最短路径(单源dijkstra mapped_heap邻接表

合集下载

数学建模最短路径问题

数学建模最短路径问题

数学建模最短路径问题
在数学建模中,最短路径问题是一个经典的问题,它在很多领域都有应用,如交通规划、网络路由等。

最短路径问题是寻找从一个起点到一个目标点的路径,使得路径上的总权重(或代价)最小。

最短路径问题有多种算法可以解决,以下是其中两个常见的算法:
1. Dijkstra算法:
Dijkstra算法用于解决单源最短路径问题,即从一个起点到其他所有点的最短路径。

该算法的基本思想是从起点开始,逐步扩展到其他节点,不断更新节点的最短路径和最短距离,直到到达目标节点或者所有节点都被遍历。

2. Floyd-Warshall算法:
Floyd-Warshall算法用于解决全源最短路径问题,即任意两个节点之间的最短路径。

该算法采用动态规划的思想,通过逐步迭代更新节点之间的最短路径,最终得到所有节点之间的最短路径。

无论是Dijkstra算法还是Floyd-Warshall算法,都需要给定一个图的表示方式和节点之间的权重信息。

图可以使用邻接矩阵或邻接表表示,节点之间的权重可以是距离、时间、代价等。

在实际应用中,最短路径问题可以根据具体情况进行调整和扩展,例如考虑节点的容量限制、路径的约束条件等。

dijkstra算法步骤例题表格

dijkstra算法步骤例题表格

Dijkstra算法是一种用于计算图中从一个顶点到其他所有顶点的最短路径的算法。

它由荷兰计算机科学家艾兹赫尔·戴克斯特拉于1956年提出。

Dijkstra算法的基本思想是通过不断更新起始顶点到其他顶点的最短路径长度,逐步找到最短路径。

以下将详细介绍Dijkstra算法的步骤,并给出一个例题和表格供读者参考。

一、算法步骤1. 初始化- 设置起始顶点的最短路径为0,其余顶点的最短路径为无穷大。

- 将起始顶点加入已访问的顶点集合。

2. 更新- 从未访问的顶点中选择离起始顶点最近的顶点,将其加入已访问的顶点集合。

- 更新起始顶点到其他顶点的最短路径长度,如果经过新加入的顶点到其他顶点的路径长度小于当前已知的最短路径长度,则更新最短路径长度。

3. 重复更新直到所有顶点都被访问过。

二、算法实例为了更好地理解Dijkstra算法的具体应用步骤,我们通过一个实际的例题来演示算法的执行过程。

假设有以下带权重的图,起始顶点为A:顶点 A B C D EA 0 3 4 ∞ ∞B ∞ 0 ∞ 1 7C ∞ 4 0 2 ∞D ∞ ∞ ∞ 0 5E ∞ ∞ ∞ ∞ 0表中每个元素表示从对应顶点到其它顶点的边的权重,"∞"表示没有直接相连的边。

我们按照Dijkstra算法的步骤来计算从顶点A到其他顶点的最短路径长度。

1. 初始化起始顶点为A,初始化A到各顶点的最短路径长度为0,其余顶点的最短路径长度为∞。

将A加入已访问的顶点集合。

2. 更新选择A到B的路径长度最短,将B加入已访问的顶点集合。

更新A到C和A到D的最短路径长度。

3. 重复更新依次选择离起始顶点最近的顶点,并更新最短路径长度,直到所有顶点被访问。

通过不断的更新,最终得到从顶点A到其他顶点的最短路径长度表格如下:顶点 A B C D E最短路径长度 0 3 4 5 9三、总结通过以上Dijkstra算法的步骤和实例计算,我们可以清晰地了解该算法的执行过程和原理。

最短路问题(整理版)

最短路问题(整理版)

最短路问题(short-path problem)若网络中的每条边都有一个权值值(长度、成本、时间等),则找出两节点(通常是源节点与结束点)之间总权和最小的路径就是最短路问题。

