第6章 发酵动力学
合集下载
6发酵动力学

第 2节
发酵动力学分类
1. 根据细胞生长与产物形成有否偶联进行分类 细胞浓度(x)或产物浓度对时间作图时 , 细胞浓度 或产物浓度对时间作图时, 或产物浓度对时间作图时 两者密切平行, 两者密切平行 , 其最大的比生长速率和 最大的产物合成比速率出现在同一时刻. 最大的产物合成比速率出现在同一时刻 . 一般来说在这种类型的发酵生产中, 控 一般来说在这种类型的发酵生产中 , 制好最佳生长条件就可获得产物合成的 最适条件. 最适条件.
(3) 分段反应型 其营养成分在转化为产物之前 全部转变为中间物, 全部转变为中间物,或营养成分以优先顺序选 择性地转化为产物. 择性地转化为产物.反应过程是由两个简单反 应段组成,这两段反应由酶诱导调节. 应段组成,这两段反应由酶诱导调节. (4) 串联反应型 是指在形成产物之前积累一 定 程度的中间物的反应 (5) 复合型 大多数发酵过程是一个联合反应, 大多数发酵过程是一个联合反应, 它们的联合可能相当复杂. 它们的联合可能相当复杂.
型发酵〗 〖 Ⅲ型发酵〗 产物的形成和菌体的生长非偶联
p x
2. 根据产物形成与基质消耗的关系分类
(1) 类型Ⅰ 类型Ⅰ
产物的形成直接与基质(糖类 的消耗有关 产物的形成直接与基质 糖类)的消耗有关,产 糖类 的消耗有关, 物合成与利用糖类存在化学计量关系, 物合成与利用糖类存在化学计量关系,糖提供 了生长所需的能量. 了生长所需的能量. 糖耗速度与产物合成速度的变化是平行的,如 糖耗速度与产物合成速度的变化是平行的, 利用酵母菌的酒精发酵和酵母菌的好气生长. 利用酵母菌的酒精发酵和酵母菌的好气生长. 在厌氧条件下, 在厌氧条件下,酵母菌生长和产物合成是平行 的过程;在通气条件下培养酵母时, 的过程;在通气条件下培养酵母时,底物消耗 的速度和菌体细胞合成的速度是平行的. 的速度和菌体细胞合成的速度是平行的.这种 形式也叫做有生长联系的培养. 形式也叫做有生长联系的培养.
6第六章 发酵动力学

dc(S) dt = 0
2.随着时间的延长,培养液中微生物细胞的 量c’(X)增加,但细胞的浓度却保持不变,即
dc(X) dt
= 0
3.因而µ≌D
这种微生物细胞的培养状态称为 ——“准恒定状态”
在“ቤተ መጻሕፍቲ ባይዱ恒定状态”下
c(S) ≈ DKs µm - D (4)
c’(X) = c0’(X) + F · Yx/s · c ’0 (S) · t 补料液浓度
动力学方程
c0(S)——开始时培养基中限制性基质的浓度 g/L F——培养基的流速 L/h V——培养基的体积 L F/V=D——稀释率 c0(X)——刚接种时培养液中的微生物细胞浓度 g/L c(X)——某一瞬间培养液中微生物细胞浓度 g/L c(X) = c0(X) + Yx/s [c0 (S) -c (S)]
v =
µ
YG
v =
+ m +
Qp Yp
+
(6)
µ Yx/s
(5)
少量的其他代谢产物和其他忽略 1 Yx/s 1 m + µ (7)
=
YG
YG和m很难直接测定,只要得出细胞在不同 比生长速率下的Yx/s,可根据(7)式用作图法 求出YG和m值。 YG和m值用于衡量发酵时限制性营养基质的 起始最低浓度。
µ µm
b µm/2
c
µ =
a
µm c(S)
Ks + c(S)
c(S)
Ks
Ks的物理意义
Ks的大小表示了微生物对营养物质的吸收亲 和力大小 Ks越大,表示微生物对营养物质的吸收亲 和力越小; Ks越小,表示微生物对营养物质的吸收亲 和力越大
