第六章 发酵动力学
合集下载
6发酵动力学

第 2节
发酵动力学分类
1. 根据细胞生长与产物形成有否偶联进行分类 细胞浓度(x)或产物浓度对时间作图时 , 细胞浓度 或产物浓度对时间作图时, 或产物浓度对时间作图时 两者密切平行, 两者密切平行 , 其最大的比生长速率和 最大的产物合成比速率出现在同一时刻. 最大的产物合成比速率出现在同一时刻 . 一般来说在这种类型的发酵生产中, 控 一般来说在这种类型的发酵生产中 , 制好最佳生长条件就可获得产物合成的 最适条件. 最适条件.
(3) 分段反应型 其营养成分在转化为产物之前 全部转变为中间物, 全部转变为中间物,或营养成分以优先顺序选 择性地转化为产物. 择性地转化为产物.反应过程是由两个简单反 应段组成,这两段反应由酶诱导调节. 应段组成,这两段反应由酶诱导调节. (4) 串联反应型 是指在形成产物之前积累一 定 程度的中间物的反应 (5) 复合型 大多数发酵过程是一个联合反应, 大多数发酵过程是一个联合反应, 它们的联合可能相当复杂. 它们的联合可能相当复杂.
型发酵〗 〖 Ⅲ型发酵〗 产物的形成和菌体的生长非偶联
p x
2. 根据产物形成与基质消耗的关系分类
(1) 类型Ⅰ 类型Ⅰ
产物的形成直接与基质(糖类 的消耗有关 产物的形成直接与基质 糖类)的消耗有关,产 糖类 的消耗有关, 物合成与利用糖类存在化学计量关系, 物合成与利用糖类存在化学计量关系,糖提供 了生长所需的能量. 了生长所需的能量. 糖耗速度与产物合成速度的变化是平行的,如 糖耗速度与产物合成速度的变化是平行的, 利用酵母菌的酒精发酵和酵母菌的好气生长. 利用酵母菌的酒精发酵和酵母菌的好气生长. 在厌氧条件下, 在厌氧条件下,酵母菌生长和产物合成是平行 的过程;在通气条件下培养酵母时, 的过程;在通气条件下培养酵母时,底物消耗 的速度和菌体细胞合成的速度是平行的. 的速度和菌体细胞合成的速度是平行的.这种 形式也叫做有生长联系的培养. 形式也叫做有生长联系的培养.
第6章 发酵动力学

发酵过程反应速度的描述
X S(底物) ─→ X(菌体) + P(产物)
基质的消耗速度:
ds r dt
X
(g.L-1.s-1)
ds 基质的消耗比速: dt
(h-1.s-1)
单位时间内单位菌体消耗基质或形成产物(菌体)的量称为 比速,是生物反应中用于描述反应速度的常用概念
发酵过程反应速度的描述
的比生长速率µ 保持一定。
连续发酵动力学-发酵装置-细胞回流式
F Se
(1 ) F X
F Xe
F, cX
细胞回流的单级连续发酵示意图
a: 再循环比率(回流比) c: 浓缩因子
连续发酵动力学-发酵装置-塞流式
无菌培养 基流入
发酵罐 d 供给连续接 种再循环
培养物 流出
物料衡算(连续培养的反应器特性)
催化剂
改变条件
温度 酸碱度
破坏平衡
浓度
如何确定高产高效 的最佳条件?