最短路问题是网络理论解决的典型问题之一,可用来解决管路铺设、线路安装、厂区布局和设备更新等实际问题。

最短路问题,我们通常归属为三类:单源最短路径问题(确定起点或确定终点的最短路径问题)、确定起点终点的最短路径问题(两节点之间的最短路径)1、Dijkstra算法:用邻接矩阵a表示带权有向图,d为从v0出发到图上其余各顶点可能达到的最短路径长度值,以v0为起点做一次dijkstra,便可以求出从结点v0到其他结点的最短路径长度代码:procedure dijkstra(v0:longint);//v0为起点做一次dijkstrabegin//a数组是邻接矩阵,a[i,j]表示i到j的距离,无边就为maxlongintfor i:=1 to n do d[i]:=a[v0,i];//初始化d数组(用于记录从v0到结点i的最短路径), fillchar(visit,sizeof(visit),false);//每个结点都未被连接到路径里visit[v0]:=true;//已经连接v0结点for i:=1 to n-1 do//剩下n-1个节点未加入路径里;beginmin:=maxlongint;//初始化minfor j:=1 to n do//找从v0开始到目前为止,哪个结点作为下一个连接起点(*可优化) if (not visit[j]) and (min>d[j]) then//结点k要未被连接进去且最小begin min:=d[j];k:=j;end;visit[k]:=true;//连接进去for j:=1 to n do//刷新数组d,通过k来更新到达未连接进去的节点最小值,if (not visit[j]) and (d[j]>d[k]+a[k,j]) then d[j]:=a[k,j]+d[k];end;writeln(d[n]);//结点v0到结点n的最短路。

