能的优胜者.其基本思想是一样的.科技计算中的问题比这要复杂得多.比如金融衍生产品(期权、期货、掉期等)的定价及交易风险估算,问题的维数(即变量的个数)可能高达数百甚至数千.对这类问题,难度随维数的增加呈指数增长,这就是所谓的“维数的灾难”(Course Dimensionality),传统的数值方法难以对付(即使使用速度最快的计算机).Monte Carlo方法能很好地用来对付维数的灾难,因为该方法的计算复杂性不再依赖于维数.以前那些本来是无法计算的问题现在也能够计算了.为提高方法的效率,科学家们提出了许多所谓的“方差缩减”技巧.另一类形式与Monte Carlo方法相似,但理论基础不同的方法——“拟蒙特卡罗方法”(Quasi-Monte Carlo方法)——近年来也获得迅速发展.我国数学家华罗庚、王元提出的“华—王”方法即是其中的一例.这种方法的基本思想是“用确定性的超均匀分布序列(数学上称为Low Discrepancy Sequences)代替Monte Carlo方法中的随机数序列.对某些问题该方法的实际速度一般可比方法提出高数百倍,并可计算精确度.蒙特卡罗方法在金融工程学、宏观经济学、计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛.2.蒙特卡罗方法的基本原理由概率定义知,某事件的概率可以用大量试验中该事件发生的频率来估算,当样本容量足够大时,可以认为该事件的发生频率即为其概率.因此,可以先对影响其可靠度的随机变量进行大量的随机抽样,然后把这些抽样值一组一组地代入功能函数式,确定结构是否失效,最后从中求得结构的失效概率.蒙特卡罗法正是基于此思路进行分析的.设有统计独立的随机变量Xi(i=1,2,3,…,k),其对应的概率密度函数分别为fx1,fx2,…,fxk,功能函数式为Z=g(x1,x2,…,xk).各随机变量的相应分布,产生N组随机数x1,x2,…,xk值,计算功能函数值Zi=g(x1,x2,…,xk)(i=1,2,…,N),若其中有L组随机数对应的功能函数值Zi≤0,则当N→∞时,根据伯努利大数定理及正态随机变量的特性有:结构失效概率,可靠指标.从蒙特卡罗方法的思路可看出,该方法回避了结构可靠度分析中的数学困难,不管状态函数是否非线性、随机变量是否非正态,只要模拟的次数足够多,就可得到一个比较精确的失效概率和可靠度指标.特别在岩土体分析中,变异系数往往较大,与JC法计算的可靠指标相比,结果更为精确,并且由于思路简单易于编制程序.3.蒙特卡罗方法的工作过程在解决实际问题的时候应用蒙特·卡罗方法主要有两部分工作:·用蒙特卡罗方法模拟某一过程时,需要产生各种概率分布的随机变量.·用统计方法把模型的数字特征估计出来,从而得到实际问题的数值解.4.蒙特卡罗方法分子模拟计算的步骤使用蒙特卡罗方法进行分子模拟计算是按照以下步骤进行的:★使用随机数发生器产生一个随机的分子构型.对此分子构型的其中粒子坐标作无规则的改变,产生一个新的分子构型.计算新的分子构型的能量.★比较新的分子构型与改变前的分子构型的能量,判断是否接受该构型.★若新的分子构型能量低于原分子构型的能量,则接受新的构型,使用这个构型重复再做下一次迭代.★若新的分子构型能量高于原分子构型的能量,则计算玻尔兹曼常数,同时产生一个随机数. ★若这个随机数大于所计算出的玻尔兹曼因子,则放弃这个构型,重新计算.★若这个随机数小于所计算出的玻尔兹曼因子,则接受这个构型,使用这个构型重复再做下一次迭代.★如此进行迭代计算,直至最后搜索出低于所给能量条件的分子构型结束.5.蒙特卡罗方法在数学中的应用通常蒙特卡罗方法通过构造符合一定规则的随机数来解决数学上的各种问题.对于那些由于计算过于复杂而难以得到解析解或者根本没有解析解的问题,蒙特卡罗方法是一种有效地求出数值解的方法.一般蒙特卡罗方法在数学中最常见的应用就是蒙特·卡罗积分.。