2.随着时间的延长,培养液中微生物细胞的 量c’(X)增加,但细胞的浓度却保持不变,即
dc(X) dt
= 0
3.因而µ≌D
这种微生物细胞的培养状态称为 ——“准恒定状态”
在“ቤተ መጻሕፍቲ ባይዱ恒定状态”下
c(S) ≈ DKs µm - D (4)
c’(X) = c0’(X) + F · Yx/s · c ’0 (S) · t 补料液浓度
动力学方程
c0(S)——开始时培养基中限制性基质的浓度 g/L F——培养基的流速 L/h V——培养基的体积 L F/V=D——稀释率 c0(X)——刚接种时培养液中的微生物细胞浓度 g/L c(X)——某一瞬间培养液中微生物细胞浓度 g/L c(X) = c0(X) + Yx/s [c0 (S) -c (S)]
v =
µ
YG
v =
+ m +
Qp Yp
+
(6)
µ Yx/s
(5)
少量的其他代谢产物和其他忽略 1 Yx/s 1 m + µ (7)
=
YG
YG和m很难直接测定,只要得出细胞在不同 比生长速率下的Yx/s,可根据(7)式用作图法 求出YG和m值。 YG和m值用于衡量发酵时限制性营养基质的 起始最低浓度。
µ µm
b µm/2
c
µ =
a
µm c(S)
Ks + c(S)
c(S)
Ks
Ks的物理意义
Ks的大小表示了微生物对营养物质的吸收亲 和力大小 Ks越大,表示微生物对营养物质的吸收亲 和力越小; Ks越小,表示微生物对营养物质的吸收亲 和力越大
第六章发酵动力学

发酵装置-细胞回流式
F Se
(1 ) F X
F Xe
F , cX
细胞回流的单级连续发酵示意图
a: 再循环比率(回流比) c: 浓缩因子
2.2连续发酵动力学-理论
2.2.1单级恒化器连续发酵
定义: ① 稀释率 将单位时间内连续流入发酵罐中的新鲜培养基体积与 发酵罐内的培养液总体积的比值 D=F/V (h-1) F—流量(m3/h) V—培养液体积(m3) ② 理论停留时间
μ
残留的限制性底物浓度对微生物
比生长率的影响
Ks—底物亲和常数,速度 等于处于1/2μm时的底物浓 度,表征微生物对底物的亲 和力,两者成反比。
酶促反应动力学-米氏方程:
Vm [ s ] v K m [ s]
受单一底物酶促反应限制的微生物 生长动力学方程-Monod方程:
m s
Ks s
克P和每个有效电子所生成的细胞克数; ③ Yx/ATP:消耗每克分子的三磷酸腺苷生成的细胞克数。
基质消耗动力学 产物得率系数:
Yp/s , YP / O2 , YATP / s , YCO2 / s
:
消耗每克营养物(s)或每克分 子 氧 (O2) 生 成 的 产 物 (P) 、 ATP 或
CO2的克数。
细胞生长动力学
Decline(开始出现一种底物不足的限制):
若不存在抑制物时
Monod 模型:
m s
Ks s
m s
Ks s
t
ln x ln x0
t
x x0e
细胞生长动力学
式中: S—限制性基质浓度,mol/m3 Ks—底物亲和常数(也称半饱和速度常数),表示微生 物对底物的亲和力 , mol/m3 ; Ks越大,亲和力越 小, µ 越小。
第六章 典型发酵过程动力学及模型

rX/rX rS/rX rP/rX
二、微生物生长动力学
1. 细胞反应的得率系数
对底物的细胞得率:
YX / S
生 成 细 胞 的 质 量 消 耗 底 物 的 质 量
rX rX0 Dm X = DmS rs0 rs
Dm X = DmO
对氧的细胞得率:
YX / O
生 成 细 胞 的 质 量 消 耗 氧 的 质 量
