高等数学常用公式大全
高等数学公式大全(几乎包含了所有)

高等数学公式大全1、导数公式:2、基本积分表:3、三角函数的有理式积分:一些初等函数:两个重要极限:三角函数公式:·诱导公式:函数sin cos tg ctg角A-α-sinαcosα-tgα-ctgα90°-αcosαsinαctgαtgα90°+αcosα-sinα-ctgα-tgα180°-αsinα-cosα-tgα-c tgα180°+α-sinα-cosαtgαctgα270°-α-cosα-sinαctgαtgα270°+α-cosαsinα-ctgα-tgα360°-α-sinαcosα-tgα-ctgα360°+αsinαcosαtgαctgα·和差角公式:·和差化积公式:·倍角公式:·半角公式:·正弦定理:·余弦定理:·反三角函数性质:高阶导数公式——莱布尼兹(Leibniz)公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:多元函数微分法及应用微分法在几何上的应用:方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式:斯托克斯公式——曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为的周期函数的傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:(*)式的通解两个不相等实根两个相等实根一对共轭复根二阶常系数非齐次线性微分方程。
高等数学公式大全

高等数学公式大全·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-c otαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
高等数学公式汇总

高等数学公式汇总高等数学公式汇总第一章一元函数的极限与连续1.一些初等函数公式:,2.极限Ø 常用极限:;; Ø Ø 两个重要极限Ø3.连续:定义:第二章导数与微分1.基本导数公式:2.高阶导数:² 牛顿-莱布尼兹公式:3.微分:第三章微分中值定理与微分的应用1.基本定理2. ² 常用初等函数的展式:3.第四章不定积分1.常用不定积分公式:2.常用凑微分公式:3.有特殊技巧的积分第五章定积分1.基本概念,2.常用定积分公式:;;;; Wallis公式:无穷限积分:瑕积分:; ,第六章定积分应用1.平面图形的面积:直角坐标情形:;;参数方程情形:极坐标情形:2.空间立体的体积:由截面面积:旋转体:绕x轴旋转:绕y轴旋转:3.平面曲线的弧长:变力做功:抽水做功:液体压力做功:第七章向量代数与空间解析几何两点间距离公式:,方向余弦:单位向量:数量积:,夹角余弦:向量积:,,空间位置关系:平面的方程:点法式:;一般式:截距式:两平面的夹角:点到平面的距离:两平行平面的距离:直线与平面的夹角:空间曲线,曲线的投影,空间立体,曲面,曲面的投影球面:椭圆柱面:;双曲柱面:;抛物柱面:旋转曲面:圆柱面:;圆锥面:;双叶双曲面:单叶双曲面:;旋转椭球面: ;旋转抛物面:二次曲面:椭球面:抛物面:椭圆抛物面:;双曲抛物面:单叶双曲面:;双叶双曲面:椭圆锥面:总结求极限方法:1.极限定义;2.函数的连续性;3.极限存在的充要条件;4.两个准则;5.两个重要极限;6.等价无穷小;7.导数定义;8利用微分中值定理;9.洛必达法则;10.麦克劳林公式展开;求导法:1.导数的定义(求极限);2.导数存在的充要条件;3.基本求导公式;4.导数四则运算及反函数求导;5.复合函数求导;6.参数方程确定的函数求导;7.隐函数求导法;8.高阶导数求导法(莱布尼茨公式/常用的高阶导数);等式与不等式的证明:1.利用微粉中值定理;2.利用泰勒公式展开;3.函数的单调性;4.最大最小值;5.曲线的凸凹性第八章多元函数微分法及其应用一. 定义:二. 微分:,,全微分:三.四.曲线的切线和法平面1.曲线方程,切线:,法平面:2.曲线方程,切线:,法平面:3.曲线方程,切向量,切线:四.曲面的切平面和法线,法向量:,切平面:,法线:2.,切平面,法线:五.方向导数:梯度:第九章:重积分一. 二重积分:二.三重积分:1.直角坐标系:2.柱面坐标系:3.球面坐标系:二.重积分的应用:1.体积:2.曲面面积:3.质量:或4.质心:或5. 转动惯量:或第章:曲线积分和曲面积分一.第一类曲线积分:(对弧长的曲线积分):二.第二类曲线积分(对坐标的曲线积分):1.计算公式:2.格林公式:3.Stokes公式:4.封闭曲线围城的面积:三.第一类曲面积分:四.第二类曲面积分:1.计算公式:2.投影转化法:3.高斯公式:4第一章无穷级数一.常数项级数二.幂级数:1.收敛半径:2.常用等式:,,,,3.泰勒展开:三.第二章微分方程第20 页共20 页。
大学高数公式大全

向量在轴上的投影:Pr ju AB = AB cos,是AB与u轴的夹角。
Pr a
bju=(aa1
+
a2
)
=
Pr
ja1
+
b cos = axbx
Pr ja2 + ayby
+
azbz
,是一个数量,
两向量之间的夹角:cos =
axbx + ayby + azbz
ax 2 + ay 2 + az 2 bx 2 + by 2 + bz 2
1 tg tg ctg( ) = ctg ctg 1
ctg ctg
·和差化积公式:
sin + sin = 2sin + cos −
2
2
sin − sin = 2 cos + sin −
2
2
cos + cos = 2 cos + cos −
2
2
cos − cos = 2sin + sin −
i c = ab = ax
j ay
k az
,
c
=
a
b
sin .例:线速度:v
=
w r.
bx by bz
向量的混合积:[abc]
=
(a
b)
c
=
ax bx
ay by
az bz
=
a
b
c
cos
,为锐角时,
cx cy cz