322(整数值)随机数的产生导学案高中数学必修3.doc

《3.2.2 (整数值)随机数的产牛》导学案编写人:范志颖审核人:范志颖审批人:袁辉【学法指导】1.认真阅读教科书,努力完成“基础导学”部分的内容;2.探究部分内容可借助资料,但是必须谈出口己的理解;不能独立解决的问题,用红笔做好标记;3.课堂上通过合作交流研讨,认真听取同学讲解及教师点拨,排除疑难;4.全力以赴,相信自己!学习口标知识与技能过程与方法情感态度与价值观让学生学会用计算器和计算机产生随机数.通过计算器模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.学习重点初步体会古典概型的意义.学习难点设计和运用模拟方法近似讣算概率.【学习过程】随机数的产生:①如何用计算器产生随机数:随机函数:RAND (a, b)产生从幣数a到幣数b的取幣数值的随机数.Z XRANDI (1, 25)ENTER②如何用计算机产生随机数:在Excel执行RANDBETWEEN函数或者查看Pun的随机数表.例6,天气预报说,在今后的三天屮,每一天下雨的概率均为40% o这三天屮恰有两天下雨的概率大概是多少?当堂检测:1.见教材133页练习2.见教材133页习题3. 2 A组。
亲爱的同学:经过一番刻苦学习,大家一定跃跃欲试地示了一下自己的身手吧!成绩肯定会很理想的,在以后的学习中大家一定要用学到的知识让知识飞起来,学以致用!在考试的过程中也要养成仔细阅读,认真审题,努力思考,以最好的状态考岀好成绩!你有没有做到这些呢?是不是又忘了检查了?快去再检查一下刚完成怎样调整好考试心态心态就是一个人的心情。
心情的好坏,会直接地影响我们工作、学习的效果。
你也能看到,在体育比赛中,由于心理状态的起伏,参赛选手的发挥会跟着有较大的起伏。
同样的道理,心理状态的正常与否对参加考试的同学来说也至关重要。
心理方面的任何失衡都会使你手忙脚乱,得分率降低,平时掌握的内容也有可能发挥不出来;相反,保持良好的心态,则会使你如虎添翼,发挥出最佳水平。
人教版高中必修33.2.2随机数的产生教学设计

人教版高中必修3 3.2.2 随机数的产生教学设计一、教学目标1.了解计算机生成随机数的原理和方法;2.掌握Python语言中产生随机数的方法;3.能够运用所学知识解决随机数相关问题;4.培养学生的编程思维和解决问题的能力。
二、教材分析随机数在计算机应用中有着广泛的应用,如游戏、模拟、密码学等领域。
在本节课中,主要介绍了计算机中随机数的生成方法和用法,并通过实例演示如何使用Python语言进行随机数的产生和使用。
三、教学设计1.导入环节(10分钟)1.引导学生回顾前面已学知识,如变量、if语句等,并了解在实际应用中随机数的运用场景;2.介绍本节课将要学习的内容:计算机中随机数的生成方法和用法,并指出其重要性和应用;3.唤起学生的兴趣,引入本节课的主题。
2.讲解与练习环节(60分钟)1.讲解计算机中随机数生成的原理和方法,如伪随机数生成器、随机数种子、随机数分布等;2.分析Python语言中产生随机数的方法,如使用random模块、使用time模块等;3.给学生讲解一些随机数的应用,如随机密码生成、彩票选号等,并指导学生如何解决这些问题;4.给学生进行一些随机数生成的练习,让学生通过实践掌握随机数的产生和使用方法。
3.课堂互动环节(20分钟)1.设计互动游戏,如猜数字游戏,让学生运用所学知识进行随机数的产生和使用,并对游戏的胜负进行判断;2.指导学生进行小组合作,在一定时间内设计一个智力游戏,让其他学生尝试解决。
4.课堂总结与作业布置(10分钟)1.小结本节课所学内容,并对重点内容进行强调;2.布置作业,要求学生利用所学知识编写程序解决一些随机数相关问题。
四、教学评价通过本节课的教学,可以检验教学目标的完成情况:1.通过回答问题、参与讨论、解决课堂练习等方式,检测学生对计算机中随机数生成的原理和方法的理解程度;2.通过随堂批改、出示参考答案等方式,检测学生在编写随机数相关程序时的准确度和效率。