采用反应动力学方法 进行定量研究
发酵动力学研究的几个层次(尺度)
分子层次(酶催化与生物转化) 基于关键生化反应(限速步)及其关键酶的动力学特征 及其影响因素 采用一系列分子水平的方法 细胞层次(代谢网络与细胞工厂) 基于细胞信号传导、代谢网络、细胞物质运输的系列关 键生化反应的综合表现 采用一系列细胞水平的方法,包括细胞群体行为分析 反应器层次(过程工程) 基于细胞群体生长及产物合成对外部环境综合响应 采用一系列优化反应器发酵条件的方法
二、微生物的生长动力学、Monod方程
微生物的生长速度:
μ=f(s,p,T,pH,……,)
在一定条件下(基质限制):
典型发酵过程动力学及模型

(1 Se ) S max, j j
i Se Ke j S j K j
K j --必要基质的饱和常数 Ke -;-生长促进型基质的饱和常数
。
二、微生物生长动力学
7. 有抑制的细胞生长动力学
(1)基质抑制动力学
当基质浓度很高时,细胞的浓度反而受到基质的抑制作用 ,同底物对酶催化反应的抑制一样,基质对细胞生长的抑制同 样分为竞争性抑制、非竞争性抑制和反竞争性抑制。
细胞反应过程的数学模型是一组可以近似地描述或表示细胞反应过程的数 学方程式,它可以在一定程度上精确地表示出原过程的特征。
生物反应过程的数学模型的作用: ①根据反应的前期数据预测微生物反应过程的进程 ②数学模拟放大 ③建立数学模型是过程优化重要手段 ④建立数学模型是实现计算机优化控制的前提
一、 数字拟合法
0.4
0.2
0
1
2
3
4
5
二、机制分析法
机制模型也称为理论模型,它是从工艺过程中的某些物 理、化学和生物的本质出发,运用现代工程学的基本理论 ,建立描述过程的数学表达式。
三、常规细胞反应动力学模型
• “灰箱模型” • 对细胞反应做定量的、动力学方面的考察,描述
了细胞随基质浓度或其他环境条件变化进行生长 的途径,及产物合成、基质消耗、氧消耗、菌体 生长的规律变化
第六章 典型发酵过程动力学 及模型
一、分批发酵动力学 二、补料分批发酵过程动力学 三、连续发酵过程动力学
一、分批发酵动力学
概论 微生物生长动力学 基质消耗动力学 代谢产物生成动力学 动力学模型的建立
一、 概论
发酵的实质: 生物化学反应
发酵动力学
基质利用
各种环境因素与微生物代谢活 动之间的相互作用随时间而 变化的规律
i Se Ke j S j K j
K j --必要基质的饱和常数 Ke -;-生长促进型基质的饱和常数
。
二、微生物生长动力学
7. 有抑制的细胞生长动力学
(1)基质抑制动力学
当基质浓度很高时,细胞的浓度反而受到基质的抑制作用 ,同底物对酶催化反应的抑制一样,基质对细胞生长的抑制同 样分为竞争性抑制、非竞争性抑制和反竞争性抑制。
细胞反应过程的数学模型是一组可以近似地描述或表示细胞反应过程的数 学方程式,它可以在一定程度上精确地表示出原过程的特征。
生物反应过程的数学模型的作用: ①根据反应的前期数据预测微生物反应过程的进程 ②数学模拟放大 ③建立数学模型是过程优化重要手段 ④建立数学模型是实现计算机优化控制的前提
一、 数字拟合法
0.4
0.2
0
1
2
3
4
5
二、机制分析法
机制模型也称为理论模型,它是从工艺过程中的某些物 理、化学和生物的本质出发,运用现代工程学的基本理论 ,建立描述过程的数学表达式。
三、常规细胞反应动力学模型
• “灰箱模型” • 对细胞反应做定量的、动力学方面的考察,描述
了细胞随基质浓度或其他环境条件变化进行生长 的途径,及产物合成、基质消耗、氧消耗、菌体 生长的规律变化
第六章 典型发酵过程动力学 及模型
一、分批发酵动力学 二、补料分批发酵过程动力学 三、连续发酵过程动力学
一、分批发酵动力学
概论 微生物生长动力学 基质消耗动力学 代谢产物生成动力学 动力学模型的建立
一、 概论
发酵的实质: 生物化学反应
发酵动力学
基质利用
各种环境因素与微生物代谢活 动之间的相互作用随时间而 变化的规律