摄氧率 与 呼吸强度
四、
代谢产物生成动力学
相关型
部分相关型
非相关型
四、
代谢产物生成动力学
1)偶联型 也叫产物形成与细胞生长关联模式(相关模型),产物的形成和菌体 生长是平行的。在该模式中,产物形成速度与生长速度的关系 可表示为: rP = YP/X rx = YP/XμX = αμX qP = αμ
μ= μmS/(KsX+S) μ=KsSn
菌体生长,基质消耗
1959
1963 1972
Dabes等
尺田等 Bailey
S=Aμ+Bμ/(μm+μ)
μ2/K-(Ks+S)μ-μmS=0 μ= μmS/(Ks+S)-D 微生物维持代谢
1973
1975 1977
二、微生物生长动力学
5、无抑制、多种基质限制下的细胞生长动力学
一、 数字拟合法 根据小型试验、中型试验或生产装置上实测的数据,利用 现代辨识技术,找出个参量之间的函数关系而建立数学模 型的方法。
1.4 1.2 1 0.8 0.6 0.4 0.2 0 1 2 3 4 5 y = 3.5348e
细胞生长
微生物生化反应动力学
产物生成
发酵过程反应的描述
第六章 发酵动力学

率的上升而增加,而实际产物得率YP/S随的上升而减少。
发酵过程的化学计量式 质量平衡 能量平衡
1、分批发酵时生产菌的生长周期三个时期
三个时期:
菌体生长期 产物合成期 菌体自溶期
2、发酵的操作方式 三种:
分批发酵 补料分批发酵 连续发酵
第二节 分批发酵
分批培养 所谓分批培养的是一次投料, 一次接种,一次收获的间歇 培养方式。这种培养方式操 作简单,发酵液中的细胞浓 度、基质浓度和产物浓度均 随时间而不断变化。就细胞 的浓度X的变化而言,在分批 培养中要经历延迟期、对数 生长期、减速期、稳定期和 衷亡期各阶段。
X
X(菌体) + P(产物)
S1 菌体 (Biomass)
维持消耗(m) :
指维持细胞最低活性所需消 耗的能量,一般来讲,单位 重量的细胞在单位时间内用 于维持消耗所需的基质的量 是一个常数。
S
S2 S3
产物 (Products) 维持(Maintain)
S(底物)
X
X(菌体) + P(产物)+维持
(一)维持因数
“维持”是指细胞群体没有实质性的生长(更确切地说是 生长和死亡处于动态平衡状态)和没有胞外代谢产物 合成情况下的生命活动,如细胞的运动、细胞内外各 种物质的交换、细胞物质的转运和更新等,所需能量 由细胞物质的氧化或降解产生。 “维持”的物质代谢称为维持代谢,也叫内源代谢,代谢 释放的能叫维持能。
细胞 营养物→ → →新细胞+代谢产物
一、细胞反应的元素衡算
如果细胞的代谢产物就是细胞、CO2和水时, Meteles根据细胞的主要元素组成,提出了预测 发酵过程中微生物需要氧数量的计算公式: 32 C + 8 H + 16 O - 1 .34 Q= Y ·M
6.发酵动力学课件

同步培养: 使许多细胞在相同菌令下同步生长的培养方法, 指所有细胞同时开始 分裂, 齐步成长, 并同时结束。同步培养法所得到的培养物为同步培养物。 均衡生长: 随着细胞质量的增加, 菌体组分(蛋白质, RNA, DNA,胞内H2O等….)也 以相同比例增加。 非均衡生长:储存物质的积蓄 (糖原, 油脂等) 使细胞质量增加, 非实质性生长。 生长速率: rX (g /L・h)单位体积培养液中单位时间内生成的干菌体量, 与菌体浓 度X成正比。 rX =μ・ X 或 μ = rX /X 在废水处理中 rX表示污泥生成速率, X表示混合液悬浮物 (MLSS)浓度; 比生长速率 (h - 1) :μ 为比生长速率 (h - 1) --------- (g/g・h) 表示相对单位质量干菌体在单位时间内增加的干菌体质量。 在分批培养的对数期μ一般为常数。生物种的遗传基因是决定比生长速率大小 的决定因素。细胞包含的遗传信息越复杂,细胞越大,即越是高等生物,μ越小,生 长也就越慢。
