发酵工程_6发酵动力学
合集下载
6发酵动力学

第 2节
发酵动力学分类
1. 根据细胞生长与产物形成有否偶联进行分类 细胞浓度(x)或产物浓度对时间作图时 , 细胞浓度 或产物浓度对时间作图时, 或产物浓度对时间作图时 两者密切平行, 两者密切平行 , 其最大的比生长速率和 最大的产物合成比速率出现在同一时刻. 最大的产物合成比速率出现在同一时刻 . 一般来说在这种类型的发酵生产中, 控 一般来说在这种类型的发酵生产中 , 制好最佳生长条件就可获得产物合成的 最适条件. 最适条件.
(3) 分段反应型 其营养成分在转化为产物之前 全部转变为中间物, 全部转变为中间物,或营养成分以优先顺序选 择性地转化为产物. 择性地转化为产物.反应过程是由两个简单反 应段组成,这两段反应由酶诱导调节. 应段组成,这两段反应由酶诱导调节. (4) 串联反应型 是指在形成产物之前积累一 定 程度的中间物的反应 (5) 复合型 大多数发酵过程是一个联合反应, 大多数发酵过程是一个联合反应, 它们的联合可能相当复杂. 它们的联合可能相当复杂.
型发酵〗 〖 Ⅲ型发酵〗 产物的形成和菌体的生长非偶联
p x
2. 根据产物形成与基质消耗的关系分类
(1) 类型Ⅰ 类型Ⅰ
产物的形成直接与基质(糖类 的消耗有关 产物的形成直接与基质 糖类)的消耗有关,产 糖类 的消耗有关, 物合成与利用糖类存在化学计量关系, 物合成与利用糖类存在化学计量关系,糖提供 了生长所需的能量. 了生长所需的能量. 糖耗速度与产物合成速度的变化是平行的,如 糖耗速度与产物合成速度的变化是平行的, 利用酵母菌的酒精发酵和酵母菌的好气生长. 利用酵母菌的酒精发酵和酵母菌的好气生长. 在厌氧条件下, 在厌氧条件下,酵母菌生长和产物合成是平行 的过程;在通气条件下培养酵母时, 的过程;在通气条件下培养酵母时,底物消耗 的速度和菌体细胞合成的速度是平行的. 的速度和菌体细胞合成的速度是平行的.这种 形式也叫做有生长联系的培养. 形式也叫做有生长联系的培养.
第6章 发酵动力学

发酵过程反应速度的描述
X S(底物) ─→ X(菌体) + P(产物)
基质的消耗速度:
ds r dt
X
(g.L-1.s-1)
ds 基质的消耗比速: dt
(h-1.s-1)
单位时间内单位菌体消耗基质或形成产物(菌体)的量称为 比速,是生物反应中用于描述反应速度的常用概念
发酵过程反应速度的描述
的比生长速率µ 保持一定。
连续发酵动力学-发酵装置-细胞回流式
F Se
(1 ) F X
F Xe
F, cX
细胞回流的单级连续发酵示意图
a: 再循环比率(回流比) c: 浓缩因子
连续发酵动力学-发酵装置-塞流式
无菌培养 基流入
发酵罐 d 供给连续接 种再循环
培养物 流出
物料衡算(连续培养的反应器特性)
催化剂
改变条件
温度 酸碱度
破坏平衡
浓度
如何确定高产高效 的最佳条件?