第六章 典型发酵过程动力学及模型ppt课件

动之间的相互作用随时间而 变化的规律
细胞生长
微生物生化反应动力学
产物生成
编辑版pppt
3
发酵过程反应的描述
X S(底物) ─→ X(菌体) + P(产物)
编辑版pppt
4
一、 概论
目的 1) 建立发酵过程中细胞浓度、基质浓度、温度等工艺参数和控制方案,确定最佳发酵 工艺条件;2) 以发酵动力学模型为依据,利用计算机进行合理的发酵过程的程序设计, 模拟最优化的发酵工艺流程和技术参数,使发酵工艺的过程控制达到最优化;3) 动力学 的研究为实验工厂数据的放大、为分批式发酵过渡到连续式发酵提供理论基础。
一成分的量
细胞的比生长速率:
1 drX rX dt
产物的比生成速率:
qP
1 rX
drP dt
基质的比消耗速率:
qS
1 rX
drS dt
比耗氧速率:
1
qO
编辑版pppt
rX
drO dt
15
例题: 在有氧条件下,杆菌在甲醇上生长,在进行间歇培 养时得到结果如表所示:
时间/h 0 2 4 8 10 12 14 16 18
编辑版pppt
44
细胞反应动力学模型的建立
编辑版pppt
45
数学模型: 根据研究对象的内在规律而做出一些简化假设,运用数学工具得出一个
数学结构,该数学结构可用来合理、精确反映过程各个变量之间的动态关 系。
细胞反应过程的数学模型是一组可以近似地描述或表示细胞反应过程的数 学方程式,它可以在一定程度上精确地表示出原过程的特征。
(6-19)
kd细 胞 死 亡 速 率 , h 1
编辑版pppt
23
5)死亡期 培养基中营养耗尽,代谢产物大量积累,细胞繁
细胞生长
微生物生化反应动力学
产物生成
编辑版pppt
3
发酵过程反应的描述
X S(底物) ─→ X(菌体) + P(产物)
编辑版pppt
4
一、 概论
目的 1) 建立发酵过程中细胞浓度、基质浓度、温度等工艺参数和控制方案,确定最佳发酵 工艺条件;2) 以发酵动力学模型为依据,利用计算机进行合理的发酵过程的程序设计, 模拟最优化的发酵工艺流程和技术参数,使发酵工艺的过程控制达到最优化;3) 动力学 的研究为实验工厂数据的放大、为分批式发酵过渡到连续式发酵提供理论基础。
一成分的量
细胞的比生长速率:
1 drX rX dt
产物的比生成速率:
qP
1 rX
drP dt
基质的比消耗速率:
qS
1 rX
drS dt
比耗氧速率:
1
qO
编辑版pppt
rX
drO dt
15
例题: 在有氧条件下,杆菌在甲醇上生长,在进行间歇培 养时得到结果如表所示:
时间/h 0 2 4 8 10 12 14 16 18
编辑版pppt
44
细胞反应动力学模型的建立
编辑版pppt
45
数学模型: 根据研究对象的内在规律而做出一些简化假设,运用数学工具得出一个
数学结构,该数学结构可用来合理、精确反映过程各个变量之间的动态关 系。
细胞反应过程的数学模型是一组可以近似地描述或表示细胞反应过程的数 学方程式,它可以在一定程度上精确地表示出原过程的特征。
(6-19)
kd细 胞 死 亡 速 率 , h 1
编辑版pppt
23
5)死亡期 培养基中营养耗尽,代谢产物大量积累,细胞繁
6第六章 发酵动力学

dc(S) dt = 0
2.随着时间的延长,培养液中微生物细胞的 量c’(X)增加,但细胞的浓度却保持不变,即
dc(X) dt
= 0
3.因而µ≌D
这种微生物细胞的培养状态称为 ——“准恒定状态”
在“ቤተ መጻሕፍቲ ባይዱ恒定状态”下
c(S) ≈ DKs µm - D (4)
c’(X) = c0’(X) + F · Yx/s · c ’0 (S) · t 补料液浓度
动力学方程
c0(S)——开始时培养基中限制性基质的浓度 g/L F——培养基的流速 L/h V——培养基的体积 L F/V=D——稀释率 c0(X)——刚接种时培养液中的微生物细胞浓度 g/L c(X)——某一瞬间培养液中微生物细胞浓度 g/L c(X) = c0(X) + Yx/s [c0 (S) -c (S)]