五、教学建议1.挖掘更多有趣的随机数应用场景和实例,增加课堂趣味性;2.指导学生在实际应用中运用所学知识,进一步巩固和提高所学知识的实用程度;3.可以结合其他科目,进行跨学科教学,如数学中的概率与统计等。
人教A版数学必修三教案:§3.2.2(整数值)随机数的产生

3.2.2 (整数值)随机数(random numbers)的产生一、教材分析产生随机数的方法有两种:(1)由试验产生的随机数:例如我们要产生1—25之间的随机整数,我们把25个大小形状等均相同的小球分别标上1,2,3,…,24,25,放入一个袋中,把它们充分搅拌.然后从中摸出一个球,这个球上的数就是随机数.一般当需要的随机数个数不是太多时,可以用这种方法产生随机数.如果需要随机数的量很大,这种方法就不是很方便,因为速度太慢.(2)用计算器或计算机产生随机数:由于计算机或计算器产生的随机数是根据确定的算法产生的,具有周期性(周期很长),具有类似随机数的性质,但并不是真正的随机数,称为伪随机数.在随机模拟中,往往需要大量的随机数,这时会选择用计算机产生随机数.这部分内容是新增加的内容,是随机模拟中最简单、易操作的部分,所以要求每个学生会操作.具体教学时,教师可以在课堂上带着学生用计算器操作一遍,然后让学生模拟掷硬币的试验或掷骰子的试验,并统计试验的结果.根据试验结果,教师可以设计一些与上一章统计部分相联系的问题,通过知识的相互联系,可以帮助学生更好地理解概率的意义和一些统计思想.例如:①每个学生模拟掷一个硬币的试验20次,统计出现正面的频数与频率,并可用频率估计概率,在此基础上进一步提出问题:这个估计的精度如何?误差大吗?②如果全班有50人,每人得到一个频率,那么有50个观测数据,计算这50个数据的平均数和标准差,并根据统计中的平均数和标准差的含义和计算的具体数值,解释这个模拟结果,通过这个过程,可以使学生进一步理解频率是概率的估计值,以及平均数和标准差的含义等.不同的计算器产生随机数的操作步骤可能不同,教科书中仅是以一种计算器为例给出产生随机数的步骤.教学中,可以让学生自己看计算器的说明书,按说明书的提示进行操作.很多软件都能产生随机数,教科书中以Excel软件为例,主要考虑到这个软件比较普遍,多数教师对它比较熟悉.教师在讲授这部分内容之前应该熟悉一下Excel软件,特别是产生随机数的函数、画统计图的功能及对统计数据结果的处理功能.用随机模拟的方法模拟随机现象称为统计试验.这里必须明确随机模拟方法得到的结果只能是概率的近似值或估计值,每次试验得到的结果可能是不同的.二、教学目标1、知识与技能:(1)了解随机数的概念;(2)利用计算机产生随机数,并能直接统计出频数与频率。
【同步导学】高中数学3.2.2 (整数值)随机数的产生课件新人教A版必修3

1.用随机模拟方法估计概率时,其准确程度决定 于( ) A.产生的随机数的大小 B.产生的随机数的个数 C.随机数对应的结果 D.产生随机数的方法 答案: B
2.一个小组有6位同学,选1位小组长,用随机模 拟法估计甲被选中的概率,下面步骤错误的是 ( ) ①把六名同学编号为1~6; ②利用计算器或计算机产生1到6之间的整数 随机数; ③统计总试验次数N及甲的编号出现的个数 N1;
(2)选定A1格,按Ctrl+C快捷键,然后选定要随 机产生0,1的格,比如A2至A100,按Ctrl+V快捷 键,则在A2至A100的数均为随机产生的0或1,这 样相当于做了100次随机试验. (3)选定C1格,键入频数函数“= FREQUENCY(A1∶A100,0.5)”,按Enter键,则 此格中的数是统计A1至A100中,比0.5小的数的 个数,即0出现的频数. (4)选定D1格,键入“=1-C1/100”,按Enter键, 在此格中的数是这100次试验中出现1的频率.