采用反应动力学方法 进行定量研究
发酵动力学研究的几个层次(尺度)
分子层次(酶催化与生物转化) 基于关键生化反应(限速步)及其关键酶的动力学特征 及其影响因素 采用一系列分子水平的方法 细胞层次(代谢网络与细胞工厂) 基于细胞信号传导、代谢网络、细胞物质运输的系列关 键生化反应的综合表现 采用一系列细胞水平的方法,包括细胞群体行为分析 反应器层次(过程工程) 基于细胞群体生长及产物合成对外部环境综合响应 采用一系列优化反应器发酵条件的方法
二、微生物的生长动力学、Monod方程
微生物的生长速度:
μ=f(s,p,T,pH,……,)
在一定条件下(基质限制):
第六章发酵动力学

发酵装置-细胞回流式
F Se
(1 ) F X
F Xe
F , cX
细胞回流的单级连续发酵示意图
a: 再循环比率(回流比) c: 浓缩因子
2.2连续发酵动力学-理论
2.2.1单级恒化器连续发酵
定义: ① 稀释率 将单位时间内连续流入发酵罐中的新鲜培养基体积与 发酵罐内的培养液总体积的比值 D=F/V (h-1) F—流量(m3/h) V—培养液体积(m3) ② 理论停留时间
μ
残留的限制性底物浓度对微生物
比生长率的影响
Ks—底物亲和常数,速度 等于处于1/2μm时的底物浓 度,表征微生物对底物的亲 和力,两者成反比。
酶促反应动力学-米氏方程:
Vm [ s ] v K m [ s]
受单一底物酶促反应限制的微生物 生长动力学方程-Monod方程:
m s
Ks s
克P和每个有效电子所生成的细胞克数; ③ Yx/ATP:消耗每克分子的三磷酸腺苷生成的细胞克数。
基质消耗动力学 产物得率系数:
Yp/s , YP / O2 , YATP / s , YCO2 / s
:
消耗每克营养物(s)或每克分 子 氧 (O2) 生 成 的 产 物 (P) 、 ATP 或
CO2的克数。
细胞生长动力学
Decline(开始出现一种底物不足的限制):
若不存在抑制物时
Monod 模型:
m s
Ks s
m s
Ks s
t
ln x ln x0
t
x x0e
细胞生长动力学
式中: S—限制性基质浓度,mol/m3 Ks—底物亲和常数(也称半饱和速度常数),表示微生 物对底物的亲和力 , mol/m3 ; Ks越大,亲和力越 小, µ 越小。
第六章 发酵动力学

率的上升而增加,而实际产物得率YP/S随的上升而减少。
发酵过程的化学计量式 质量平衡 能量平衡
1、分批发酵时生产菌的生长周期三个时期
三个时期:
菌体生长期 产物合成期 菌体自溶期
2、发酵的操作方式 三种:
分批发酵 补料分批发酵 连续发酵
第二节 分批发酵
分批培养 所谓分批培养的是一次投料, 一次接种,一次收获的间歇 培养方式。这种培养方式操 作简单,发酵液中的细胞浓 度、基质浓度和产物浓度均 随时间而不断变化。就细胞 的浓度X的变化而言,在分批 培养中要经历延迟期、对数 生长期、减速期、稳定期和 衷亡期各阶段。
X
X(菌体) + P(产物)
S1 菌体 (Biomass)
维持消耗(m) :
指维持细胞最低活性所需消 耗的能量,一般来讲,单位 重量的细胞在单位时间内用 于维持消耗所需的基质的量 是一个常数。
S
S2 S3
产物 (Products) 维持(Maintain)
S(底物)
X
X(菌体) + P(产物)+维持
(一)维持因数
“维持”是指细胞群体没有实质性的生长(更确切地说是 生长和死亡处于动态平衡状态)和没有胞外代谢产物 合成情况下的生命活动,如细胞的运动、细胞内外各 种物质的交换、细胞物质的转运和更新等,所需能量 由细胞物质的氧化或降解产生。 “维持”的物质代谢称为维持代谢,也叫内源代谢,代谢 释放的能叫维持能。
细胞 营养物→ → →新细胞+代谢产物
一、细胞反应的元素衡算
如果细胞的代谢产物就是细胞、CO2和水时, Meteles根据细胞的主要元素组成,提出了预测 发酵过程中微生物需要氧数量的计算公式: 32 C + 8 H + 16 O - 1 .34 Q= Y ·M
6.发酵动力学课件