v =
µ
YG
v =
+ m +
Qp Yp
+
(6)
µ Yx/s
(5)
少量的其他代谢产物和其他忽略 1 Yx/s 1 m + µ (7)
=
YG
YG和m很难直接测定,只要得出细胞在不同 比生长速率下的Yx/s,可根据(7)式用作图法 求出YG和m值。 YG和m值用于衡量发酵时限制性营养基质的 起始最低浓度。
µ µm
b µm/2
c
µ =
a
µm c(S)
Ks + c(S)
c(S)
Ks
Ks的物理意义
Ks的大小表示了微生物对营养物质的吸收亲 和力大小 Ks越大,表示微生物对营养物质的吸收亲 和力越小; Ks越小,表示微生物对营养物质的吸收亲 和力越大
2.随着时间的延长,培养液中微生物细胞的 量c’(X)增加,但细胞的浓度却保持不变,即
dc(X) dt
= 0
3.因而µ≌D
这种微生物细胞的培养状态称为 ——“准恒定状态”
在“ቤተ መጻሕፍቲ ባይዱ恒定状态”下
c(S) ≈ DKs µm - D (4)
c’(X) = c0’(X) + F · Yx/s · c ’0 (S) · t 补料液浓度
动力学方程
c0(S)——开始时培养基中限制性基质的浓度 g/L F——培养基的流速 L/h V——培养基的体积 L F/V=D——稀释率 c0(X)——刚接种时培养液中的微生物细胞浓度 g/L c(X)——某一瞬间培养液中微生物细胞浓度 g/L c(X) = c0(X) + Yx/s [c0 (S) -c (S)]
v =
µ
YG
v =
+ m +
Qp Yp
+
(6)
µ Yx/s
(5)
少量的其他代谢产物和其他忽略 1 Yx/s 1 m + µ (7)
=
YG
YG和m很难直接测定,只要得出细胞在不同 比生长速率下的Yx/s,可根据(7)式用作图法 求出YG和m值。 YG和m值用于衡量发酵时限制性营养基质的 起始最低浓度。
µ µm
b µm/2
c
µ =
a
µm c(S)
Ks + c(S)
c(S)
Ks
Ks的物理意义
Ks的大小表示了微生物对营养物质的吸收亲 和力大小 Ks越大,表示微生物对营养物质的吸收亲 和力越小; Ks越小,表示微生物对营养物质的吸收亲 和力越大
第六章发酵动力学

发酵装置-细胞回流式
F Se
(1 ) F X
F Xe
F , cX
细胞回流的单级连续发酵示意图
a: 再循环比率(回流比) c: 浓缩因子
2.2连续发酵动力学-理论
2.2.1单级恒化器连续发酵
定义: ① 稀释率 将单位时间内连续流入发酵罐中的新鲜培养基体积与 发酵罐内的培养液总体积的比值 D=F/V (h-1) F—流量(m3/h) V—培养液体积(m3) ② 理论停留时间
μ
残留的限制性底物浓度对微生物
比生长率的影响
Ks—底物亲和常数,速度 等于处于1/2μm时的底物浓 度,表征微生物对底物的亲 和力,两者成反比。
酶促反应动力学-米氏方程:
Vm [ s ] v K m [ s]
受单一底物酶促反应限制的微生物 生长动力学方程-Monod方程:
m s
Ks s
克P和每个有效电子所生成的细胞克数; ③ Yx/ATP:消耗每克分子的三磷酸腺苷生成的细胞克数。
基质消耗动力学 产物得率系数:
Yp/s , YP / O2 , YATP / s , YCO2 / s
:
消耗每克营养物(s)或每克分 子 氧 (O2) 生 成 的 产 物 (P) 、 ATP 或
CO2的克数。
细胞生长动力学
Decline(开始出现一种底物不足的限制):
若不存在抑制物时
Monod 模型:
m s
Ks s
m s
Ks s
t
ln x ln x0
t
x x0e
细胞生长动力学
式中: S—限制性基质浓度,mol/m3 Ks—底物亲和常数(也称半饱和速度常数),表示微生 物对底物的亲和力 , mol/m3 ; Ks越大,亲和力越 小, µ 越小。
6.发酵动力学课件