1.一体育代表队共有 21 名水平相当 的运动员.现从中抽取 11 人参加某场比赛,其中 运动员甲必须参加.写出利用随机数抽取的过 程. 解析: (1)把20名运动员编号(甲除外),实际上 20名运动员中抽取10名; (2)用计算器的随机函数RANDI(1,20)或计算机 的随机函数RANDBETWEEN(1,20)产生10个1 至20之间的整数随机数(如果有一个重复,重新 产生一个); (3)以上号码对应的10名运动员就是要抽取的对 象.
解析: 本题无法用古典概型解决. 因,6576,6754,共 5 个数.随机数总共 20 个, 5 所以所求的概率近似为 =25%. 20 答案: 25%
4.小明与同学都想知道每6个人中有2个人生肖 相同的概率,他们想设计一个模拟试验来估计6 个人中恰有两个人生肖相同的概率,你能帮他们 设计这个模拟方案吗? 解析: 用12个完全相同的小球分别编上号码 1~12,代表12个生肖,放入一个不透明的袋中摇 匀后,从中随机抽取一球,记下号码后放回,再摇 匀后取出一球记下号码„„连续取出6个球为 一次试验,重复上述试验过程多次,统计每次试 验中出现相同号码的次数除以总的试验次数,得 到的试验频率可估计每6个人中有两个人生肖 相同的概率.
人教A版高中数学必修三随机数的产生教案

3.2.2 (整数值)随机数的产生一、教学目标:1、知识与技能:(1)了解随机数的概念,掌握用计算器或计算机产生随机数求随机数的方法;(2)能用模拟的方法估计概率。
2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数学解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度与价值观:通过模拟方法的设计体验数学的重要性和信息技术在数学中的应用;通过动手模拟,动脑思考,体会做数学的乐趣;通过合作试验,培养合作与交流的团队精神。
二、重点与难点:重点:随机数的产生;难点:利用随机试验求概率.三、教学过程(一)、引入情境:历史上求掷一次硬币出现正面的概率时,需要重复掷硬币,这样不断地重复试验花费的时间太多,有没有其他方法可以代替试验呢?我们可以用随机模拟试验,代替大量的重复试验,节省时间.本节主要介绍随机数的产生,目的是利用随机模拟试验代替复杂的动手试验,以便求得随机事件的频率、概率.(二)、产生随机数的方法:1.由试验(如摸球或抽签)产生随机数例:产生1—25之间的随机整数.(1)将25个大小形状相同的小球分别标1,2, …,24, 25,放入一个袋中,充分搅拌(2)从中摸出一个球,这个球上的数就是随机数2.由计算器或计算机产生随机数由于计算器或计算机产生的随机数是根据确定的算法产生的,具有周期性(周期很长),具有类似随机数的性质,但并不是真正的随机数,而叫伪随机数由计算器或计算机模拟试验的方法为随机模拟方法或蒙特卡罗方法。
(三)、利用计算器怎样产生随机数呢?例1: 产生1到25之间的取整数值的随机数.解:具体操作如下:第一步:MODE—→MODE—→MODE—→1—→0—→第二步:25—→SHIFT—→RAN#—→+—→0.5—→=第三步:以后每次按“=”都会产生一个1到25的取整数值的随机数.工作原理:第一步中连续按MODE键三次,再按1是使计算器进入确定小数位数模式,“0”表示小数位数为0,即显示的计算结果是进行四舍五入后的整数;第二步是把计算器中产生的0.000~0.999之间的一个随机数扩大25倍,使之产生0.000—24.975之间的随机数,加上“+0.5”后就得到0.5~25.475之间的随机数;再由第一步所进行的四舍五入取整,就可随机得到1到25之间的随机整数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《3.2.2 随机数的产生》导学案
教学目标:
了解随机数的概念,掌握用计算器或计算机产生随机数求随机数的方法; 能用模拟的方法估计概率。
重点与难点:
重点:随机数的产生;
难点:利用随机实验求概率
教学过程
课前热身
1.要产生1~n(n∈N*)之间的随机整数,把n个____________相同的小球分别标上1,2,3,…,n,放入一个袋中,把它们充分________,然后从袋中摸出一个,这个球上的数就称为________.