同步培养: 使许多细胞在相同菌令下同步生长的培养方法, 指所有细胞同时开始 分裂, 齐步成长, 并同时结束。同步培养法所得到的培养物为同步培养物。 均衡生长: 随着细胞质量的增加, 菌体组分(蛋白质, RNA, DNA,胞内H2O等….)也 以相同比例增加。 非均衡生长:储存物质的积蓄 (糖原, 油脂等) 使细胞质量增加, 非实质性生长。 生长速率: rX (g /L・h)单位体积培养液中单位时间内生成的干菌体量, 与菌体浓 度X成正比。 rX =μ・ X 或 μ = rX /X 在废水处理中 rX表示污泥生成速率, X表示混合液悬浮物 (MLSS)浓度; 比生长速率 (h - 1) :μ 为比生长速率 (h - 1) --------- (g/g・h) 表示相对单位质量干菌体在单位时间内增加的干菌体质量。 在分批培养的对数期μ一般为常数。生物种的遗传基因是决定比生长速率大小 的决定因素。细胞包含的遗传信息越复杂,细胞越大,即越是高等生物,μ越小,生 长也就越慢。
对这种运动规律的影响。发酵动力学主要包括: 化学热力学 ----- 研究反应的方向; 化学动力学 ----- 研究反应的速度; 酶反应动力学 ----- 发酵是活细胞产生的酶催化的化学反应; 有几个层次; 1) 细胞生长和死亡动力学; 2) 基质消耗动力学; 3) 氧消耗动力学; 4) 二氧化碳生成动力学; 5) 产物合成和降解动力学; 6) 代谢热生成动力学。
葡萄糖作为能源时某些微生物的维持系数---教科书 P105
3. N源的消耗速率以及C/N
氮源的消耗仅次于碳源,可定义氮源的比消耗速率Q N为: QN = rN/X 培养基中碳源与氮源的含量之比,称为碳氮比,记作C/N。C/N对微生物代 谢过程有很大影响,C/N可定量表示为碳源和氮源的消耗速率之比,即: C/N = rc/rN = Qc /QN Qc和 QN分别表示碳原子和氮原子的比消耗速率。C/N高, 有时表示与氮 源相比, 菌体摄取过量的碳源作为储存性物质积累在细胞内。相反, 若使用如 蛋白胨类蛋白质碳源, 则C/N比过低, 这时有可能反应中产生副产物NH4使培 养液的pH上升。可见, C/N比是决定微生物反应状况的一个重要参数。
发酵动力学

减速期: d 0
dt
静止期: dx 0
dt
; X Xmax
衰亡期: dx 0
dt
二、微生物的生长动力学、Monod方程
微生物的生长速度:
μ=f(s,p,T,pH,……,)
在一定条件下(基质限制):
μ=f(S)
Monod研究了基质浓度与生长速度的关系 ———Monod方程(1949)
1.2 V1m
td=ln2/ μmax=0.64 h
基质消耗动力学的基本概念
S1 菌体
维持消耗(m) :
S
S2 产物
指维持细胞最低活性所 需消耗的能量,一般来
讲,单位重量的细胞在
S3 维持
单位时间内用于维持消 耗所需的基质的量是一
个常数。
X S(底物) ─→ X(菌体) + P(产物)+维持
X S(底物) ─→ X(菌体) + P(产物)+维持
p x
〖二类发酵〗 产物的形成和菌体的生长部分偶联
p x
〖三类发酵〗 产物的形成和菌体的生长非偶联偶联
〖Pirt方程〗
π=a + bμ
a=0、b≠0: 可表示一类发酵 a≠0、b=0: 可表示二类发酵 a≠0、b≠0:可表示三类发酵
产物的生成动力学
发酵类型Ⅰ: 发酵类型Ⅱ 发酵类型Ⅲ=
dP
dX
YP / X
dt
dt
dP dX X
dt dt
dP X
dt
Ⅱ
Ⅰ
Ⅲ
分批发酵的优缺点
➢ 优点:
操作简单、周期短、染菌机会减少、生产过程及产品 容易控制。
➢ 缺点:
不利于测定生长动力学。
第二节 连续发酵动力学
6 微生物工程 第六章 发酵动力学2

m S m
1 KS 1 1
max S max
1
1 KS
KS
斜率 max
1
max
1 S
Monod方程式双倒数图
求μm和 Ks。
解:将Monod方程变形:
1 1 Ks 1
m m S
以1/S为横坐标,1/μ为 纵坐标,得一条直线, 由直线与x轴和y轴相交, 分别求得:
分批发酵动力学-产物形成动力学
生长部分相关→生长部分偶联型:
柠檬酸、氨基酸发酵
dP dt
dX dt
X
qP
α: 与菌体生长相关的产物生成系数
β: 与菌体浓度相关的产物生成系数