同步培养: 使许多细胞在相同菌令下同步生长的培养方法, 指所有细胞同时开始 分裂, 齐步成长, 并同时结束。同步培养法所得到的培养物为同步培养物。 均衡生长: 随着细胞质量的增加, 菌体组分(蛋白质, RNA, DNA,胞内H2O等….)也 以相同比例增加。 非均衡生长:储存物质的积蓄 (糖原, 油脂等) 使细胞质量增加, 非实质性生长。 生长速率: rX (g /L・h)单位体积培养液中单位时间内生成的干菌体量, 与菌体浓 度X成正比。 rX =μ・ X 或 μ = rX /X 在废水处理中 rX表示污泥生成速率, X表示混合液悬浮物 (MLSS)浓度; 比生长速率 (h - 1) :μ 为比生长速率 (h - 1) --------- (g/g・h) 表示相对单位质量干菌体在单位时间内增加的干菌体质量。 在分批培养的对数期μ一般为常数。生物种的遗传基因是决定比生长速率大小 的决定因素。细胞包含的遗传信息越复杂,细胞越大,即越是高等生物,μ越小,生 长也就越慢。
对这种运动规律的影响。发酵动力学主要包括: 化学热力学 ----- 研究反应的方向; 化学动力学 ----- 研究反应的速度; 酶反应动力学 ----- 发酵是活细胞产生的酶催化的化学反应; 有几个层次; 1) 细胞生长和死亡动力学; 2) 基质消耗动力学; 3) 氧消耗动力学; 4) 二氧化碳生成动力学; 5) 产物合成和降解动力学; 6) 代谢热生成动力学。
葡萄糖作为能源时某些微生物的维持系数---教科书 P105
3. N源的消耗速率以及C/N
氮源的消耗仅次于碳源,可定义氮源的比消耗速率Q N为: QN = rN/X 培养基中碳源与氮源的含量之比,称为碳氮比,记作C/N。C/N对微生物代 谢过程有很大影响,C/N可定量表示为碳源和氮源的消耗速率之比,即: C/N = rc/rN = Qc /QN Qc和 QN分别表示碳原子和氮原子的比消耗速率。C/N高, 有时表示与氮 源相比, 菌体摄取过量的碳源作为储存性物质积累在细胞内。相反, 若使用如 蛋白胨类蛋白质碳源, 则C/N比过低, 这时有可能反应中产生副产物NH4使培 养液的pH上升。可见, C/N比是决定微生物反应状况的一个重要参数。
发酵动力学

减速期: d 0
dt
静止期: dx 0
dt
; X Xmax
衰亡期: dx 0
dt
二、微生物的生长动力学、Monod方程
微生物的生长速度:
μ=f(s,p,T,pH,……,)
在一定条件下(基质限制):
μ=f(S)
Monod研究了基质浓度与生长速度的关系 ———Monod方程(1949)
1.2 V1m
td=ln2/ μmax=0.64 h
基质消耗动力学的基本概念
S1 菌体
维持消耗(m) :
S
S2 产物
指维持细胞最低活性所 需消耗的能量,一般来
讲,单位重量的细胞在
S3 维持
单位时间内用于维持消 耗所需的基质的量是一
个常数。
X S(底物) ─→ X(菌体) + P(产物)+维持
X S(底物) ─→ X(菌体) + P(产物)+维持
p x
〖二类发酵〗 产物的形成和菌体的生长部分偶联
p x
〖三类发酵〗 产物的形成和菌体的生长非偶联偶联
〖Pirt方程〗
π=a + bμ
a=0、b≠0: 可表示一类发酵 a≠0、b=0: 可表示二类发酵 a≠0、b≠0:可表示三类发酵
产物的生成动力学
发酵类型Ⅰ: 发酵类型Ⅱ 发酵类型Ⅲ=
dP
dX
YP / X
dt
dt
dP dX X
dt dt
dP X
dt
Ⅱ
Ⅰ
Ⅲ
分批发酵的优缺点
➢ 优点:
操作简单、周期短、染菌机会减少、生产过程及产品 容易控制。
➢ 缺点:
不利于测定生长动力学。
第二节 连续发酵动力学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 发酵动力学
Dynamics of Fermentation
概述
一、微生物反应过程的主要特征 微生物是该反应过程的主体:是生物催化剂,又是一微