dijkstra算法 城市最短路径问题

dijkstra算法 城市最短路径问题

dijkstra算法城市最短路径问题Dijkstra算法是一种经典的图算法,用于求解带有非负权重的图的单源最短路径问题。

在城市的交通规划中,Dijkstra算法也被广泛应用,可以帮助我们找到最短的路线来节省时间和成本。

一、最短路径问题的定义最短路径问题,指的是在一个带权重的有向图中,找到从起点到终点的一条路径,它的权重之和最小。

在城市的交通规划中,起点和终点可以分别是两个街区或者两个交通枢纽。

二、Dijkstra算法Dijkstra算法是基于贪心策略的一种算法,用于解决带非负权重的最短路径问题。

它采用了一种贪心的思想:每次从起点集合中选出当前距离起点最近的一个点,把其移到已知的最短路径集合中。

并以该点为中心,更新它的相邻节点的到起点的距离。

每次更新距离时,选择距离起点最近的距离。

三、Dijkstra算法实现1. 创建一个到起点的距离数组和一个布尔类型的访问数组。

2. 将起点的到起点的距离设置为0,其他的节点设置为无穷大。

3. 从距离数组中选择没有访问过且到起点距离最近的点,将它标记为“已访问”。

4. 对于它的所有邻居,如果出现路径缩短的情况,就更新它们的距离。

5. 重复步骤3和4,直到所有节点都被标记为“已访问”。

6. 最后,根据到起点的距离数组,以及每个节点的前驱节点数组,可以得到从起点到终点的最短路径。

四、Dijkstra算法的时间复杂度Dijkstra算法的时间复杂度可以通过堆优化提高,但最坏情况下时间复杂度仍达到O(ElogV)。

其中,E是边的数量,V是顶点的数量。

因此,Dijkstra算法在不考虑空间复杂度的情况下,是一种高效且实用的解决城市最短路径问题的算法。

五、结论Dijkstra算法是一个广泛应用于城市交通规划领域的算法,可以帮助我们找到最优的路线来节省时间和成本。

它基于贪心策略,每次从起点集合中选择距离起点最近的点,并对其邻居节点进行松弛操作。

Dijkstra算法的时间复杂度虽然较高,但堆优化可以提高算法性能。

最短路径问题算法

最短路径问题算法

最短路径问题算法最短路径问题算法概述:在图论中,最短路径问题是指在一个加权有向图或无向图中,从一个顶点出发到另外一个顶点的所有路径中,权值和最小的那条路径。

最短路径问题是图论中的经典问题,在实际应用中有着广泛的应用。

本文将介绍常见的几种最短路径算法及其优缺点。

Dijkstra算法:Dijkstra算法是一种贪心算法,用于解决带权有向图或无向图的单源最短路径问题,即给定一个起点s,求出从s到其他所有顶点的最短路径。

Dijkstra算法采用了广度优先搜索策略,并使用了优先队列来维护当前已知的距离最小的节点。

实现步骤:1. 初始化:将起始节点标记为已访问,并将所有其他节点标记为未访问。

2. 将起始节点加入优先队列,并设置其距离为0。

3. 重复以下步骤直至队列为空:a. 取出当前距离起始节点距离最小的节点u。

b. 遍历u的所有邻居v:i. 如果v未被访问过,则将其标记为已访问,并计算v到起始节点的距离,更新v的距离。

ii. 如果v已被访问过,则比较v到起始节点的距离和当前已知的最短距离,如果更小则更新v的距离。

c. 将所有邻居节点加入优先队列中。

优缺点:Dijkstra算法能够求解任意两点之间的最短路径,并且保证在有向图中不会出现负权回路。

但是Dijkstra算法只适用于无负权边的图,因为负权边会导致算法失效。

Bellman-Ford算法:Bellman-Ford算法是一种动态规划算法,用于解决带权有向图或无向图的单源最短路径问题。

与Dijkstra算法不同,Bellman-Ford算法可以处理带有负权边的图。

实现步骤:1. 初始化:将起始节点标记为已访问,并将所有其他节点标记为未访问。

2. 对于每个节点v,初始化其到起始节点s的距离为正无穷大。

3. 将起始节点s到自身的距离设置为0。

4. 重复以下步骤n-1次(n为顶点数):a. 遍历所有边(u, v),如果u到起始节点s的距离加上(u, v)边权小于v到起始节点s的距离,则更新v的距离为u到起始节点s的距离加上(u, v)边权。

dijkstra最短路径算法详解

dijkstra最短路径算法详解

dijkstra最短路径算法详解
Dijkstra最短路径算法是一种常用的图算法,用于求解带权图中的单源最短路径问题,即从一个固定的源节点到图中的其他节点的最
短路径。

以下是详细的算法步骤:
1. 初始化
一开始,将源节点的距离设为0,其余节点的距离设置为正无穷,在未访问的节点集合中把源节点压入堆中。

2. 确定最短路径
从堆中取出未访问节点集合中距离源节点最近的节点v,标记其
为已访问。

之后,对于v的邻居节点w,计算从源节点到v再到w的距离,如果经过v的路径比已经计算得到的路径短,则更新路径。

更新
后的距离先暂时放入堆中,如果后边有更短的路径,则更新。

3. 重复第2步
重复第2步,直到取出的节点为终点节点,或者堆为空。

4. 算法结束
算法结束后,各节点的距离就是从源节点到它们的最短距离。

Dijkstra算法的复杂度是O(NlogN),其中N是节点个数。

其优
势在于只需要算一次即可得到所有最短路径,但是要求所有边的权值
必须非负,否则会导致算法不准确。

总之,Dijkstra算法是一种简单有效的最短路径算法,其实现也比较直观。

在处理如飞机和火车等交通路径规划问题中有较好的应用。

求解单源最短路径问题的算法

求解单源最短路径问题的算法

求解单源最短路径问题的算法
求解单源最短路径问题的算法有多种,下面列举了几种常见的算法:
1. Dijkstra算法:通过维护一个距离数组,不断更新起始点到其他节点的最短路径长度。

核心思想是每次选择距离起始点最近的节点,并逐步更新距离数组。

该算法适用于无负权边的情况。

2. Bellman-Ford算法:通过迭代更新距离数组,每次都扫描所有的边,更新路径长度。

该算法适用于存在负权边的情况。

3. Floyd-Warshall算法:通过一个二维矩阵来存储任意两个节点之间的最短路径长度,通过尝试经过不同的中间节点来更新路径长度。

该算法适用于有向图或无向图,且适用于任意权重的情况。

4. A*算法:在Dijkstra算法的基础上引入启发函数,通过启发函数估计从起始点到目标节点的距离,并按照估计值进行优先级队列的排序。

该算法适用于图中存在目标节点的情况。

以上算法适用于不同的情况,具体选择哪个算法要根据问题的特点来决定。

离散数学 最短路径dijkstra算法

离散数学 最短路径dijkstra算法

离散数学是数学的一个分支,研究离散对象和不连续对象的数量关系及其结构的数学学科。

离散数学对于计算机科学和信息技术领域有着重要的应用,其中最短路径dijkstra算法是离散数学中的一个重要算法,它被广泛应用于计算机网络、交通规划、电路设计等领域,在实际应用中发挥着重要的作用。