产物间接由能量代谢生成,不是底物的 直接氧化产物,而是菌体内生物氧化过 程的主流产物(与初生代谢紧密关联)。
相关型
部分相关型
非相关型
产物合成相关、部分相关、非相关模型动力学示意图
分批培养中的产物形成:
Ⅰ型:生长偶联产物生成 ——菌体生长、碳源利 用和产物形成几乎在相同时间出现高峰。产物形 成直接与碳源利用有关。
Ⅱ型:生长与产物生成部分偶联——在生长开始后 并无产物生成,在生长继续进行到某一阶段才有 产物生成。产物形成间接与碳源利用有关。
分批发酵动力学-产物形成动力学
与生长不相关→无关联:抗生素发酵
dP X
dt
qp
若考虑到产物可能存在分解时,则
dP dt
X
kd P
qp X
kd P
产物生成与能量代谢不直接相关,通过细 胞进行的独特的生物合成反应而生成。
1 KS 1 1
max S max
1
1 KS
KS
斜率 max
1
max
1 S
Monod方程式双倒数图
求μm和 Ks。
解:将Monod方程变形:
1 1 Ks 1
m m S
以1/S为横坐标,1/μ为 纵坐标,得一条直线, 由直线与x轴和y轴相交, 分别求得:
分批发酵动力学-产物形成动力学
生长部分相关→生长部分偶联型:
柠檬酸、氨基酸发酵
dP dt
dX dt
X
qP
α: 与菌体生长相关的产物生成系数
β: 与菌体浓度相关的产物生成系数
产物间接由能量代谢生成,不是底物的 直接氧化产物,而是菌体内生物氧化过 程的主流产物(与初生代谢紧密关联)。
相关型
部分相关型
非相关型
产物合成相关、部分相关、非相关模型动力学示意图
分批培养中的产物形成:
Ⅰ型:生长偶联产物生成 ——菌体生长、碳源利 用和产物形成几乎在相同时间出现高峰。产物形 成直接与碳源利用有关。
Ⅱ型:生长与产物生成部分偶联——在生长开始后 并无产物生成,在生长继续进行到某一阶段才有 产物生成。产物形成间接与碳源利用有关。
分批发酵动力学-产物形成动力学
与生长不相关→无关联:抗生素发酵
dP X
dt
qp
若考虑到产物可能存在分解时,则
dP dt
X
kd P
qp X
kd P
产物生成与能量代谢不直接相关,通过细 胞进行的独特的生物合成反应而生成。
发酵动力学

• 把它们随时间变化的过程绘制成图,就
成为所说的代谢曲线。
• 比生长速率μ
每小时(单位时间)单位质量的菌体所
增加的菌体量称为菌体比生长速率。
它是表征微生物生长速率的一个参数 ,也是发酵动力学中的一个重要参数。
发酵过程
• 微生物生长
• 底物消耗
• 代谢产物合成
• Gaden's fermentation classification(按照菌体生长,
产物直接来源于产能的初级
第 一 类 型 ( 生 长 关 联 型 )
代谢(自身繁殖所必需的代 谢),菌体生长与产物形成
■
不分开。
例如单细胞蛋白和葡萄糖酸
的发酵
dP dt
x 或
P
Q
dP Xdt
:生长关联型产物的形 成比例(g产物 / g菌体)
Q :产物合成的比速率
P
■
第 二 类 型 ( 部 分 生 长 关 联 型 )
产物合成动力学
• Gaden根据产物生成速率和细胞生长速率之间的 关系,将产物形成区分为三种类型 • 类型Ⅰ∶也称为偶联模型(醇类、葡萄糖酸、乳 酸)
rP YP / X rX YP / X X
• 类型Ⅱ∶也称部分偶联模型(柠檬酸、氨基酸)
rP rX X
• 类型Ⅲ∶也称为非偶联模型(抗生素、酶、维生
补料分批发酵(Fed-batch fermentation) 连续发酵(Continuous fermentation)
分批发酵
分批发酵:指在一封闭系统内含有初
始限量基质的发酵方式。在这一过程
中,除了氧气、消泡剂及控制pH的酸 或碱外,不再加入任何其它物质。发 酵过程中培养基成分减少,微生物得 到繁殖。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
首先研究微生物生长和产物合成限制因子;
建立细胞生长、基质消耗、产物生成模型;
确定模型参数;
实验验证模型的可行性与适用范围;
根据模型实施最优控制。
本章主要内容
分批发酵动力学 连续发酵动力学 补料分批发酵动力学
什么是分批发酵?