代表平行六面体的体积。
4 / 12
高等数学公式
平面的方程: 1、点法式:A(x − x0 ) + B( y − y0 ) + C(z − z0 ) = 0,其中n = {A, B,C}, M 0 (x0 , y0 , z0 )
(完整版)高等数学常用公式大全

高数常用公式平方立方:22222222332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2)n n n n n n a b c a b a b a a b ab b n ----++-=-++++≥ 三角函数公式大全两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2-Sin2A=2SinA•CosA Cos2A =Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)半角公式 sin(2A )=2cos 1A -cos(2A)=2cos 1A +tan(2A)=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin +和差化积sina+sinb=2sin 2b a +cos 2ba -sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosatgA=tanA =a acos sin万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa -其他非重点三角函数csc(a) =a sin 1sec(a) =acos 1双曲函数sinh(a)=2e -e -aacosh(a)=2e e -aa +tg h(a)=)cosh()sinh(a a其它公式a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin2a +cos 2a )2 1- sin(a) = (sin 2a -cos 2a)2公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα cot (-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα cot (π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα公式六: 2π±α及23π±α与α的三角函数值之间的关系:sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotαcot (2π-α)= tanαsin (23π+α)= -cosαcos (23π+α)= sinαtan (23π+α)= -cotαcot (23π+α)= -tanαsin (23π-α)= -cosαcos (23π-α)= -sinαtan (23π-α)= cotαcot (23π-α)= tanα(以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A特殊角的三角函数值:等价代换:(1) x sinx ~ (2) x tanx ~ (3) x arcsinx ~ (4) x arctanx ~(5) 2x 21cosx 1~- (6) x )x 1(ln ~+ (7) x 1e x~- (8)ax 1)x 1(a ~-+基本求导公式:(1) 0)(='C ,C 是常数 (2) 1)(-='αααx x (3) a a a x x ln )(=' (4) ax x a ln 1)(log =' (5) x x cos )(sin =' (6) x x sin )(cos -=' (7) x x x 22sec cos 1)(tan ==' (8) x xx 22csc sin 1)(cot -=-='(9) x x x tan )(sec )(sec =' (10) x x x cot )(csc )(csc -='(11) =')(arcsin x 211x- (12) 211)(arccos xx --='(13) 211)(arctan xx +=' (14) 21(arccot )1x x '=-+ (15)x21x =')( (16) 2x1x 1-=)(基本积分公式:(1) 0dx C =⎰ (2) ()为常数k Ckx kdx +=⎰(3) ()111-≠++=+⎰μμμμC x dx x (4) C x dx x +=⎰||ln 1(5) C aa dx a xx+=⎰ln (6) C e dx e x x +=⎰ (7) C x xdx +=⎰sin cos (8)Cx xdx +-=⎰cos sin (9)⎰⎰+==C x xdx x dx tan sec cos 22(10) ⎰⎰+-==C x xdx x dxcot csc sin 22 (11) C x xdx x +=⎰sec tan sec(12) C x xdx x +-=⎰csc cot csc (13) C x x dx +=+⎰arctan 12 或(C x arc x dx+-=+⎰cot 12)(14) C x xdx +=-⎰arcsin 12或(C x xdx +-=-⎰arccos 12)(15) C x xdx +-=⎰|cos |ln tan , (16) C x xdx +=⎰|sin |ln cot , (17)Cx x xdx ++=⎰|tan sec |ln sec , (18)C x x dx x c +-=⎰|cot csc |ln sc ,一些初等函数: 两个重要极限:·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx xx xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x拉格朗日中值定理。
大学高等数学所有公式大全.