对这种运动规律的影响。发酵动力学主要包括: 化学热力学 ----- 研究反应的方向; 化学动力学 ----- 研究反应的速度; 酶反应动力学 ----- 发酵是活细胞产生的酶催化的化学反应; 有几个层次; 1) 细胞生长和死亡动力学; 2) 基质消耗动力学; 3) 氧消耗动力学; 4) 二氧化碳生成动力学; 5) 产物合成和降解动力学; 6) 代谢热生成动力学。
葡萄糖作为能源时某些微生物的维持系数---教科书 P105
3. N源的消耗速率以及C/N
氮源的消耗仅次于碳源,可定义氮源的比消耗速率Q N为: QN = rN/X 培养基中碳源与氮源的含量之比,称为碳氮比,记作C/N。C/N对微生物代 谢过程有很大影响,C/N可定量表示为碳源和氮源的消耗速率之比,即: C/N = rc/rN = Qc /QN Qc和 QN分别表示碳原子和氮原子的比消耗速率。C/N高, 有时表示与氮 源相比, 菌体摄取过量的碳源作为储存性物质积累在细胞内。相反, 若使用如 蛋白胨类蛋白质碳源, 则C/N比过低, 这时有可能反应中产生副产物NH4使培 养液的pH上升。可见, C/N比是决定微生物反应状况的一个重要参数。
发酵动力学

延迟期长短与菌种的种龄有关,年轻的种 子延迟期短,年龄老的种子延迟期长。对于相 同种龄的种子,接种量愈大延迟期愈短。
dX 0 dt
对数期
在对数期,培养基中营养物质较充分, 细胞的生长不受限制,细胞浓度随时间呈指 数生长,比生长速率μ维持不变。
两边积分
dX X
dt
x dX
t
dt
x0 X
0
可得
第二节 分批发酵动力学
分批发酵的特点
在发酵过程中,要经历接种、生长繁殖、 菌体衰老、发酵结束(放罐)等过程。 随着底物不断被消耗、产物逐渐生成,反 应体系在不断变化。 分批发酵过程中,细胞经历停滞期、对数 期、静止期和衰亡期四个阶段。
分批发酵动力学的研究内容
细胞生长动力学 底物消耗动力学 产物生成动力学
细胞生长动力学:研究影响细胞生长速率 的各种因素及其影响规律。 重点:Monod方程 底物消耗动力学 以C源为例 产物生成动力学 考虑产物生成速率与细胞生长速率相关
发酵动力学分类
根据产物形成与底物消耗的关系
Ⅰ型:产物形成直接与底物消耗有关(酒精发酵、乳酸发酵) Ⅱ型:产物形成与底物消耗间接有关(柠檬酸、谷氨酸发酵) Ⅲ型:产物形成与底物消耗无关(青霉素发酵、核黄素发酵)
分批发酵法
底物一次性装入反应器内,在适宜条件下进行 反应, 经过一定时间后将反应物全部取出。
补料分批发酵法
先将一定量底物装入反应器,在适宜条件下反 应,在反应过程中,间歇或连续地进行补加新鲜 培养基,反应终止时将全部反应物取出。
连续发酵法
反应过程中,一方面把底物连续加入反应器, 同时又把反应液连续不断地取出,使反应过程始 终处于稳定状态。
X X 0 exp( t)
可以看出:菌体浓度呈指数增加
dX 0 dt
对数期
在对数期,培养基中营养物质较充分, 细胞的生长不受限制,细胞浓度随时间呈指 数生长,比生长速率μ维持不变。
两边积分
dX X
dt
x dX
t
dt
x0 X
0
可得
第二节 分批发酵动力学
分批发酵的特点