2.计算机或计算器产生的随机数是依照________产生的数,具有周期性(周期很长),它们具有类似随机数的性质.因此,计算机或计算器产生的并不是真正的________,称它们为________.
(一)、引入情境:
历史上求掷一次硬币出现正面的概率时,需要重复掷硬币,这样不断地重复试验花费的时间太多,有没有其他方法可以代替试验呢?
我们可以用随机模拟试验,代替大量的重复试验,节省时间.
本节主要介绍随机数的产生,目的是利用随机模拟试验代替复杂的动手试验,以便求得随机事件的频率、概率.
(二)、产生随机数的方法:
1.由试验(如摸球或抽签)产生随机数
例:产生1-25之间的随机整数.
(1)将25个大小形状相同的小球分别标1,2, …, 24, 25,放入一个袋中,充分搅拌
(2)从中摸出一个球,这个球上的数就是随机数
2.由计算器或计算机产生随机数
由于计算器或计算机产生的随机数是根据确定的算法产生的,具有周期性(周期很长),具有类似随机数的性质,但并不是真正的随机数,而叫伪随机数
由计算器或计算机模拟试验的方法为随机模拟方法或蒙特卡罗方法。
(三)、利用计算器怎样产生随机数呢?
例1: 产生1到25之间的取整数值的随机数.
解:具体操作如下:
第一步:MODE-→MODE-→MODE-→1-→0-→
第二步:25-→SHIFT-→RAN#-→+-→0.5-→=
第三步:以后每次按"="都会产生一个1到25的取整数值的随机数.
工作原理:第一步中连续按MODE键三次,再按1是使计算器进入确定小数位数模式,"0"表示小数位数为0,即显示的计算结果是进行四舍五入后的整数;
第二步是把计算器中产生的0.000~0.999之间的一个随机数扩大25倍,使之产生0.000-24.975之间的随机数,加上"+0.5"后就得到0.5~25.475之间的随机数;再由第一步所进行的四舍五入取整,就可随机得到1到25之间的随机整数。
利用伸缩、平移变换可产生任意区间内的整数值随机数
即要产生[M,N]的随机整数,操作如下:
第一步:ON → MODE→MODE→MODE→1→0 →
第二步:N-M+1→SHIFT→RAN#→+→M-0.5 →=
第三步:以后每次按"="都会产生一个M到N的取整数值的随机数.
温馨提示:
(1)第一步,第二步的操作顺序可以互换;
(2)如果已进行了一次随机整数的产生,再做类似的操作,第一步可省略;
(3)将计算器的数位复原MODE → MODE → MODE → 3 → 1
练习:设计用计算器模拟掷硬币的实验20次,统计出现正面的频数和频率
解:(1)规定0表示反面朝上,1表示正面朝上
(2)用计算器产生随机数0,1,操作过程如下:
MODE→MODE→MODE→1→0 → SHIFT → RAN#=
(3)以后每次按"="直到产生20随机数,并统计出1的个数n
(4)频率f=n/20
用这个频率估计出来的概率精确度如何?误差大吗?
(四)、用计算机怎样产生随机数呢?
每个具有统计功能的软件都有随机函数.以Excel软件为例,打开Excel软件,执行下面的步骤:
(1)在表格中选择一格如A1,在菜单下的"="后键入"=RANDBETWEEN(0,1)",按Enter 键就会产生0或1.
(2)选定A1这个格,按Ctrl+C复制这个格,然后选定A2~A1000要粘贴的格,按"Ctrl+V"键.
(3)选定C1格,在菜单下"="后键入"=FREQUENCY(A1:A1000,0.5)",按Enter键.