大学高等数学公式·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·平方关系:sin^2(α+cos^2(α=1tan^2(α+1=sec^2(αcot^2(α+1=csc^2(α·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β=cosα·cosβ-sinα·sinβcos(α-β=cosα·cosβ+sinα·sinβsin(α±β=sinα·cosβ±cosα·sinβtan(α+β=(tanα+tanβ/(1-tanα·tanβtan(α-β=(tanα-tanβ/(1+tanα·tanβ·三角和的三角函数:sin(α+β+γ=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ=(tanα+tanβ+tanγ-tanα·tanβ·tanγ/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα·辅助角公式:Asinα+Bcosα=(A^2+B^2^(1/2sin(α+t,其中sint=B/(A^2+B^2^(1/2cost=A/(A^2+B^2^(1/2tant=B/AAsinα+Bcosα=(A^2+B^2^(1/2cos(α-t,tant=A/B·倍角公式:sin(2α=2sinα·cosα=2/(tanα+cotαcos(2α=cos^2(α-sin^2(α=2cos^2(α-1=1-2sin^2(αtan(2α=2tanα/[1-tan^2(α]·三倍角公式:sin(3α=3sinα-4sin^3(αcos(3α=4cos^3(α-3cosα·半角公式:sin(α/2=±√((1-cosα/2cos(α/2=±√((1+cosα/2tan(α/2=±√((1-cosα/(1+cosα=sinα/(1+cosα=(1-cosα/sinα·降幂公式sin^2(α=(1-cos(2α/2=versin(2α/2cos^2(α=(1+cos(2α/2=covers(2α/2 tan^2(α=(1-cos(2α/(1+cos(2α·万能公式:sinα=2tan(α/2/[1+tan^2(α/2] cosα=[1-tan^2(α/2]/[1+tan^2(α/2] tanα=2tan(α/2/[1-tan^2(α/2]·积化和差公式:sinα·cosβ=(1/2[sin(α+β+sin(α-β] cosα·sinβ=(1/2[sin(α+β-sin(α-β] cosα·cosβ=(1/2[cos(α+β+cos(α-β] sinα·sinβ=-(1/2[cos(α+β-cos(α-β]·和差化积公式:sinα+sinβ=2sin[(α+β/2]cos[(α-β/2] sinα-sinβ=2cos[(α+β/2]sin[(α-β/2] cosα+cosβ=2cos[(α+β/2]cos[(α-β/2] cosα-cosβ=-2sin[(α+β/2]sin[(α-β/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2^2·其他:sinα+sin(α+2π/n+sin(α+2π*2/n+sin(α+2π*3/n+……+sin[α+2π*(n-1/n]=0cosα+cos(α+2π/n+cos(α+2π*2/n+cos(α+2π*3/n+……+cos[α+2π*(n-1/n]=0 以及sin^2(α+sin^2(α-2π/3+sin^2(α+2π/3=3/2tanAtanBtan(A+B+tanA+tanB-tan(A+B=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得:sinx=[e^(ix-e^(-ix]/(2i cosx=[e^(ix+e^(-ix]/2 tanx=[e^(ix-e^(-ix]/[ie^(ix+ie^(-ix]泰勒展开有无穷级数,e^z=exp(z=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
(完整版)高数公式大全(费了好大的劲),推荐文档

lim[ f ( x) g ( x)]
两个重要极限
lim
sin
x
1, lim
sin
x
0; lim(1
1)x
e
lim(1
1
x) x
x0 x
x x
x
x
x0
常用等价无穷小:
1 cos x ~ 1 x2; x ~ sin x ~ arcsin x ~ arctan x; n 1 x 1 ~ 1 x;
lim n0
n i 1
f(i)1 nn
F (b) F (a) F (x)
b a
,
(F(x) f (x))
连续可积; 有界+有限个间断点可积; 可积有界; 连续原函数存在
(x) x f (t)dt (x) f (x) a
d (x) f (t)dt f [(x)](x) f [ (x)] (x)
1 x
n0
3、
弧微分公式:ds 1 y2 dx x(t) y(t)2 dt 2 2 d