在发酵过程中,要经历接种、生长繁殖、 菌体衰老、发酵结束(放罐)等过程。 随着底物不断被消耗、产物逐渐生成,反 应体系在不断变化。 分批发酵过程中,细胞经历停滞期、对数 期、静止期和衰亡期四个阶段。
分批发酵动力学的研究内容
细胞生长动力学 底物消耗动力学 产物生成动力学
细胞生长动力学:研究影响细胞生长速率 的各种因素及其影响规律。 重点:Monod方程 底物消耗动力学 以C源为例 产物生成动力学 考虑产物生成速率与细胞生长速率相关
发酵动力学分类
根据产物形成与底物消耗的关系
Ⅰ型:产物形成直接与底物消耗有关(酒精发酵、乳酸发酵) Ⅱ型:产物形成与底物消耗间接有关(柠檬酸、谷氨酸发酵) Ⅲ型:产物形成与底物消耗无关(青霉素发酵、核黄素发酵)
分批发酵法
底物一次性装入反应器内,在适宜条件下进行 反应, 经过一定时间后将反应物全部取出。
补料分批发酵法
先将一定量底物装入反应器,在适宜条件下反 应,在反应过程中,间歇或连续地进行补加新鲜 培养基,反应终止时将全部反应物取出。
连续发酵法
反应过程中,一方面把底物连续加入反应器, 同时又把反应液连续不断地取出,使反应过程始 终处于稳定状态。
X X 0 exp( t)
可以看出:菌体浓度呈指数增加
发酵动力学

减速期: d 0
dt
静止期: dx 0
dt
; X Xmax
衰亡期: dx 0
dt
二、微生物的生长动力学、Monod方程
微生物的生长速度:
μ=f(s,p,T,pH,……,)
在一定条件下(基质限制):
μ=f(S)
Monod研究了基质浓度与生长速度的关系 ———Monod方程(1949)
1.2 V1m
td=ln2/ μmax=0.64 h
基质消耗动力学的基本概念
S1 菌体
维持消耗(m) :
S
S2 产物
指维持细胞最低活性所 需消耗的能量,一般来
讲,单位重量的细胞在
S3 维持
单位时间内用于维持消 耗所需的基质的量是一
个常数。
X S(底物) ─→ X(菌体) + P(产物)+维持
X S(底物) ─→ X(菌体) + P(产物)+维持
p x
〖二类发酵〗 产物的形成和菌体的生长部分偶联
p x
〖三类发酵〗 产物的形成和菌体的生长非偶联偶联
〖Pirt方程〗
π=a + bμ
a=0、b≠0: 可表示一类发酵 a≠0、b=0: 可表示二类发酵 a≠0、b≠0:可表示三类发酵
产物的生成动力学
发酵类型Ⅰ: 发酵类型Ⅱ 发酵类型Ⅲ=
dP
dX
YP / X
dt
dt
dP dX X
dt dt
dP X
dt
Ⅱ
Ⅰ
Ⅲ
分批发酵的优缺点
➢ 优点:
操作简单、周期短、染菌机会减少、生产过程及产品 容易控制。
➢ 缺点:
不利于测定生长动力学。
第二节 连续发酵动力学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发酵过程反应速度的描述
X S(底物) ─→ X(菌体) + P(产物)
基质的消耗速度:
ds r dt
X
(g.L-1.s-1)
ds 基质的消耗比速: dt
(h-1.s-1)
单位时间内单位菌体消耗基质或形成产物(菌体)的量称为 比速,是生物反应中用于描述反应速度的常用概念
发酵过程反应速度的描述
的比生长速率µ 保持一定。
连续发酵动力学-发酵装置-细胞回流式
F Se
(1 ) F X
F Xe
F, cX
细胞回流的单级连续发酵示意图
a: 再循环比率(回流比) c: 浓缩因子
连续发酵动力学-发酵装置-塞流式
无菌培养 基流入
发酵罐 d 供给连续接 种再循环
培养物 流出
物料衡算(连续培养的反应器特性)
催化剂
改变条件
温度 酸碱度
破坏平衡
浓度
如何确定高产高效 的最佳条件?