分批发酵:准封闭培养,指一次性投料、接种 直到发酵结束,属典型的非稳态过程。 分批发酵过程中,微生物生长通常要经历延滞 期、对数生长期、衰减期、稳定期(静止期) 和衰亡期五个时期。
菌体浓度X t1
dx 0, 0, x xmax dt
(浓度最大)
t5
t2
t3 时间 t
t4
图6-1 分批发酵时典型的微生物生长动力学曲线
此阶段次级代谢活跃,次级代谢物大量合成。
dying:
a
(比死亡速率 ,s-1)
假定整个生长阶段无抑制物作用存在,则微生物生长动 力学可用阶段函数表示如下:
反应器层次(过程工程)
基于细胞群体生长及产物合成对外部环境综合响应
采用一系列优化反应器发酵条件的方法
针对微生物发酵的表观动力学,通过研究微生物群 体的生长、代谢,定量反映细胞群体酶促反应体 系的宏观变化速率,主要包括:
细胞生长动力学 底物消耗动力学 产物合成动力学
发酵动力学研究的基本过程
Y*X/S表示底物的细胞绝对得率,也称理论细胞得率; m为细胞维持系数
扣除细胞量的影响,
qS
将qS用µ表示,可得
1 Y
* X /S
m
YX / S
1 Y
* X /S
m
1 YX / S
1 Y
* X /S
m
不同微生物在利用不同底物时,Y*X/S和m均不同。但对于确定的微生物在确
菌体浓度X t1
t2
t3
t4
t5
时间 t
图6-1 分批发酵时典型的微生物生长动力学曲线
分批发酵过程
典型的分批发酵工艺流程图
分批发酵动力学
细胞生长动力学 基质消耗动力学 产物形成动力学
分批发酵动力学——细胞生长动力学
菌体浓度X t1
t2
t3
t4
t5
时间 t
图6-1 分批发酵时典型的微生物生长动力学曲线
什么是连续发酵?
概念:在发酵过程中,连续向发酵罐流加培养基, 同时以相同流量从发酵罐中取出培养液。 特点:添加培养基的同时,放出等体积发酵液,形 成连续生产过程,获得相对稳定的连续发酵状态。
类型:单级连续发酵
多级连续发酵
单级发酵装置
X0 、 X—进料和出料的细胞
浓度(g/L) S0 、 S—进料和出料的限制 性基质浓度(g/L) F—培养基流速(L/h) V—发酵罐内液体体积( L )
定义: 稀释率 D = F / V F—流速(m3/h) V—培养液体积(m3)
细胞的物料衡算(µ和D的关系)
积累的细胞(净增量)= 流入的细胞 - 流出的细胞 + 生长的细 胞 - 死亡的细胞
dX DX 0 DX X X dt
对于单级恒化器,X0 =0, 且通常有
dP x dt
比如抗生素发酵。
相关型
部分相关型
非相关型
图6-7
产物合成相关、部分相关、非相关模型动力学示意图
应用举例
杀假丝菌素分批 发酵中的葡萄糖 消耗、DNA含量 和杀假丝菌素合 成的变化 。
图6-8 杀假丝菌素分批发酵动力学分析
分批发酵的优缺点
优点:
操作简单、投资少 运行周期短
什么是发酵动力学
发酵动力学:研究微生物生长、底物消耗、产物合成之间
动态定量关系,定量描述微生物生长和产物形成过程。
主要研究:
1、发酵动力学参数特征:微生物生长速率、发酵产物合成 速率、底物消耗速率及其转化率、效率等; 2、影响发酵动力学参数的各种理化因子; 3、发酵动力学的数学模型。
研究发酵动力学的目的
A
YX / S
初 始 底 物 浓 度 S0
图6-2 分批发酵中初始底物浓度对稳定期 菌体浓度的影响
C区:菌体活性受初始高浓 度底物及高渗作用抑制, 菌体浓度与初始底物浓度 成反比。
A~B区:菌体浓度与初 始底物浓度成正比,有:
X YX / S (S0 St )
X/S X为菌体浓度, Y为针对底物 的细胞得率,初始X0为零; S0为底物初始浓度; St为底物残留浓度。
如何确定高产高效 的最佳条件?