平均曲率:K从点到点.(, 切: 线M斜率的M倾 角变化量;: s
弧长)
s MM
M点的曲率:K lim d s0 s ds
y
(t) (t) (t) (t)
= (1 y2 )3
Байду номын сангаас
3
[2 (t) 2 (t)]2
x2 a2 2a x a
a2 x2 2a a x
dx ln(x x2 a2 ) C;
x2 a2
x2 a2 dx x x2 a2 a2 ln(x x2 a2 ) C;
2
2
a2 x2 dx x a2 x2 a2 arcsin x C
高等数学公式大全

高等数学公式大全一、方程1.一元一次方程一元一次方程是指由一个未知数及其平方项和一次项所组成的方程,它的标准形式为:ax + b = 0, 其解为: x = -b/a2.一元二次方程一元二次方程是指由一个未知数的二次项、一次项和常数项组成的方程,它的标准形式为:ax² + bx + c = 0,其解为:x1,2 = [-b ±√(b²-4ac)]/2a3.不定方程不定方程是指方程右端没有任何量,且没有可以代求解的未知数,它的标准形式为:ax + b = 0,其解为:任何实数x即为解4.幂指数方程幂指数方程是指指数函数方程经过变形后所得的方程,它的标准形式为:ax^m+bx^n=c,其解为:x=(c-b)/a5.二元一次方程二元一次方程是指有两个未知数,右端只有一次项的方程,它的标准形式为:ax + by = c,其解为:x = (c-b)/a, y = (c-a)/b6.二元二次方程二元二次方程是指有两个未知数,右端有两次项的方程,它的标准形式为:ax² + by² + cxy + dx + ey + f = 0,其解为: x=-ey/2c+【(ey/2c)² - (d+bx/c) 】^½ / (d+bx/c) 、 y=-dx/2c+【(dx/2c)² - (e+ax/c) 】^½ / (e+ax/c)二、椭圆方程1.一般形式一般形式是指将椭圆方程转化为一般形式来求解的方法,它的标准形式为:Ax²+By²+Cxy+Dx+Ey+F=0,其解为:X=-2CX0/(B-A)±b^½*[(CX0/(B-A))²-(2BX0²/B-A)];。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数常用公式平方立方:三角函数公式大全两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tanAtanB -1tanBtanA +tan(A-B)=tanAtanB1tanBtanA +-cot(A+B)=cotAcotB 1-cotAcotB +cot(A-B)=cotAcotB 1cotAcotB -+倍角公式tan2A=Atan 12tanA2- Sin2A=2SinA?CosACos2A=Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A=3sinA-4(sinA)3cos3A=4(cosA)3-3cosAtan3a=tana ·tan(3π+a)·tan(3π-a) 半角公式sin(2A )=2cos 1A -cos(2A )=2cos 1A +tan(2A )=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin +和差化积sina+sinb=2sin 2b a +cos 2ba - sina-sinb=2cos2b a +sin 2b a - cosa+cosb=2cos2b a +cos 2ba - cosa-cosb=-2sin2b a +sin 2ba - tana+tanb=ba b a cos cos )sin(+积化和差sinasinb=-21[cos(a+b)-cos(a-b)] cosacosb=21[cos(a+b)+cos(a-b)]sinacosb=21[sin(a+b)+sin(a-b)]cosasinb=21[sin(a+b)-sin(a-b)]诱导公式sin(-a)=-sinacos(-a)=cosasin(2π-a)=cosa cos(2π-a)=sina sin(2π+a)=cosa cos(2π+a)=-sina sin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosatgA=tanA=aa cos sin 万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa -其他非重点三角函数csc(a)=a sin 1 sec(a)=acos 1 双曲函数sinh(a)=2e -e -aacosh(a)=2e e -aa +tgh(a)=)cosh()sinh(a a 其它公式a?sina+b?cosa=)b (a 22+×sin(a+c)[其中tanc=ab ] a?sin(a)-b?cos(a)=)b (a 22+×cos(a-c)[其中tan(c)=ba ] 