采用反应动力学方法 进行定量研究
发酵动力学研究的几个层次(尺度)
分子层次(酶催化与生物转化) 基于关键生化反应(限速步)及其关键酶的动力学特征 及其影响因素 采用一系列分子水平的方法 细胞层次(代谢网络与细胞工厂) 基于细胞信号传导、代谢网络、细胞物质运输的系列关 键生化反应的综合表现 采用一系列细胞水平的方法,包括细胞群体行为分析 反应器层次(过程工程) 基于细胞群体生长及产物合成对外部环境综合响应 采用一系列优化反应器发酵条件的方法
二、微生物的生长动力学、Monod方程
微生物的生长速度:
μ=f(s,p,T,pH,……,)
在一定条件下(基质限制):
μ=f(S)
Monod研究了基质浓度与生长速度的关系 ———Monod方程(1949)
1.2 V1m 0.8 0.6 Vμ/2 m 0.4 0.2 0 0K m 200 400 S 600 800 1000
YX
s
YP
s
m
m: 维持消耗系数 YX/s: 细胞对基质的理论得率系数 YP/s: 产物对基质的理论得率系数
第六节 反应动力学的应用—
o
连续培养的操作特性
连续反应器: 流入速度=流出速度=F
反应器内(V)全混流溶质浓度处处相等
V:反应器内发酵液体积(L)
X:反应器内菌体浓度(g/L)
100 200
μmax,=1.11 (h-1); Ks=97.6 mg/L
s
td=ln2/ μmax=0.64 h
Monod方程练习题
在一定培养条件下,培养大肠杆菌,测定实验数据如下: 求: (1)该条件下,大肠杆菌的最大比生长速率μmax,半饱和常数Ks (2)比生长速率为μmax时的倍增时间td。
反应器特性
反 应 器 的 操 作 模 型
操作条件与反应结 果的关系,定量地 控制反应过程
已建立动力学模型的类型
机制模型: 根据反应机制建立
几乎没有
现象模型(经验模型):目前大多数模型
能定量地描述发酵过程
能反映主要因素的影响
第三节 微生物生长动力学的基本概念
一、微生物在一个密闭系统中的生长情况: 延迟期:
非相关型
产物合成相关、部分相关、非相关模型动力学示意图
第五节 基质消耗动力学的基本概念
S1 菌体 S S2 产物 S3
维持
维持消耗(m) :
指维持细胞最低活性所 需消耗的能量,一般来 讲,单位重量的细胞在 单位时间内用于维持消 耗所需的基质的量是一 个常数。
X S(底物) ─→ X(菌体) + P(产物)+维持
的变化 。
杀假丝菌素分批发酵动力学分析
分批发酵的优缺点
优点: 操作简单、投资少 运行周期短 染菌机会减少 生产过程、产品质量较易控制 缺点: 不利于测定过程动力学,存在底物限制或抑制问题,会 出现底物分解阻遏效应?及二次生长?现象。 对底物类型及初始高浓度敏感的次级代谢物如一些抗生 素等就不适合用分批发酵(生长与合成条件差别大)。 养分会耗竭快,无法维持微生物继续生长和生产。 非生产时间长,生产率较低。
课程重点:主要针对微生物发酵的表观动力学,通过研究
微生物群体的生长、代谢,定量反映细胞群体酶促反应体
系的宏观变化速率,主要包括:
细胞生长动力学 底物消耗动力学 产物合成动力学
重点定量研究底物消耗与细胞生长、产物合成的动
态关系,分析参数变化速率,优化主要影响因素。 但研究过程中将涉及三个层次的研究方法,达到认 识微生物本质特征、解决发酵工业问题的目的。
两级连续发酵示意图
连续发酵动力学-发酵装置-多级串联
培养基输入 培养基进入 下一级发酵罐
培养基进入 后处理或到 下一级发酵罐
多级罐式连续发酵装置示意图
罐式连续发酵实现方法
恒浊法:通过调节营养物的流加速度,利用浊度计检测
细胞浓度,使之恒定。
恒化法:保持某一限制性基质在一恒定浓度水平,使菌