小的反应容器。 微生物反应的本质是复杂的酶催化反应体系。酶能够进
行再生产。
微生物反应是非常复杂的反应过程
(1)反应体系中有细胞的生长,基质消耗和产物的生 成,有各自的最佳反应条件。
发酵动力学的研究正在为试验工厂数据的放大、为 分批发酵过渡到连续发酵提供理论依据。
按发酵动力学原理对发酵过程进行优化控制,涉 及到许许多多数据的采集、处理、综合运算和参数估计, 并要求具有实时性,这对于常规检测和控制手段来说是 不可能做到的,必须采用在线检测技术和过程控制计算 机。反过来,实施计算机系统对发酵过程的参数估计与 动态优化控制,也必须以能够描述各变量变化速率之间 关系的动力学方程(即数学模型)为基础。
以上各方面不是孤立的,而是既相互依赖又相互制约, 构成错综复杂、丰富多彩的发酵动力学体系。
三、研究发酵动力学的目的
(1)确定最佳发酵工艺条件 (2)建立发酵过程中菌体浓度、基质浓度、温度、pH、
溶氧等工艺参数的控制方案 (3)可在此研究基础上进行优选。
பைடு நூலகம்
四、发酵动力学的研究方法
发酵动力学研究的理想化状态: ①反应器内的搅拌系统能保证理想的混和,使任何区
2. 将各种参数变化和现象与发酵代谢规律联系起来, 找出它们之间的相互关系和变化规律。
3. 建立各种数学模型以描述各参数随时间变化的关系。 4. 通过计算机的在线控制,反复验证各种模型的可行
性与适用范围。
六、发酵动力学与过程优化控制
传统的控制方法:凭经验—局限性和盲目性
发酵动力学:是研究发酵过程中菌体生长、基质消耗、 产物生成的动态平衡及其内在规律。
优化控制:按发酵动力学原理,通过数据采集、处理、 综合运算和参数估计,具有很强的实时性。
要求:在线检测技术和过程控制计算机
发酵动力学的作用—过程优化控制
要进行合理的发酵过程设计,必须以发酵动力学模 型作为依据。
目前国内外正利用电子计算机,根据发酵动力学模 型来设计程序,模拟最优化的工艺流程和发酵工艺 参数,从而使生产控制达到最优化。
二、细胞反应的得率系数(Yield coefficients)
得率(Yield, Y):包括生长得率 Y X S
和产物得率 Y 。 P S
得率:是指被消耗的物质和所合成产物之间的量的关系。 细胞(生长)得率:是指每消耗1g(或mo1)基质(一般指碳
源)所产生的菌体重(g), 产物得率:是指每消耗1g(或mo1)基质所合成的产物g数
7
分,多10.0种代40谢产物,细胞内也
具有不同生理功能的大、中、
小分子化合30物;
动态:不能直接测得;
5.0
20
葡萄糖
非线性:细胞代谢过程用非线
性方程描述10; 乳酸
复杂群体的生命活动。
24
48
培养时间,h
pH 菌体量 谷氨酸
a-酮戊二酸
72
96
一、发酵动力学
发酵动力学:是研究发酵过程中菌体生长、基质消 耗、产物生成的动态平衡及其内在规律。
(2)微生物反应有多种代谢途径。 (3)微生物反应过程中,细胞形态、组成要经历生长、
繁殖、维持、死亡等若干阶段,不同菌龄,有不同的 活性。
发酵过程特点:
葡萄糖,%;干菌体量,mg/ml 谷氨酸、a-酮戊二酸、乳酸 、mg/ml
多相:气相pH9、液相尿和素固添加相; 多组分:培8养基中多种营养成
域的温度、pH、物质浓度等变量差异得以避免; ②温度、pH等环境条件能够控制以保持稳定,从而
使动力学参数也保持相应的稳定; ③细胞有固有的化学组成,不随发酵时间和某些发酵
条件的变化而发生明显改变, ④各种描述发酵动态的变量对发酵条件变化的反应无
明显滞后。
四、研究发酵动力学的方法
宏观处理法(非结构模型) 把细胞看成是一种均匀分布的物质,只考虑各个宏观 变量之间关系的宏观方法。
如果发酵的最终产物不是菌体细胞,而是某些代 谢产物,Cooney提出青霉素G发酵需氧计算公式:
YO/P
= 1.06 Y P/G
-
0.6 X P
-
0 .43