一、最短路径dijkstra算法的基本原理最短路径dijkstra算法是由荷兰计算机科学家艾兹赫尔·达斯提出的,用于解决带权图中的单源最短路径问题。

该算法的基本原理是:从一个源点出发,按照权值递增的顺序依次求出到达其它各个顶点的最短路径。

具体来说,最短路径dijkstra算法的实现步骤如下:1. 初始化:将源点到图中各个顶点的最短路径估计值初始化为无穷大,将源点到自身的最短路径估计值初始化为0;2. 确定最短路径:从源点开始,选择一个离源点距离最近的未加入集合S中的顶点,并确定从源点到该顶点的最短路径;3. 更新距离:对于未加入集合S中的顶点,根据新加入集合S中的顶点对其进行松弛操作,更新源点到其它顶点的最短路径的估计值;4. 重复操作:重复步骤2和步骤3,直到集合S中包含了图中的所有顶点为止。

二、最短路径dijkstra算法的实现最短路径dijkstra算法的实现可以采用多种数据结构和算法,比较常见的包括邻接矩阵和邻接表两种表示方法。

在使用邻接矩阵表示图的情况下,最短路径dijkstra算法的时间复杂度为O(n^2),其中n表示图中顶点的个数;而在使用邻接表表示图的情况下,最短路径dijkstra 算法的时间复杂度为O(nlogn)。

三、最短路径dijkstra算法的应用最短路径dijkstra算法可以应用于计算机网络中路由选择的最短路径计算、交通规划中的最短路径选择、电路设计中的信号传输最短路径计算等领域。

在实际应用中,最短路径dijkstra算法通过寻找起始点到各个顶点的最短路径,为网络通信、交通规划、电路设计等问题提供有效的解决方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

//单源最短路径,dijkstra算法+映射二分堆,邻接表形式,复杂度O(mlogn)
//求出源s到所有点的最短路经,传入图的大小n和邻接表list
//返回到各点最短距离min[]和路径pre[],pre[i]记录s到i路径上i的父结点,pre[s]=-1 //可更改路权类型,但必须非负!
#define MAXN 200
#define inf 1000000000
typedef int elem_t;
struct edge_t{
int from,to;
elem_t len;
edge_t* next;
};
#define _cp(a,b) ((a)<(b))
struct heap{
elem_t h[MAXN+1];
int ind[MAXN+1],map[MAXN+1],n,p,c;
void init(){n=0;}
void ins(int i,elem_t e){
for
(p=++n;p>1&&_cp(e,h[p>>1]);h[map[ind[p]=ind[p>>1]]=p]=h[p>>1],p>>=1);
h[map[ind[p]=i]=p]=e;
}
int del(int i,elem_t& e){
i=map[i];if (i<1||i>n) return 0;
for (e=h[p=i];p>1;h[map[ind[p]=ind[p>>1]]=p]=h[p>>1],p>>=1);
for
(c=2;c<n&&_cp(h[c+=(c<n-1&&_cp(h[c+1],h[c]))],h[n]);h[map[ind[p]=ind[c]]=p]=h[c] ,p=c,c<<=1);
h[map[ind[p]=ind[n]]=p]=h[n];n--;return 1;
}
int delmin(int& i,elem_t& e){
if (n<1) return 0;i=ind[1];
for
(e=h[p=1],c=2;c<n&&_cp(h[c+=(c<n-1&&_cp(h[c+1],h[c]))],h[n]);h[map[ind[p]=ind[c] ]=p]=h[c],p=c,c<<=1);
h[map[ind[p]=ind[n]]=p]=h[n];n--;return 1;
}
};
void dijkstra(int n,edge_t* list[],int s,elem_t* min,int* pre){
heap h;
edge_t* t;elem_t e;
int v[MAXN],i;
for (h.init(),i=0;i<n;i++)
min[i]=((i==s)?0:inf),v[i]=0,pre[i]=-1,h.ins(i,min[i]);
while (h.delmin(i,e))
for (v[i]=1,t=list[i];t;t=t->next)
if (!v[t->to]&&min[i]+t->len<min[t->to])
pre[t->to]=i,h.del(t->to,e),min[t->to]=e=min[i]+t->len,h.ins(t->to,e); }。

相关文档
最新文档