发酵动力学研究的几个层次(尺度)
分子层次(酶催化与生物转化)
基于关键生化反应(限速步)及其关键酶的动力学
特征及其影响因素 采用一系列分子水平的方法
细胞层次(代谢网络与细胞工厂)
基于细胞信号传导、代谢网络、细胞物质运输的系
列关键生化反应的综合表现 采用一系列细胞水平的方法,包括细胞群体行为分 析
1 Y
* X /S
rX m X
1 YP / S
rP
YP/S为针对底物的产物的得率系数(也是底物转化为产物的转化率) rP为产物生成速率
qS
1 Y
* X /S
m
1 YP / S
qP
qP为产物比生成速率
分批发酵动力学——产物形成动力学
根据发酵时间过程分析,微生物生长与产物合 成存在以下三种关系:
染菌机会减少
生产过程、产品质量较易控制
缺点:
不利于测定过程动力学,存在底物限制或抑制问题,会出
现底物分解阻遏效应?及二次生长?现象。 对底物类型及初始高浓度敏感的次级代谢物如一些抗生素 等就不适合用分批发酵(生长与合成条件差别大) 养分会耗竭快,无法维持微生物继续生长和生产
非生产时间长,生产率较低
分批发酵动力学——底物消耗动力学
得率系数: 指消耗单位营养物所生成的细胞或产物数量。
其大小取决于生物学参数( µ ,x )和化学参数( DO,C/N, 磷含量等) 生长得率系数(细胞得率)
Yx/s、Yx/o、Yx/kcal:消耗每克营养物、每克分子氧以及每千 卡能量所生成的细胞克数
生产得率系数(产物得率)
认识发酵过程的规律 优化发酵工艺条件,确定最优发酵过程 参数,如:基质浓度、温度、pH、溶氧, 等等 提高发酵产量、效率和转化率等
动力学主要探讨反应速率问题:
生化反应: aA + bB cC + dD
如何能最快最多的获得目的产物 反应动态平衡
催化剂
改变条件
破坏平衡
温度
酸碱度 浓度
采用反应动力学方法 进行定量研究
lag:
x不变,没有增加,
即
菌体浓度X t1
dX 0 dt
t5
t2
t3 时间 t
t4
图6-1 分批发酵时典型的微生物生长动力学曲线
exp
(假定无抑制作用存在) :
微生物生长特性通常以单位细胞浓度或细胞数量在单位 时间内的增加量来表示(μ、μn):
dN dX 或 n N X dt dt
表6-1
Decline(开始出现一种底物不足的限制):
Monod 模型:
式中:
m s
Ks s
S—限制性基质浓度,mol/m3
Ks—底物亲和常数(也称半饱和速度常数),表示微生物对底物的亲和力 , mol/m3 ; Ks越大,亲和力越小, µ 越小。
比 生 长 素 率
图6-3 残留的限制性底物浓度St对微生物比生长率μ的影响
dX X DX dt
dX X DX dt
A.稳定状态时, 此时
dX 0 dt
µ =D (单级连续发酵重要特征)
B.不稳定时,
当µ>D,则dX/dt>0, 所以S降低,μ也随之下降,直至μ= D为止,即建立新的平衡。 当µ<D,则dX/dt<0,系统内细胞浓度不断减少,营养物 的消耗也减少,从而S增大,μ随之上升,直至μ= D。 连续培养具有“自平物的生成是能量代谢的间接结果,不是底物的直接 氧化产物,而是菌体内生物氧化过程的主流产物。
dP dX X dt dt
α: 与菌体生长相关的产物生成系数 β:与菌体浓度相关的产物生成系数 比如柠檬酸发酵,氨基酸发酵。
(3)生长非相关型:
产物的生成与能量代谢无关,与细胞生长也无直接关系, 即产物生成与微生物细胞生长不偶联。产物均为次级代 谢产物。
单级连续发酵示意图
多级发酵装置
培养基输入
培养基进入 下一级发酵罐
培养基进入 后处理或到 下一级发酵罐
多级连续发酵示意图
连续发酵实现方法
恒浊法:通过调节营养物的流加速度,利用浊度计检
测细胞浓度,使细胞浓度恒定。
恒化法:以一定的流加速度,使某一限制性基质浓度
恒定。
连续发酵动力学——单级连续发酵
(1)与生长相关→生长偶联型 (2)与生长部分相关→生长部分偶联型 (3)与生长不相关→无关联
(1)生长相关型:
产物的生成是微生物细胞主要能量代谢的直接结果, 菌体生长速率的变化与产物生成速率的变化相平行。
dP dX YP / X dt dt
dP YP / X X dt
这类产物通常是微生物的初级代谢产物,如根霉产 生的脂肪酶,树状黄杆菌产生的葡萄糖异构酶。
一般条件下,
产物相对菌体生长量较少, Y P/S
dS 1 dX DS0 DS dt YX / S dt
dS 稳态时, dt 0
又
dX X dt