1+sin(a)=(sin2a +cos 2a )2 1- sin(a)=(sin2a -cos 2a )2公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)=sinαcos (2kπ+α)=cosα tan (2kπ+α)=tanα cot (2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)=-sinαcos (π+α)=-cosαtan (π+α)=tanα cot (π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系:sin (-α)=-sinαcos (-α)=cosαtan (-α)=-tanα cot (-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)=sinαcos (π-α)=-cosαtan (π-α)=-tanαcot (π-α)=-cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)=-sinαcos (2π-α)=cosαtan (2π-α)=-tanαcot (2π-α)=-cotα公式六:2π±α及23π±α与α的三角函数值之间的关系:sin (2π+α)=cosα cos (2π+α)=-sinα tan (2π+α)=-cotα cot (2π+α)=-tanαsin (2π-α)=cosα cos (2π-α)=sinα tan (2π-α)=cotα cot (2π-α)=tanα sin (23π+α)=-cosα cos (23π+α)=sinα tan (23π+α)=-cotα cot (23π+α)=-tanα sin (23π-α)=-cosα cos (23π-α)=-sinα tan (23π-α)=cotα cot (23π-α)=tanα (以上k∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用A?sin(ωt+θ)+B?sin(ωt+φ)=)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A特殊角的三角函数值:等价代换:(1)x sinx ~(2)x tanx ~(3)x arcsinx ~(4)x arctanx~ (5)2x 21cosx 1~-(6)x )x 1(ln ~+(7)x 1e x~-(8)ax 1)x 1(a ~-+基本求导公式:(1) 0)(='C ,C 是常数(2)1)(-='αααx x(3)a a a x x ln )(='(4)ax x a ln 1)(log =' (5)x x cos )(sin ='(6)x x sin )(cos -='(7)x x x 22sec cos 1)(tan =='(8)x xx 22csc sin 1)(cot -=-=' (9)x x x tan )(sec )(sec ='(10)x x x cot )(csc )(csc -='(11)=')(arcsin x 211x-(12)211)(arccos xx --='(13)211)(arctan xx +='(14)21(arccot )1x x '=-+ (15)x 21x =')((16)2x 1x 1-=)(基本积分公式:(1)0dx C =⎰(2)()为常数k Ckx kdx +=⎰(3)()111-≠++=+⎰μμμμC x dx x (4)C x dx x+=⎰||ln 1(5)C aa dx a xx+=⎰ln (6)C e dx e x x +=⎰(7)C x xdx +=⎰sin cos (8)C x xdx +-=⎰cos sin (9)⎰⎰+==C x xdx xdx tan sec cos 22 (10)⎰⎰+-==C x xdx xdxcot csc sin 22(11)C x xdx x +=⎰sec tan sec (12)C x xdx x +-=⎰csc cot csc(13)C x x dx +=+⎰arctan 12或(C x arc x dx+-=+⎰cot 12) (14)C x xdx +=-⎰arcsin 12或(C x xdx +-=-⎰arccos 12)(15)C x xdx +-=⎰|cos |ln tan ,(16)C x xdx +=⎰|sin |ln cot ,(17)C x x xdx ++=⎰|tan sec |ln sec ,(18)C x x dx x c +-=⎰|cot csc |ln sc ,一些初等函数:两个重要极限:·正弦定理:R Cc B b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2)其中:x 1=a ac b b 242-+-;x 2=aacb b 242---(b 2-4ac ≥0)1+x2=-ab,x1·x2=ac根与系数的关系:x。