YO/P-生产1g青霉素G钠盐消耗的氧量,g(O2)/g(Pc-G) YP/G-消耗1g葡萄糖所产生的青霉素G钠盐的克数,
g(Pc-G)/g(葡萄糖) X-菌丝量(干细胞),g P-生产青霉素G钠盐的克数,g
内容:包括了解发酵过程中菌体生长速率、基质消 耗速率和产物生成速率的相互关系,环境因素对三 者的影响,以及影响其反应速度的条件。
二、发酵动力学的研究内容
发酵动力学是以化学热力学(研究反应的方向)和化学动 力学(研究反应的速度)为基础,对发酵过程各种物质 的变化进行描述。
发酵动力学的研究内容主要包括: ①细胞生长和死亡动力学; ②基质消耗动力学; ③氧消耗动力学; ④CO2生成动力学, ⑤产物合成和降解动力学; ⑥代谢热生成动力学。
(或mol数)。这里消耗的基质是指被微生物实际利用 掉的基质数量,即投入的基数减去残留的基质量(S0S)。
1. 细胞(生长)得率:
菌体的生长量相对于基质消耗量的收率
Y X X S S
质量平衡法 根据质量守恒定律,任何错综复杂的过程,都可以对某 一物质在过程发生前后的质量变化进行恒算。 物质在系统中积累的速度=物质进入系统的速度+物质 在系统中生成的速度-物质排出系统的速度-物质在系统 中消耗的速度。
五、研究发酵动力学的步骤
1. 获得发酵过程变化的第一手资料,要尽可能寻找能 反映过程变化的各种理化参数。
第一节 发酵过程的化学计量及动力学描述
营养物→细→胞→新细胞+代谢产物
一、细胞反应的元素衡算
如果细胞的代谢产物就是细胞、CO2和水时, Meteles根据细胞的主要元素组成,提出了预测 发酵过程中微生物需要氧数量的计算公式:
Q = 32 C + 8H + 16 O - 1.34 Y ·M
Q--形成1g细胞耗掉的氧量,g(O2)/g(干细胞); C、H、O--每g碳源含有C、H、O的原子数; Y--碳源得率系数(每g碳源获得的细胞数量) g (dry cell)/g(C); M--碳源分子量,g
Dynamics of Fermentation
概述
一、微生物反应过程的主要特征 微生物是该反应过程的主体:是生物催化剂,又是一微
小的反应容器。 微生物反应的本质是复杂的酶催化反应体系。酶能够进
行再生产。
微生物反应是非常复杂的反应过程
(1)反应体系中有细胞的生长,基质消耗和产物的生 成,有各自的最佳反应条件。
发酵动力学的研究正在为试验工厂数据的放大、为 分批发酵过渡到连续发酵提供理论依据。
按发酵动力学原理对发酵过程进行优化控制,涉 及到许许多多数据的采集、处理、综合运算和参数估计, 并要求具有实时性,这对于常规检测和控制手段来说是 不可能做到的,必须采用在线检测技术和过程控制计算 机。反过来,实施计算机系统对发酵过程的参数估计与 动态优化控制,也必须以能够描述各变量变化速率之间 关系的动力学方程(即数学模型)为基础。
以上各方面不是孤立的,而是既相互依赖又相互制约, 构成错综复杂、丰富多彩的发酵动力学体系。
三、研究发酵动力学的目的
(1)确定最佳发酵工艺条件 (2)建立发酵过程中菌体浓度、基质浓度、温度、pH、
溶氧等工艺参数的控制方案 (3)可在此研究基础上进行优选。
பைடு நூலகம்
四、发酵动力学的研究方法
发酵动力学研究的理想化状态: ①反应器内的搅拌系统能保证理想的混和,使任何区
2. 将各种参数变化和现象与发酵代谢规律联系起来, 找出它们之间的相互关系和变化规律。
3. 建立各种数学模型以描述各参数随时间变化的关系。 4. 通过计算机的在线控制,反复验证各种模型的可行
性与适用范围。
六、发酵动力学与过程优化控制
传统的控制方法:凭经验—局限性和盲目性
发酵动力学:是研究发酵过程中菌体生长、基质消耗、 产物生成的动态平衡及其内在规律。
优化控制:按发酵动力学原理,通过数据采集、处理、 综合运算和参数估计,具有很强的实时性。
要求:在线检测技术和过程控制计算机
发酵动力学的作用—过程优化控制
要进行合理的发酵过程设计,必须以发酵动力学模 型作为依据。