分批发酵过程中,微生物生长通常要经历延滞期、对数 生长期、衰减期、稳定期(静止期)和衰亡期五个时期 。
分批发酵过程
典型的分批发酵工艺流程图
分批发酵动力学-细胞生长动力学
菌体浓度X t1
t2
t3
t4 时间 t
t5
分批发酵时典型的微生物生长动力学曲线
分批发酵动力学
应用举例
杀假丝菌素分
批发酵中的葡 萄 糖 消 耗 、 DNA 含 量 和 杀 假丝菌素合成
o
dx 对菌体: V xV Fx dt xV Fx dx 0 稳态 F dt D V
稀释率(D): 补料速度与 反应器体积 的比值(h-1)
物料衡算(连续培养的反应器特性)
o
ds 对基质: V Fs0 xV Fs dt
稳态
ds 0 dt
稀释率(D): 补料速度与 反应器体积 的比值(h-1)
发酵动力学研究的基本过程
首先研究微生物生长和产物合成限制因子;
建立细胞生长、基质消耗、产物生成模型;
确定模型参数; 实验验证模型的可行性与适用范围; 根据模型实施最优控制。
第一节 发酵过程的反应描述及速度概念
发酵过程反应的描述
X S(底物) ─→ X(菌体) + P(产物) 发酵研究的内容: 菌种的来源——找到一个好的菌种 发酵过程的工艺控制——最大限度发挥菌种的潜力
1000
max
μ:菌体的生长比速 S:限制性基质浓度 Ks:半饱和常数 μmax: 最大比生长速度
S Ks S
单一限制性基质:就是 指在培养微生物的营养 物中,对微生物的生长 起到限制作用的营养物。
Monod方程的参数求解(双倒数法):
max
S Ks S
将Monod方程取倒数可得:
X S(底物) ─→ X(菌体) + P(产物)
基质的消耗比速:
ds dt dx dt dp dt
X
(h-1)
菌体的生长比速:
X
(h-1)
产物的形成比速:
(h-1)
X
第二节 发酵反应动力学的研究内容
研究反应速度及其影响因素并建 立反应速度与影响因素的关联
反应动力学模型
+
153 170 220 S(mg/L) 100 120 μ(h-1) 0.667 0.706 0.754 0.773 0.815
第四节 产物形成动力学的基本概念
一、初级代谢产物和次级代谢产物
初级代谢产物:微生物合成的主要供给细胞生长的一类物质。 如氨基酸、核苷酸等等,这些物质称为初级
代谢产物。
次级代谢产物:由微生物产生的,与微生物生长、繁殖无关的
〖一类发酵〗
产物的形成和菌体的生长相偶联
p
x
〖二类发酵〗 产物的形成和菌体的生长部分偶联
p
x
〖三类发酵〗 产物的形成和菌体的生长非偶联
〖Pirt方程〗
π=a + bμ
a=0、b≠0: 可表示一类发酵
a≠0、b ≠ 0: 可表示二类发酵 a=0、b≠0:可表示三类发酵
相关型
部分相关型
Ks 1 m m S 1 1
或:
S
S
m
m
Ks
这样通过测定不同限制性基质浓度下,微生物的比
生长速度,就可以通过回归分析计算出Monod方程的两 个参数。
﹡例:在一定条件下培养大肠杆菌,得如下数据:
S(mg/l) Μ(h-1) 6 0.06 33 0.24 64 0.43 153 0.66 221 0.70
D( s0 s ) x
连续培养操作的模型分析
D
D( s0 s ) x YX
s
D↑
μ↑
σ↑
S ↑
x↓
max
S0 max K s S0
max
S Ks S
D>μmax时会造成菌体的洗出
12 10
X
S , X , DX
8 6 4 2 0 0 0.2 0.4 0.6 0.8 1 1.2
第6章 发酵动力学
本章主要内容
分批发酵动力学
连续发酵动力学
补料分批发酵动力学
发酵过程的反应描述及速度概念
发酵过程动力学研究的基本内容 菌体生长、产物形成、基质消耗动力学 的基本概念 反应动力学的应用—连续培养的操作特 性
ቤተ መጻሕፍቲ ባይዱ