(4)选定D1这个格,在菜单下的"="后键入"1-C1/1000",按Enter键.
同时还可以画频率折线图,它更直观地告诉我们:频率在概率附近波动.
【例2】天气预报说,在今后的三天中,每一天下雨的概率均为40%.这三天中恰有两天下雨的概率大概是多少?
分析:试验的可能结果有哪些?
用"下"和"不"分别代表某天"下雨"和"不下雨",试验的结果有
(下,下,下)、(下,下,不)、(下,不,下)、(不,下,下)、
(不,不,下)、(不,下,不)、(下,不,不)、(不,不,不)
共计8个可能结果,它们显然不是等可能的,不能用古典概型公式,只好采取随机模拟的方法求频率,近似看作概率.
解:(1)设计概率模型
利用计算机(计算器)产生0~9之间的(整数值)随机数,约定用0、1、2、3表示下雨,4、5、6、7、8、9表示不下雨以体现下雨的概率是40%。
模拟三天的下雨情况:连续产生三个随机数为一组,作为三天的模拟结果.
(2)进行模拟试验
例如产生30组随机数,这就相当于做了30次试验.
(3)统计试验结果
在这组数中,如恰有两个数在0,1,2,3中,则表示三天中恰有两天下雨,统计出这样的试验次数,则30次统计试验中恰有两天下雨的频率f=n/30.
(1)随机模拟的方法得到的仅是30次试验中恰有2天下雨的频率或概率的近似值,而不是概率.在学过二项分布后,可以计算得到三天中恰有两天下雨的概率0.288.
(2)对于满足"有限性"但不满足"等可能性"的概率问题我们可采取随机模拟方法.
(3)随机函数RANDBETWEEN(a,b)产生从整数a到整数b的取整数值的随机数.
课堂检测
1.掷两枚骰子,用随机模拟方法估计出现点数之和为10的概率时,产生的整数随机数中,每几个数字为一组( )
A.1
B.2
C.10
D.12
2.用随机模拟方法得到的频率( )
A.大于概率
B.小于概率
C.等于概率
D.是概率的估计值
3.用随机模拟方法估计概率时,其准确程度决定于( )
A.产生的随机数的大小
B.产生的随机数的个数
C.随机数对应的结果
D.产生随机数的方法
4.与大量重复试验相比,随机模拟方法的优点是( )
A.省时、省力
B.能得概率的精确值
C.误差小
D.产生的随机数多
5.一个小组有6位同学,选1位小组长,用随机模拟法估计甲被选中的概率,给出下列步骤:
①统计甲的编号出现的个数m;
②将六名学生编号1、2、3、4、5、6;
③利用计算器或计算机产生1到6之间的整数随机数,统计其个数n;
④则甲被选中的概率估计是 .
其正确步骤顺序是________.(只需写出步骤的序号即可)
6.通过模拟试验,产生了20组随机数:
6830 3013 7055 7430 7740 4422 7884
2604 3346 0952 6807 9706 5774 5725
6576 5929 9768 6071 9138 6754
如果恰有三个数在1,2,3,4,5,6中,则表示恰有三次击中目标,问四次射击中恰有三次击中目标的概率约为___________.
7.掷一枚骰子,观察掷出的点数,掷出偶数点的概率为________.
8.在一个盒中装有10支圆珠笔,其中7支一级品,3支二级品,任取一支,求取得一级品的概率.
9.某种心脏手术成功率为0.6,现准备进行3例这样的手术,试求:
(1)恰好成功一例的概率;
(2)恰好成功两例的概率.
10.试设计一个用计算器或计算机模拟掷骰子的实验,估计出现一点的概率.
解析:
(1).规定1表示出现1点,2表示出现2点,...,6表示出现6点
(2).用计算器或计算机产生N个1至6之间的随机数
(3).统计数字1的个数n,算出概率的近似值n/N
总结与反思
随机数具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验。
通过本节课的学习,我们要熟练掌握随机数产生的方法以及随机模拟试验的步骤:
(1)设计概率模型
(2)进行模拟试验
(3)统计试验结果。