目前国内外正利用电子计算机,根据发酵动力学模 型来设计程序,模拟最优化的工艺流程和发酵工艺 参数,从而使生产控制达到最优化。
二、细胞反应的得率系数(Yield coefficients)
得率(Yield, Y):包括生长得率 Y X S
和产物得率 Y 。 P S
得率:是指被消耗的物质和所合成产物之间的量的关系。 细胞(生长)得率:是指每消耗1g(或mo1)基质(一般指碳
源)所产生的菌体重(g), 产物得率:是指每消耗1g(或mo1)基质所合成的产物g数
7
分,多10.0种代40谢产物,细胞内也
具有不同生理功能的大、中、
小分子化合30物;
动态:不能直接测得;
5.0
20
葡萄糖
非线性:细胞代谢过程用非线
性方程描述10; 乳酸
复杂群体的生命活动。
24
48
培养时间,h
pH 菌体量 谷氨酸
a-酮戊二酸
72
96
一、发酵动力学
发酵动力学:是研究发酵过程中菌体生长、基质消 耗、产物生成的动态平衡及其内在规律。
(2)微生物反应有多种代谢途径。 (3)微生物反应过程中,细胞形态、组成要经历生长、
繁殖、维持、死亡等若干阶段,不同菌龄,有不同的 活性。
发酵过程特点:
葡萄糖,%;干菌体量,mg/ml 谷氨酸、a-酮戊二酸、乳酸 、mg/ml
多相:气相pH9、液相尿和素固添加相; 多组分:培8养基中多种营养成
域的温度、pH、物质浓度等变量差异得以避免; ②温度、pH等环境条件能够控制以保持稳定,从而
使动力学参数也保持相应的稳定; ③细胞有固有的化学组成,不随发酵时间和某些发酵
条件的变化而发生明显改变, ④各种描述发酵动态的变量对发酵条件变化的反应无
明显滞后。
四、研究发酵动力学的方法
宏观处理法(非结构模型) 把细胞看成是一种均匀分布的物质,只考虑各个宏观 变量之间关系的宏观方法。
如果发酵的最终产物不是菌体细胞,而是某些代 谢产物,Cooney提出青霉素G发酵需氧计算公式:
YO/P
= 1.06 Y P/G
-
0.6 X P
-
0 .43
YO/P-生产1g青霉素G钠盐消耗的氧量,g(O2)/g(Pc-G) YP/G-消耗1g葡萄糖所产生的青霉素G钠盐的克数,
g(Pc-G)/g(葡萄糖) X-菌丝量(干细胞),g P-生产青霉素G钠盐的克数,g
内容:包括了解发酵过程中菌体生长速率、基质消 耗速率和产物生成速率的相互关系,环境因素对三 者的影响,以及影响其反应速度的条件。
二、发酵动力学的研究内容
发酵动力学是以化学热力学(研究反应的方向)和化学动 力学(研究反应的速度)为基础,对发酵过程各种物质 的变化进行描述。
发酵动力学的研究内容主要包括: ①细胞生长和死亡动力学; ②基质消耗动力学; ③氧消耗动力学; ④CO2生成动力学, ⑤产物合成和降解动力学; ⑥代谢热生成动力学。
(或mol数)。这里消耗的基质是指被微生物实际利用 掉的基质数量,即投入的基数减去残留的基质量(S0S)。
1. 细胞(生长)得率:
菌体的生长量相对于基质消耗量的收率
Y X X S S
质量平衡法 根据质量守恒定律,任何错综复杂的过程,都可以对某 一物质在过程发生前后的质量变化进行恒算。 物质在系统中积累的速度=物质进入系统的速度+物质 在系统中生成的速度-物质排出系统的速度-物质在系统 中消耗的速度。
五、研究发酵动力学的步骤
1. 获得发酵过程变化的第一手资料,要尽可能寻找能 反映过程变化的各种理化参数。
第一节 发酵过程的化学计量及动力学描述
营养物→细→胞→新细胞+代谢产物
一、细胞反应的元素衡算
如果细胞的代谢产物就是细胞、CO2和水时, Meteles根据细胞的主要元素组成,提出了预测 发酵过程中微生物需要氧数量的计算公式:
Q = 32 C + 8H + 16 O - 1.34 Y ·M
Q--形成1g细胞耗掉的氧量,g(O2)/g(干细胞); C、H、O--每g碳源含有C、H、O的原子数; Y--碳源得率系数(每g碳源获得的细胞数量) g (dry cell)/g(C); M--碳源分子量,g